
Identifying change patterns in software history

Jason Dagit
Galois, Inc

Portland, OR
dagitj@gmail.com

Matthew Sottile
Galois, Inc

Portland, OR
mjsottile@gmail.com

ABSTRACT
Traditional algorithms for detecting differences in source code
focus on differences between lines. As such, little can be
learned about abstract changes that occur over time within
a project. Structural differencing on the program’s abstract
syntax tree reveals changes at the syntactic level within
code, which allows us to further process the differences to
understand their meaning. We propose that grouping of
changes by some metric of similarity, followed by pattern
extraction via antiunification will allow us to identify patterns
of change within a software project from the sequence of
changes contained within a Version Control System (VCS).
Tree similarity metrics such as a tree edit distance can be
used to group changes in order to identify groupings that may
represent a single class of change (e.g., adding a parameter
to a function call). By applying antiunification within each
group we are able to generalize from families of concrete
changes to patterns of structural change. Studying patterns
of change at the structural level, instead of line-by-line, allows
us to gain insight into the evolution of software.

Keywords
version control, structural differencing, antiunification, soft-
ware evolution

1. INTRODUCTION
Version control systems (VCS’s) track the evolution of

software over time in the form of a sequence of changes to
the plain text representation of the code. We would like to be
able to characterize the changes to files in a software project
according to the type of change that they represent. The
ability to map these changes to the syntax of the language,
instead of its raw text representation, will allow them to
be understood in terms of the language constructs them-
selves. Doing so will allow us to identify patterns of changes
at the abstract syntax level, separate from syntax neutral
changes to the text such as layout variations. As a result,

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0
Unported License (CC BY-SA 3.0). To view a copy of the license, visit
http://creativecommons.org/licenses/by-sa/3.0/.

DChanges 2013, September 10th, 2013, Florence, Italy.
ceur-ws.org Volume 1008, http://ceur-ws.org/Vol-1008/paper2.pdf .

the interpretation of changes is made unambiguous given the
definition of the abstract syntax of the language.

Finding common patterns for the changes to a source file
gives us the ability to understand, at a higher level, what
sorts of revisions are happening. Detecting simple changes,
such as semaphore handling changes in system-level software,
we may think to use a textual search tool, such as grep, to
search the source code for functions related to semaphores.
Such tools are unable to easily identify more complex patterns
though that have no single textual representation, such as
instances of semaphore handling calls being made within
conditionals where the format of the conditional can vary.
Structure aware searching would be necessary in this case, as
treating the program as raw text ignores important syntactic
structure.

In an even more complicated situation, a programmer may
be faced with a code base that they are unfamiliar with. In
this case, the programmer may not know a-priori what kinds
of structures are important to look for related to a certain
kind of change. Here, we would like to use the differences
that are recorded in the VCS during the period of time when
the change of interest was being performed to discover the
structural patterns that represent the high level structure of
the changes. In this way, our goal is to not provide simply
a sophisticated search tool, but to provide a method for
identifying patterns of code changes over a period of time.

Our contributions towards this goal presented in this paper
are:

• We show that structural differencing algorithms that
operate on the abstract syntax tree (AST) of a language
can be used to map text differences stored in a VCS to
a form where the syntactic meaning of changes can be
reasoned about.

• We show that the antiunification algorithm that seeks
the “least general generalization” of a set of trees can
be used to map changes considered to be sufficiently
similar to a meaningful generalized change pattern.

• We show that a thresholded tree similarity metric de-
rived from a tree edit distance score provides a useful
grouping mechanism to define the notion of “sufficiently
similar”.

In this paper, we briefly describe the building blocks of
our work and show preliminary results of this methodology
as applied to version control repositories for open source

projects available online. The projects studied in this paper
are ANTLR1 and Clojure2, both written in Java.

1.1 Motivation
We would like to be able to take existing software projects

and use the history stored in the VCS to answer questions
which may be important to software developers, software
project managers, language designers, and static analysis
tools.

Language designers may want to know whether specific
syntactic constructs would make the language more pro-
ductive for users. Taking an example from Java, we might
consider the addition of the for-each loop construct. This
feature could be partially justified by doing an analysis of
existing source code to determine that most for-loops iterate
over an entire collection. To strengthen this argument, it
would be insightful to know what is the impact of maintain-
ing the code without for-each. For example, if refactoring
the code commonly leads to editing the bounds to match
the collection used, then the argument in favor of adding
for-each is strengthened, as now it helps to prevent a class of
bugs where programmers forget to update the bounds. We
demonstrate the detection of loop patterns within ANTLR
in Section 3.2.

