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ABSTRACT
XML is a de-fact standard format on the Web. In general,
schemas of XML documents are continuously updated ac-
cording to changes in real world. If a schema is updated,
then query expressions have to be transformed so that they
are “valid” under the updated schema, since the expressions
are no longer valid under the updated schema due to the
schema update. However, this is not an easy task since
many of recent schemas are large and complex and thus it is
becoming difficult to know how to update the query expres-
sions correctly. In this paper, we propose an algorithm for
transforming XPath expressions according to schema evolu-
tion. For an XPath expression p and a schema S, our algo-
rithm treats both p and S as tree automata TAp and TAS ,
respectively. Our algorithm first takes the product automa-
ton TAR of TAp and TAS , then analyze TAR to find the
correspondence between the states of TAp and TAS . Based
on this correspondence, the algorithm transforms TAp ac-
cording to an update operation applied to TAS . We also
show some preliminary experimental results.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data
models

General Terms
Algorithms
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XML, XPath, schema evolution, tree automaton

1. INTRODUCTION
XML[5] is a de-fact standard format on the Web. An XML

document is usually stored with its schema so that the struc-
tural consistency of the document is ensured. In general,
schemas are continuously updated according to changes in
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Figure 1: An example of XPath transformations

real world, which is called schema evolution. If a schema is
updated, then query expressions have to be transformed so
that they are “valid” under the updated schema, since the
expressions are no longer valid against the updated schema
due to the schema update. However, this is not an easy task
since many of recent schemas are large and complex, and
thus it is becoming very difficult to know how to update the
query expressions correctly.

In this paper, we propose an algorithm for transforming
XPath expressions according to schema evolution. Here,
XPath[4] is the most popular query language for XML. For
a given schema S, an edit operation op to S, and an XPath
expression p under S, our algorithm transforms p into an
XPath expression p′ “equivalent” to p whenever possible,
that is, the result of p′ under op(S) coincides with that of
p under S, where op(S) is the updated schema obtained by
applying op to S.

To illustrate our algorithm, let us show a simple example.
Let D be the DTD in Fig. 1(a), and suppose that element



students is inserted as the child of school (Fig. 1(b)). Ac-
cording to this schema update, our algorithm transforms the
following XPath expression

/school/student[supervisor]/name

into the following:

/school/students/student[supervisor]/name.

Then, suppose that element supervisor is deleted from the
DTD in Fig. 1(b). In this case, it is impossible to transform
the above XPath expression into an equivalent one. Thus,
as an alternative answer our algorithm deletes supervisor

from the above expression and returns the following:

/school/students/student/name.

Although these DTDs are very small, schemas used in prac-
tice are much larger and complex [6]. Therefore, a user tends
not to understand the entire structure of a schema exactly,
and thus our algorithm is helpful to transform XPath ex-
pressions appropriately according to schema evolutions.
In this paper, schema is modeled as (unranked) tree au-

tomaton, which is equivalent to regular tree grammar. Tree
automaton is the formal model of RELAX NG, and XML
Schema and DTD can also be modeled by tree automa-
ton [14]. Moreover, tree automaton is equivalent to special-
ized DTD [17]. Thus, our algorithm is applicable to most of
formal and practical XML schema languages. As for XPath,
we focus on an XPath fragment using child and descendant-
or-self axes with predicates. Although our XPath fragment
supports no upward axes, this gives usually little problem
since the majority of XPath queries uses only downward
axes[10]. Thus, we believe that our algorithm is useful to
correct a large number of XPath queries.

Related Work
The study most related to this paper is [13]. This study
proposes an algorithm for transforming XPath expressions
according to schema evolution, assuming that a schema
monotonically increases (no element can be deleted from a
schema). On the other hand, this paper has no such an as-
sumption and allows more general schema updates. Since
actual schema evolutions usually involve element deletions
or some similar updates, our algorithm is more practical in
real world situations. To the best of our knowledge, there
is no study on transforming XPath expressions according to
schema evolution, except [13]. However, several studies deal
with update operations to schemas. For example, Ref. [18]
proposes a “complete” set of update operations to DTDs.
Refs. [12, 9] propose update operations schemas and algo-
rithms for extracting “diff” between two schemas. Refs. [7,
8, 19] propose update operations that assures any updated
schema contains its original schema. Recently, Ref. [16]
introduces a taxonomy of possible problems induced by a
schema change, and gives an algorithm to detect such prob-
lems. Ref. [11] studies query-update independence analysis,
and shows that the performance of [3] can be drastically
enhanced in the use of µ-calculus.

2. DEFINITIONS
In this section, we define tree automaton and the product

of tree automata.

An XML document is modeled as a labeled ordered tree,
and a schema is modeled as a tree automaton. Formally, a
tree automaton is a quadruple TA = (N,Σ, s, P ), where

• N is a set of states (element types),

• Σ is a finite set of element names,

• s ∈ N is the start state,

• P is a set of transition rules of the form X → a(reg)
or X → Y , where X,Y ∈ N and reg is a regular
expression over N .

For a transition rule X → a(reg), we say that X is the left-
hand side, a(reg) is the right-hand side, a is the label, and
reg is the content model of the rule. For example, consider
the tree automaton TAa shown in Fig. 2. This is equiva-
lent to the DTD in Fig. 1(a). “School” in N is the type of
element “school” , and so on. We assume that element “pc-
data” represents an arbitrary string. By L(TA) we mean the
language of tree automaton TA, i.e., the set of trees “valid”
against TA.

Following [15], we define the product of tree automata. Let
TA1 = (N1,Σ1, s1, P1) and TA2 = (N2,Σ2, s2, P2) be tree
automata. Without loss of generality, we assume that Σ1 =
Σ2 = Σ. First, we define the product reg1⊕reg2, where reg1

is a regular expression over N1 and reg2 is a regular expres-
sion over N2. Then reg1 ⊕ reg2 is a regular expression over
N1 ×N2 such that n1
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is an enumeration of N2. Similarly, reg ′
2 is obtained

from reg2.

2. Construct two automata A1 and A2 from reg ′
1 and

reg ′
2, respectively.

3. Construct the product automaton of A1 and A2.

4. Construct a regular expression, reg1 ⊕ reg2, from the
product automaton.

The product automaton of TA1 and TA2 is TA3 = (N1 ×
N2,Σ, s1 × s2, P3), where

P3 = {[n1, n2] → a(reg1 ⊕ reg2) | (n1 → a(reg1) ∈ P1,

n2 → a(reg2) ∈ P2)

∪{[n1, n2] → [n1, n
′
2] | (n1 ∈ N1, n2 → n′

2 ∈ P2)}
∪{[n1, n2] → [n′

1, n2] | (n1 → n′
1 ∈ P1, n2 ∈ N2)}}.

By definition, it is immediate that for any tree t, t ∈ L(TA3)
if and only if t ∈ L(TA1) and t ∈ L(TA2).

Let Σ be a set of element names. We define XPath ex-
pression p as follows.

• p ::= /p′

• p′ ::= χ :: l | p′/p′ | p′[q], where l ∈ Σ

• χ ::=child | descendant-or-self

• q ::= p′

We call each χ ∈ {child, descendant-or-self} axis, and q pred-
icate, respectively.



N = {School,Student, ID,Name,Address,Supervisor,Pcdata},
Σ = {school, student, id,name, address, supervisor, pcdata},
P = {School→ school(Student∗),Student→ student(IDNameAddress Supervisor?), ID→ id(Pcdata),

Name→ name(Pcdata),Address→ address(Pcdata), Supervisor→ supervisor(Pcdata),Pcdata→ pcdata(ϵ)}.

Figure 2: Tree automaton TAa = (N,Σ,School, P )

Figure 3: Tree representation of (A|B)∗

3. UPDATE OPERATION TO TREE AU-
TOMATON

In this section, we define update operations to tree au-
tomaton.
Let reg be a regular expression. To define update oper-

ations to a tree automaton, we need to identify the posi-
tions of states and operators in reg. Thus we define the set
pos(reg) of positions in a reg, as follows.