Software developers joining a new project or team are
expected to learn the source code that they will be working
with. We would like to provide these programmers with
tools that aid them in this task by allowing them to see
what types of changes other team members have made in
the past. Software developers may also want to compare
the changes that happen in response to related bugs, hoping
to find opportunities to improve software quality, either by
searching for buggy patterns in the source code or making a
tool to detect the pattern in new code. We demonstrate the
detection of generic patterns within the Clojure compiler in
Section 3.3.

We believe there are many uses for this approach beyond
the ones demonstrated in this paper. Consider a problem
that has been faced by many projects in the last decade—the
challenge of migrating to utilize multicore processors. A
manager who is leading a large software project may want
to answer important questions to help inform future devel-
opment: what sorts of constructs were removed or added?
This can reveal patterns of code that were thread unsafe in
the pre-multicore code that developers (especially those not
participating in the multicore port) should be made aware
of in the future. It can also reveal repeated patterns that
were added, indicating potential refactorings that may be
desirable to apply in order to reduce the proliferation of code
clones within the project.

1.2 Related work
The use of version control repositories as a source of data to

study changes to code over time is not new, but our approach
to the problem is novel. Neamtiu [4] uses a similar approach
of analyzing the abstract syntax tree of code in successive
program versions, but focuses on detecting change occur-
rences only instead of going a step further and attempting to
identify any common patterns of change that can be found.
Other groups have focused on identifying patterns based on
common refactorings that can be identified in the code [10],

1https://github.com/antlr/antlr4
2https://github.com/clojure/clojure

and seek to infer simple abstract rules that encapsulate the
changes that they detect [3]. For example, one such rule
could indicate that for all calls that match a certain pattern,
an additional argument should be added to their argument
list.

This goal of generating abstract rules is similar to our goal
of inferring generic patterns in terms via antiunification [6,
5]. What differs with our approach is that we presuppose
no knowledge of the underlying language beyond the struc-
ture provided by the language parser and its mapping to
an annotated term (or, aterm) [9] format. As such, it is
challenging to build rules that give an interpretation to the
program abstract syntax, such as “append an argument to
the function call”, since we do not provide a mapping from
the concept of “function call” to a pattern of AST nodes. By
instead emitting templates in terms of the language AST in
aterm form, we are able to keep the tool as language-neutral
as possible.

2. METHODOLOGY
We propose the tool workflow illustrated in Figure 1 for

studying software evolution via VCS data. First, each version
of all source files in the project are reconstituted from the
differences stored within the VCS such that each version
of a file can be parsed by an appropriate language front
end. Each front-end is configured to map the parsed code to
an aterm that represents a standardized serialization of the
AST. Mapping languages to a common aterm format allows
the downstream portions of our workflow to be language-
agnostic to a large degree, with minimal language-specific
parameterization.

Once we have code in an aterm format, we can then apply
a structural differencing algorithm between adjacent versions
of each source file (e.g., version n of file f is compared
to version n + 1 of file f). The result of this is a forest
of trees that represent the portions of the AST of file f
that changed between versions at the structural level. These
changes can either be code insertions, deletions, or mutations.
Our differencing is based on the work of Yang [11] whose
algorithm was designed for computing differences between
source code versions. Yang’s goal was to improve the visual
presentation of differences in textual diff tools, and our use
of their algorithm to provide input to further tree analysis
algorithms is novel.

After reducing the sequence of differences stored in the
VCS, we have a large forest of trees each representing a
change that occurred over the evolution of the software. At
this point, we seek to relate each of these trees via a tree
similarity metric. This is achieved by using Yang’s algorithm
a second time, but in this case we ignore the sequence of
edit operations that it produces and simply consume the
quantitative similarity metric that it produces as a rough
estimate of how closely related two trees are. A threshold
parameter is defined in which two trees with a similarity
above the threshold are considered to be part of the same
group of difference tress.