• If reg = ϵ or reg = a (a ∈ Σ), then pos(reg) = {λ}.

• Otherwise, pos(reg) = {λ} ∪ {u | u = vw, 1 ≤ v ≤
n,w ∈ pos(regv )}, where regv is a subexpression con-
sisting of the descendants of v in reg.

For example, let reg = (A|B)∗. Then pos(reg) =
{λ, 1, 11, 12}. As shown in Fig. 3, λ is the position of ∗,
1 is the position of |, 11 is the position of A, and 12 is the
position of B.
In the following, without loss of generality we assume

that for any state A and any element name a, there is at
most one transition rule whose left-hand side is A and la-
bel is a. If there are transition rules A → a(reg1) and
A → a(reg2), then these can be merged into one transition
rule A → a(reg1|reg2).
We now define update operations to a tree automaton

TA = (N,Σ, s, P ) as follows.

• ins state(A, a,B, i): Inserts new state B at position i
in the content model of r, where r is the transition rule
in P such that the left-hand side of r is A and that the
label of r is a.

• ins opr(A, a, opr, i): Inserts an operator opr (∗, +, ?)
at position i in the content model of r, where r is the
transition rule in P such that the left-hand side of r is
A and that the label of r is a.

• del state(A, a, i): Deletes the state at position i in the
content model of r, where r is the transition rule in
P such that the left-hand side of r is A and that the
label of r is a.

• del opr(A, a, i): Deletes the operator at position i in
the content model of r, where r is the transition rule
in P such that the left-hand side of r is A and that the
label of r is a.

• nest state(A, a,B, b, i): Replaces the subexpression E
at position i (i.e., subtree rooted at position i) in con-
tent model of r by state B, where r is the transition
rule in P such that the left-hand side of r is A and
that the label of r is a. Moreover, a transition rule
B → b(E) is added to P .

• unnest state(A, a, b, i): This is the inverse operation
of nest state, and replaces the state B at position i
in the content model of r by reg, where (1) r is the
transition rule in P such that the left-hand side of r is
A and that the label of r is a and (2) reg is the content
model of the transition rule whose left-hand side is B
and label is b.

• replace state(A, a,B, i): Replaces the state at position
i in the content model of r by B. In this paper, this
operation is treated as a pair of unnest state(A, a, i)
and nest state(A, a,B, b, i). This operation is used in
order to “rename” element names.

For example, consider the tree automaton TAa in Fig. 2.
Applying nest state(School, school, Students, students, λ)
to TAa, we obtain the tree automaton TAb in
Fig. 4. Then applying del opr(Student, student, 4) and
del state(Student, student, 4) to Tb, we obtain the tree
automaton TAc in Fig. 5.

4. TRANSFORMATION FROM XPATH
EXPRESSION INTO TREE AUTOMA-
TON

Our algorithm treats an XPath expression as a tree au-
tomaton. Thus, in this section we define a transformation
from an XPath expression into a tree automaton. This
transformation is based on [15].

An XPath expression is transformed into a tree automaton
as follows. First, we transform a location step χ :: l into a
tree automaton. Each transformed tree automaton has input
and output states, corresponding to the “context node” for
χ :: l and the “result node” selected by χ :: l, respectively.
For an XPath expression p of the form p1/p2, p

′[q], or /p′, we
transform p into a tree automaton in a bottom-up manner,
according to the structure of p.

We first define a tree automaton (N,Σ, s, P ) correspond-
ing to location step χ :: l. In the following, A → σ(· · · )
denotes {A → σ(· · · ) | σ ∈ Σ}.

• If χ = child, then

– The initial state s is B.



N = {School,Students, Student, ID,Name,Address,Supervisor,Pcdata},
Σ = {school, students, student, id,name, address, supervisor, pcdata},
P = {School→ school(Students),Students→ students(Student∗),Student→ student(IDNameAddress Supervisor?),

ID→ id(Pcdata),Name→ name(Pcdata),Address→ address(Pcdata), Supervisor→ supervisor(Pcdata),Pcdata→ pcdata(ϵ)}.

Figure 4: Tree automaton TAb = (N,Σ,School, P )

N = {School, Students,Student, ID,Name,Address,Pcdata},
Σ = {school, students, student, id,name, address,pcdata},
P = {School→ school(Students),Students→ students(Student∗), Student→ student(IDNameAddress), ID→ id(Pcdata),

Name→ name(Pcdata),Address→ address(Pcdata),Pcdata→ pcdata(ϵ)}.

Figure 5: Tree automaton TAc = (N,Σ, School, P )

– P consists of the following transition rules.

∗ A → σ(A∗)

∗ B → σ(A∗(B|C)A∗)

∗ B → C

∗ C → σ(A∗DA∗)

∗ D → l(A∗)

• If χ = descendant-or-self, then

– Initial state s is B1.

– P consists of the following transition rules.

∗ A → σ(A∗)

∗ B1 → σ(A∗(B1|C)A∗)

∗ B1 → C

∗ C → σ(A∗(B2|D)A∗)

∗ C → D

∗ B2 → σ(A∗(B2|D)A∗)

∗ D → l(A∗)

The input state and the finite set of output states of a finite
tree automata are {C} and {D}, respectively. C represents
the context node and D represents the node selected by the
location step χ :: l.
We next define the transformation from an XPath expres-

sion p into a tree automaton. We have to consider the case
where p = p1/p2, p = p[q], and p = /p. In the following, for
a tree automaton TAp of p, Np denotes the set of states of
TAp, NIp ⊂ Np denotes the set of input states of TAp, and
NOp ⊂ Np denotes the set of output states of TAp.

The case of p1/p2
Let TAp1 = (Np1 ,Σ, sp1 , Pp1) be the tree automaton of p1
and TAp2 = (Np2 ,Σ, sp2 , Pp2) be the tree automaton of p2.
Moreover, let TA = (N,Σ, s, P ) be the product automaton
of TAp1 and TAp2 . Then the automaton TAp1/p2 of p1/p2
is defined as TAp1/p2 = (Np1/p2 ,Σ, s, P ), where

Np1/p2 = {[np1 , np2 ] | (np1 ∈ NOp1 , np2 ∈ NIp2) ∨
(np1 ∈ (Np1 −NOp1), np2 ∈ (Np2 −NIp2))}.

The set NIp1/p2 of input states and the set NOp1/p2 of out-
put states of TAp1/p2 are defined as follows.

NIp1/p2 = {[np1 , np2 ] | np1 ∈ NIp1 , np2 ∈ (Np2 −NIp2)},
NOp1/p2 = {[np1 , np2 ] | np1 ∈(Np1−NOp1), np2 ∈ NOp2}.

The case of p[q]
Let TAp = (Np,Σ, sp, Pp) be the tree automaton of p and
TAq = (Nq,Σ, sq, Pq) be the tree automaton of q. Moreover,
let TA = (N,Σ, s, P ) be the product automaton TAp and
TAq. Then the tree automaton TAp[q] of p[q] is defined as
TAp[q] = (Np[q],Σ, s, P ), where

Np[q] = {[np, nq] | (np ∈ NOp, nq ∈ NIq) ∨
(np ∈ (Np −NOp), nq ∈ (Nq −NIq))}.

The set NIp[q] of input states and the set NOp[q] of output
states of TAp[q] are defined as follows.

NIp[q] = {[np, nq] | np ∈ NIp, nq ∈ (Nq −NIq)},
NOp[q] = {[np, nq] | (np ∈ NOp, nq ∈ NIq)}.

The case of /p
Let χ :: l be the first location step in p and let TAp =
(Np,Σ, sp, Pp) be the tree automaton of p. Then the tree
automaton TA/p of /p is defined as TA/p = (N/p,Σ, R, P/p),
where

N/p = Np ∪ {R},
P/p = Pp ∪ {R → root(D)},

where R is the initial state of TA/p and root is the element
name corresponding to the root node.