Finally, once the set of differences are grouped into groups
of trees that are similar up to the threshold, we perform
antiunification on the entire group to distill all members to a
representative code pattern for the group. Antiunification of
a set of terms yields the least general generalization of those
terms, which is how we define our notion of a code pattern.
The antiunification algorithm as described by Bulychev [1]

a.c b.c
source code

version history

a.c
v1

a.c
v2

compare sequential
versions of each file

forest of
diff subtrees

group by similarity

P2P1

treediff

tree similarity

antiunify antiunify
antiunify to obtain

patterns

Figure 1: The components of our prototype indicat-
ing how VCS data is broken down into groupings of
related changes for pattern generation.

as part of the clonedigger project3 was used, which itself is
an implementation of the classical antiunification algorithm
described by both Reynolds [6] and Plotkin [5].

In the following sections, we describe the steps above in
greater detail.

2.1 Parsing and aterm generation
One of the most challenging aspects of performing this kind

of study on arbitrary software packages is the availability of
robust language parsing tools. In the absence of a common
intermediate representation or abstract syntax representation
for popular languages, we adopted a standardized serializa-
tion format in the form of annotated terms. Generation of
aterms was achieved via language-specific parsers. In this
work, we used the language-java parser available as an
open source library accessible via the Haskell programming
language.

The structure of aterms is given by this simple syntax:

〈aterm〉 ::= ‘AAppl’ 〈string〉 〈aterm-list〉
| ‘AList’ 〈aterm-list〉
| ‘AInt’ 〈int〉

〈aterm-list〉 ::= 〈aterm〉 〈aterm-list〉
| ε

This structure is sufficient for us to encode typical abstract
syntax trees if we allow ourselves to use the string label of the

3http://clonedigger.sourceforge.net

AAppl portion of the aterm. This is most easily illustrated
with an example. Suppose that we have the Java AST for
the statement i++;. In a textual form, this portion of the
AST would be represented by:

ExpStmt
(PostIncrement

(ExpName
(Name [Ident "i"])))

The translation to aterm would give us:

AAppl "ExpStmt"
[AAppl "PostIncrement"

[AAppl "ExpName"
[AAppl "Name"

[AList
[AAppl "Ident" [AAppl "\"i\"" []]]]]]]

Notice that for strings, such as identifier names, we place
double quotes around the string inside the label portion
of the aterm. Implementations of aterms often provide a
representation that allows for nodes to be shared within the
tree. While this is a useful optimization for saving space,
we chose to use the simpler unshared representation in our
prototype due to the clearer expression of the tree analysis
algorithms over the unshared form of the structure.

2.2 Structural differencing
One of the classical algorithms studied in computer science

is that of string similarity and the concept of string edit
distance as a measure of the minimal number of operations
necessary to mutate one string or sequence into another. A
more complex problem is to define a similar sequence of
operations to change a non-linear structure like a tree from
one into another. This problem of computing a structural
edit distance has been studied since the 1970s and has yielded
tree differencing algorithms analogous to string differencing
algorithms commonly used in text analysis. Many modern
efforts in this area are based on the initial work of Selkow [7]
and Tai [8]. Interest in such analysis of tree-structured
data increased with the proliferation of structured document
formats used on the Internet such as XML, HTML and SGML
(a noteworthy example from this body of work is found in
Chawathe [2]).

Our work is based on Yang’s source differencing tech-
nique [11]. In this algorithm two trees to be compared are
mapped to two trees of edit operations in which nodes from
the original trees are annotated with edit operations (keep or
delete). These can be applied to turn each tree into the other.
On their own the edit trees are not sufficient to identify the
paired subtrees that represent regions where change occurred.
This requires an additional step of processing the edit trees
to form a single tree in which the edit trees have been woven
together.

2.3 Identifying structural changes via edit tree
weaving

Ideally, we would like to obtain from the tree differencing
algorithm what can be thought of as the two trees overlaid
on each other such that the common structure from the root
towards the children is clear, and points where subtrees differ
are explicitly identified. The details on how this algorithm
was implemented are not critical to this paper — instead, we

will focus on what the woven trees contain. In the discussion
that follows, we adopt the convention that the arguments to
the binary tree differencing function are referred to as the
left and right trees.

Changes that occur between the trees are represented by
three change types. If the difference between two trees is the
insertion of a subtree in the right tree, then the woven tree
will contain a left-hole. Similarly, deletion of a subtree from
the left such that it is not present in the right tree will result
in a right-hole. If a subtree was determined to be changed,
then the woven tree will contain a mismatch point that refers
to the both the right and left subtrees that differ. All other
points in the tree that match are joined with a match point
that contains the corresponding common node to both trees.