The set NI/p of input states and the set NO/p of output
states of TA/p are defined as follows.

NI/p = {R},
NO/p = NOp,

where NOp is the set of output states of TAp.

5. ALGORITHM FOR TRANSFORMING
XPATH EXPRESSION ACCORDING TO
SCHEMA EVOLUTION

In this section, we show an algorithm for transforming a
given XPath expression according to schema evolution.

To describe our algorithm, we need some definitions. For
an XPath expression p, the selection path of p is the XPath
expression obtained by dropping every predicate from p.
Let p be an XPath expression of the form /p1[q]/p2. Then
/p1/q is called a predicate path of p (the predicate path for



a predicate in q can be defined similarly). For example, Let
p = /a[f ]/b[c/e]/d. Then /a/b/d is the selection path of p,
and /a/f and /a/b/c/e are the predicate paths of p.
Let us first show the “main” algorithm (Fig. 6). Let op be

the update operation applied to tree automaton TA. More-
over, let p be the input XPath expression, p0 be the selection
path of p and p1, · · · , pk be the predicate paths of p. We
transform pi to p′i according to op, for each i = 0, 1, · · · , k,
and merge the resulting k expressions p′0, p

′
1, · · · , p′k as the

result. More concretely, the algorithm first partition p into
p0, p1, · · · , pk (step 1). Then p0 is transformed into p′0 ac-
cording to op by function Transform (shown later). If the
result of p0 becomes empty due to del state, then p′0 = nil
and the transformation of p is terminated (steps 3 and 4).
Otherwise, we transform pi for each i = 1, · · · , k (steps
6 to 8), by Transform. Finally, p0, p1, · · · , pk are merged
and returned as the result. If a predicate path p′i is nil,
then p′i is just ignored when merged. For example, let
p = /a[f ]/b[c/e]/d. Then p0 = /a/b/c, p1 = /a/f , and
p2 = /a/b/c/e. Suppose that c is deleted by unnest state.
Then we obtain p′0 = /a/b/d, p′1 = /a/f , and p′2 = /a/b/e
due to Transform, and merging these three expressions we
have p′ = /a[f ]/b[e]/d, which is the result of the algorithm.
Let us next consider function Transform. Let TA =

(N,Σ, s, P ) be a tree automaton, op be an edit operation
to TA, and p be an XPath expression having no predicate.
Our objective is to transform p into an XPath expression p′

so that the result of p′ under op(TA) coincides with that of p
under TA. However, this is sometimes impossible if a state
(and its corresponding element) is deleted from TA. Thus,
Transform is constructed as follows.

• If op is ins state, ins opr, or del opr, then p is un-
changed.

• If op is nest state(A, a,B, b, i), then location step
child :: b is inserted to p at the position that nest-
ing is occurred, if necessary (i.e., unless p contains a
descendant-or-self axis that“masks” the nest state op-
eration).

• If op is unnest state(A, a, b, i), then a location step
whose node test is b is deleted from p, if it is not
“masked” by a descendant-or-self axis.

• If op is del state, then p is modified as follows.

Input : XPath expression p, tree automaton TA, update opera-
tion op to TA.
Output : XPath expression or nil

1. Partition p into the selection path p0 and the predicate path
p1, p2, · · · , pk.

2. p′0 ← Transform(p0, TA, op);

3. if p′0 = nil then

4. return nil;

5. else

6. for i← 1 to k do

7. p′i ← Transform(pi, TA, op);

8. end

9. Merge p′0, p
′
1, · · · , p′k into p′.

10. return p′;

Figure 6: Main algorithm

– If all the result elements retrieved by p disappear
from TA due to op, the result of p becomes empty.
Then our algorithm returns nil.

– Otherwise, some element of op(TA) can still be
retrieved by p. Thus our algorithm transforms p
so that such elements are retrieved.