Given two edit trees that have been woven together into
a tree with explicit holes and mismatches, we can extract
the subtrees that correspond to the three types of changes
above. Match points also play an important role in extracting
changes by retaining the common context that was present
in both trees where the change occurred. If we extract only
the subtree rooted at the point where the change occurred,
the rest of the analysis will be missing the context where
the change took place. This information is necessary when
constructing understandable patterns.

For example, while it may be true that a code fragment
such as i++ is where the change occurred, it is most useful
to know whether or not that fragment occurred within an
expression, a for-loop, or as a standalone statement. As such,
we have chosen for the work presented here to extract the sub-
tree along with the closest enclosing statement. For example,
if the subtree was the expression i++; within the statement
if(i < 100) i++; we would extract the if-statement with
the expression.

This is achieved by including the subtree rooted at the
nearest ancestor (which must be a matching point in the
woven edit trees) to a change representing an appropriate
abstract syntax element. In the future, we would like to
explore other ways of extracting context, such as looking at
the closest enclosing expression, function (when it exists),
or class. This information should also be parameterizable
to support differences in important AST nodes that varies
between languages.

2.4 Tree similarity metric and grouping
Given two trees t1 and t2, we would like to define a simi-

larity metric such that d(t1, t2) ∈ [0, 1], where a similarity of
1 means that the trees are identical, and 0 represents max-
imal dissimilarity. In Yang’s algorithm, a similarity score
is provided for comparing ta and tb. This metric is order
dependent, forcing the maximal score to be the size of the
left tree (ta), even if tb is larger. If the trees are identical,
the score will be exactly |ta|, the number of nodes in ta. If
they differ, it will be strictly less than |ta|. As such, it would

be possible to define our distance function to be d(ta,tb)
|ta| ,

but this operator is not symmetric, since it is easy to find

instances such that d(tb,ta)
|tb|

6= d(ta,tb)
|ta| when the trees are very

different. Instead, we define ∆(ta, tb) to be the function

∆(ta, tb) :=
min(d(ta, tb), d(tb, ta))

max(|ta|, |tb|)

where the min and max functions force the calculation to
be symmetric.

Figure 2: Boolean matrix D for over 500 changes
from the ANTLR repository indicating in white all
pairs of changes for τ = 0.9.

Once we have the set of changes that were detected from
the VCS history, we can generate a forest of trees t1, · · · , tn
obtained from the holes and mismatch points in the woven
edit trees. We then compute the n2 distances between all
pairs to generate a distance matrix D where Dij = ∆(ti, tj).
Given a threshold value τ , we can produce a boolean matrix
D′ where D′

ij = ∆(ti, tj) > τ . An example matrix is shown
in Figure 2 for changes observed in the VCS for ANTLR
where τ = 0.9. Note that for large numbers of changes, a
sparse representation of the boolean matrix can be computed
for a given τ without requiring the full dense distance matrix
to be created. The sparsity of the matrix is dependent both
on the types of changes present and the value of τ chosen.

In our implementation, we create multiple distance ma-
trices such that each represents only related changes of a
certain type from the woven tree (left and right holes, and
mismatches). The matrix as defined above is simply the
element-wise boolean or of these three matrices. Capturing
this information is important as it allows us to further refine
our view of the code evolution to distinguish code changes
from the insertion or removal of code that occurs over time.
For example, when code is being developed and grown, we
expect to see a number of code insertions. Similarly, when a
mass refactoring occurs to simplify code, we would expect to
see a set of code deletions. When a more subtle refinement
occurs, such as transposition of code arguments or the addi-
tion of a conditional to refine control flow, we would expect
to see mismatches where the tree changes.

2.5 Antiunification and template generation
Once we have groups of related code snippets in the form

of related subtrees, we can seek patterns that relate changes.
For example, say we have a function call foo() where each
invocation of the function uses the same parameters (e.g,
foo(x,y), where x and y are always the same). If we
add a new parameter at the end of each call where the
variable passed in differs each time (e.g., foo(x,y,a) and
foo(x,y,b)), we would like to abstract out this change as
foo(x,y,�), where each instance of the change replaces
� with whatever concrete variable is used at that point. The
antiunification algorithm is built for this purpose – given two

0	

5	

10	

15	

20	

25	

30	

0	 0.2	 0.4	 0.6	 0.8	 1	

N
um

be
r	 o

f	 g
ro
up

s	

Threshold	

addi.ons	

dele.ons	

modifica.ons	

Figure 3: Number of additions, deletions, and mod-
ifications by threshold for the Clojure source

trees, it seeks the least-general generalization of the pair and
produces a triplet representing the generalized tree with a
metavariable introduced where the two differ, as well as a
substitution set that allows the metavariable to be replaced
with the appropriate concrete subtree necessary to reconsti-
tute the two trees that were antiunified. Multiple distinct
metavariables (�1, · · · , �n) are used when multiple indepen-
dent � points are necessary to represent a generalized set of
trees.