Now we present function Transform (Fig.7).
state(A, a, i, P ) in steps 16, 23, and 29 denotes the
state at position i in the content model of r, where r is
the transition rule in P such that its left-hand side is A
and its label is a. If op is ins state, ins opr, or del opr, p
is unchanged (steps 4 to 7). If op is del state, we examine
whether the result of p becomes empty under op(TA) (steps
8 to 11). If the result of p does not become empty, p is
unchanged (steps 11 to 12). If the result of p becomes
empty and p is the selection path, the algorithm returns nil
(steps 13 to 14). Otherwise (i.e., p is a predicate path), we
delete the suffix of p that becomes invalid due to op (steps
15 to 20). In step 17, P ′′ is obtained in step 2, and we
say that r is a transition rule from A to C if the left-hand
side of r contains A and a state in the content model of
r contains C. In step 18, we say that lsj corresponds to
r ∈ P ′′ if r is the intersection of (i) the transition rule
corresponding to lsj in Pp and (ii) some transition rule in
P . If op is nest state(A, a,B, b, i), we examine whether we
need to transform p (steps 23 to 24). If we need to do, we
insert a new location step child :: b to p (steps 25 and 26). If
op is unnest state(A, a, b, i), then we also examine whether
we need to transform p (steps 30 to 31). Moreover, if the
location step lsj+1 to be deleted has a predicate q and the
axis of lsj+1 is descendant-or-self, we delete q (steps 32 to
33). Otherwise, we delete lsj+1 from p (steps 34 to 38).

Finally, let us present the time complexity of the al-
gorithm. Let TA = (N,T, s, P ) be a tree automaton
(schema) p be an XPath expression that is partitioned into
p0, p1, p2, · · · , pk. Then the algorithm runs in O(k · |p|2 ·
|TA|), where |p| is the number of location steps in p and
|TA| is the size of TA.

6. EXPERIMENTAL RESULTS
To verify if our algorithm transforms XPath expressions

appropriately under real world schemas, we implemented
our algorithm (in Ruby) and made a few experimentations.
We use two pairs of schemas, MSRMEDOC DTDs (version
2.1.1 and 2.2.2)[2] and the NLM Journal Publishing Tag Set
Tag Library DTDs (version 2.3 and 3.0)[1].

First, we give the evaluation of our algorithm on MSRME-
DOC DTDs. Let D211 be the version 2.1.1 MSRMEDOC
DTD andD222 be the version 2.2.2 MSRMEDOC DTD. The
number of elements of D211 is 185 and that of D222 is 205.
Table 1 shows the number of update operations between
D211 and D222, where “others” are attributes insertions (not
supported by our algorithm).

We generate 90 XPath expressions under D211 by XQ-
gen[20]. The average size (i.e., number of location steps) of
the XPath expressions is 5, where the minimum size is 4 and
the maximum size is 7. Each XPath expression uses child
axes and at most one descendant-or-self axes (78 XPath ex-
pressions use a descendant-or-self axis). There are 5 XPath
expressions whose result becomes empty under D222. Since
there is no predicate in these 90 XPath expressions, we



Table 1: Update operations between D211 and D222 and between D23 and D30

ins state del state nest state unnest state replace state ins opr/del opr others total

D211 → D222 61 11 27 0 0 60 32 191
D23 → D30 504 82 3 0 24 0 120 733

Function Transform(p, TA, op)

Input : XPath expression p = /ls1/ · · · /lsm, tree automaton
TA = (N,Σ, s, P ), update operation op to TA.
Output : XPath expression or nil

1. Construct the tree automaton TAp = (Np,Σ, sp, Pp) of p

2. Construct the product automaton TA′′ = (ND ×
Np,Σ, sD × sp, P ′′) of TA and TAp

3. switch op

4. case ins state(A, a,B, i)

5. case ins opr(A, a, opr, i)

6. case del opr(A, a, i)

7. return p;

8. case del state(A, a, i)