3. EXPERIMENTAL RESULTS
We tested the methodology outlined in Section 2 on the

publicly available git repositories for two popular open source
projects, the ANTLR parser generator and the Clojure lan-
guage implementation. Both are implemented in Java, and
one (ANTLR) is composed of a mixture of hand-written and
automatically generated code.

3.1 Threshold sensitivity
The first experiment that we performed was to investigate

the effect of similarity threshold to the number of groups iden-
tified, as well as the degree of generality present in the tree
that results from all members of each group being antiunified
together. Our prediction was that at the lowest threshold
(τ = 0.0), when all trees are considered to be similar, their
antiunification will yield the most general pattern. This is
what was observed, in which the antiunification result is a
tree composed of a single metavariable node. Similarly, at
the highest threshold (τ = 1.0), the only groupings that will
be present will be single tree sets, or sets containing iden-
tical trees for instances of identical changes that occurred
in different places. This is precisely what we observed, with
the antiunified trees containing no meta-variables since an-
tiunification of a set of identical elements is the element
itself.

3.2 Group counts
We show the number of groups (broken down by type:

addition, deletion, or modification) as a function of threshold
of similarity (τ). Figure 3 shows the number of groups for
the Clojure history and Figure 4 shows the number of groups
for the ANTLR history. In both cases, we only consider a
small portion of the full history of the VCS.

At the maximum τ = 1.0, the total number of changes is
less than the number of trees we started with, because some

0	

50	

100	

150	

200	

250	

0	 0.2	 0.4	 0.6	 0.8	 1	

N
um

be
r	 o

f	 g
ro
up

s	

Threshold	

addi-ons	

dele-ons	

modifica-ons	

Figure 4: Number of additions, deletions, and mod-
ifications by threshold for the ANTLR source

changes end up being identical. As we can see, as τ increases,
we see more groupings of changes due to changes that were
considered similar under a lower threshold being considered
dissimilar under the more restrictive threshold. Increases in
the group count represent large groups splitting into one or
more smaller groups.

As an example, at τ = 0.15, a single pattern for for-loops
is identified:

for (� = � ; � < � ; �) {
�

}

As the threshold is increased to τ = 0.25, in addition to
generic for-loops, a cohort of changes are identified to a more
specific instance of the for-loop where the loop counter is
initialized to zero:

for (� = 0 ; � < � ; �) {
�

}

Increasing to τ = 0.35, the pattern for the conditional
becomes more specific and we see what appears to be a
template for using the field of an object (e.g., args.length)
as the loop termination criterion:

for (� = 0 ; � < �.� ; �) {
�

}

Similar templates emerge for code patterns such as method
invocations, printing the concatenation of two strings, and
other common activities.

3.3 Pattern identification
Using a portion of the Clojure history, we varied τ from

0 to 1 with an increment size of 0.01 as shown in Figure 3.
Looking at just the number of deletions, we examined the
point where the number of deletions goes from 4 to 5 as the
threshold changes from 0.35 to 0.36.

The following code, presented in standard style of unified
diff, shows a loop and the lines that were removed. This
example comes from a class named PersistentArrayMap:

public Object kvreduce(IFn f, Object init){
for(int i=0;i < array.length;i+=2){

init = f.invoke(init, array[i], array[i+1]);
- if(RT.isReduced(init))
- return ((IDeref)init).deref();

}
return init;

}

Given the low threshold, this deletion was considered to be
similar to the following example from PersistentHashMap.
Note that whitespace in most languages is syntactically neu-
tral and curly braces are optional for single statement con-
ditional or loop bodies. As a result, the parser used in
this work gives the same AST for if (exp) { stmt; } and
if (exp) stmt;. Such changes are intermingled with syn-
tactically meaningful changes in the unified diff format. To
clarify the specific difference that our tool considers to actu-
ally be different, we have added a “>” prefix to the appropri-
ate lines of the unified diff.

public Object kvreduce(IFn f, Object init){
- for(INode node : array){
- if(node != null){
+ for(INode node : array)
+ {
+ if(node != null)

init = node.kvreduce(f,init);
>- if(RT.isReduced(init))
>- return ((IDeref)init).deref();
- }
- }
+ }

return init;
}

In both cases, our tool identified for-loops where the same
lines are removed. In fact, the code for both of these is very
similar perhaps owing to Java’s HashMap and ArrayMap
classes being very similar in terms of interface. Furthermore,
it did this at the statement level, eg., we did not need to con-
sider the similarities of the file names or the method names.
The jump in group count as τ increased corresponds to the
differences in the for-loops that contain the change falling
below the necessary threshold of similarity for grouping.

4. CONCLUSIONS AND FUTURE WORK
We have shown that patterns of change over the lifetime

of a project can be obtained through analysis of its version
control history. The use of tree differencing and tree simi-
larity measures, as well as the antiunification algorithm for
computing generalized patterns, allows this large volume of
difference data to be distilled into a compact form in which
changes can be studied at the level of the base language
syntax. Analysis of the size and count of groups of similar
changes as a function of a similarity threshold provides a dis-
ciplined way to identify generalizations of changes identified
by the tool.

Our work has been performed using a generic, language
neutral term representation allowing the same techniques
to be applied to other languages given appropriate parsing
infrastructure and a mapping from language-specific abstract
syntax forms to the generic annotated term form. Minimal
parameterization of the tool is necessary to then consume
these terms, with language-specific parameters largely fo-
cused on specific nodes within the term that correspond to
semantically useful subtree roots for providing context to
tree differences.

In Section 3.1, we showed that our approach can highlight
the evolution of code structurally. In fact, our example of
the for-loop precisely supports the hypothetical language
designer argument laid out in Section 1.1.

In Section 3.3, we were able to find related changes in
different files that happened as part of the same commit.
Not only were we able to remove noise compared to line-
based diff, but we were also looking at the Clojure source
for the first time and able to see an important relationship
between the internals of the classes in those two files. As
programmers who are completely new to the Clojure source
we were able to gain valuable insight.

Our experiment relied on a simple replay of the history
of a software project. There are other meaningful ways to
generate the set of files to analyze. One such example would
be to correlate code changes to bug fixes and bug reports
and then push those changes through our workflow to find
patterns. As mentioned in Section 1.1 this may provide a
support to quality assurance practices.

In Section 2.3 we explored one way to extract context.
Many different heuristics would be suitable here. Studying
the trade-offs of different heuristics would allow us to fine
tune our approach depending on the application and what
we wanted to learn about the source code.

4.1 Acknowledgments
This work was supported in part by the US Department

of Energy Office of Science, Advanced Scientific Computing
Research contract no. DE-SC0004968. Additional support
was provided by Galois, Inc.

5. REFERENCES

[1] P. Bulychev and M. Minea. Duplicate code detection
using anti-unification. In Proc. Spring Young
Researchers Colloquium on Software Engineering, 2008.

[2] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically
structured information. In Proceedings of the 1996
ACM SIGMOD international conference on
Management of data, 1996.

[3] M. Kim, D. Notkin, and D. Grossman. Automatic
inference of structural changes for matching across
program versions. In Proceedings of the 29th
international conference on Software Engineering
(ICSE’07), 2007.

[4] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding
Source Code Evolution Using Abstract Syntax Tree
Matching. In Proceedings of the 2005 international
workshop on Mining software repositories (MSR’05),
2005.

[5] G. D. Plotkin. A Note on Inductive Generalization.
Machine Intelligence, 5:153–163, 1970.

[6] J. C. Reynolds. Transformational systems and the
algebraic structure of atomic formulas. Machine
Intelligence, 5:135–151, 1970.

[7] S. M. Selkow. The tree-to-tree editing problem.
Information Processing Letters, 6(6):184–186,
December 1977.

[8] K.-C. Tai. The tree-to-tree correction problem. Journal
of the ACM, 26(3):422–433, July 1979.

[9] M. van den Brand, H. de Jong, P. Klint, and P. Olivier.
Efficient annotated terms. Software–Practice and
Experience, 30:259–291, 2000.

[10] P. Weißgerber and S. Diehl. Identifying refactorings
from source-code changes. In Proceedings of the 21st

IEEE/ACM International Conference on Automated
Software Engineering (ASE’06), 2006.

[11] W. Yang. Identifying syntactic differences between two
programs. Software–Practice and Experience,
21(7):739–755, July 1991.