9. Construct the tree automaton TA′ = (N ′,Σ, s′, P ′) of
op(TA)

10. Construct the product automaton TA′
p = (N ′×Np,Σ, s′×

sp, P ′
p) of TA′ and TAp

11. if L(TA′
p) ̸= ∅ then

12. return p;

13. else if p is the selection path then

14. return nil;

15. else

16. C ← state(A, a, i, P ) // C is deleted

17. if P ′′ contains a transition rule r from A to C then

18. Let lsj be the location step in p corresponding to r;

19. p← /ls1/ · · · /lsj−1;

20. end

21. end

22. case nest state(A, a,B, b, i)

23. C ← state(A, a, i, P ) // C is nested

24. if P ′′ contains a transition rule r from A to C then

25. Let lsj be the location step in p corresponding to r;

26. p← /ls1/ · · · /lsj/child :: b/lsj+1/ · · · /lsm;

27. end

28. case unnest state(A, a, b, i)

29. C ← state(A, a, i, P ) C is unnested

30. if P ′′ contains a transition rule r from A to C then

31. Let lsj be the location step in p corresponding to r;

32. if the axis of lsj+1 is descendant-or-self and lsj+2 is the
first location step of a predicate then

33. p← /ls1/ · · · /lsj−1;

34. else

35. axis← the axis of lsj+1;

36. l← the node test of lsj+2;

37. p← /ls1/ · · · /lsj/axis :: l/lsj+3/ · · · /lsm;

38. end

39. end

40. end

41. return p;

Figure 7: Function Transform

choose 4 expressions and add a predicate to each of 4 ex-
pressions (given later).

We transform the above 90 XPath expressions by our al-
gorithm. For 85 expressions, the elements retrieved under
D222 coincides with the elements retrieved under D211. For
the rest 5 XPath expressions, our algorithm returns nil since
the results of these expressions become empty under D222.
These 5 XPath expressions are shown in Table 2 (deleted
elements are italicized). Since elements LIST, NOTE, FIG-
URE, and FORMULA (child elements of REMARK) and an
element PRIVATE-CODES (child element of COMPANY-
DOC-INFO) are deleted, the results of these XPath expres-
sions become empty (note that if an element is deleted from
a content model, then its descendants cannot be retrieved
either).

The four XPath expressions with a predicate, denoted
p1, p2, p3, p4, are transformed as follows (Table 3).

• Since element REMARK (child element of
COMPANY-REVISION-INFO) is deleted, the
predicate of p1 is deleted.

• Since element REMARK is deleted, the last location
step in the predicate of p2 is deleted.

• Since element REMARK is deleted, the location
step corresponding to an element REMARK in p3 is
deleted, therefore our algorithm return nil.

• Since element L-1 is inserted between P and FT and
between P and STD, two location steps L-1 are in-
serted to p4.

As shown above, we can say that every XPath expres-
sion is transformed appropriately by our algorithm, even if
del state’s are involved in the schema evolution. The total
execution time of the algorithm for the 90 XPath expres-
sion and 191 update operations is 9.58 sec, thus it takes an
average 0.111 sec per one XPath expression.

We also made a similar experimentation using the NLM
Journal Publishing Tag Set Tag Library. Let D23 be the
version 2.3 The NLM Journal Publishing Tag Set Tag Li-
brary DTD and D30 be the version 3.0 DTD. The number
of elements of D23 is 211 and that of D30 is 233. Table 1
shows the number of update operations between D23 and
D30.

We generate 97 XPath expressions under D23 by XQgen.
The average size of the XPath expressions is 6. Each XPath
expression uses child axes and at most once descendant-or-
self axes, where 95 XPath expressions include descendant-
or-self axes. There are 10 XPath expressions whose result
becomes empty under D30. There is no XPath expression
with a predicate, thus we choose 3 XPath expressions and
added a predicate to each expression.

We transform the 97 XPath expressions by our algorithm.
For 87 expressions, the elements retrieved under D30 coin-
cides with the elements retrieved under D23. For the rest



10 XPath expressions, our algorithm returns nil since the
results of these expressions become empty under D30, which
are listed in Table 4. Since elements citation, contract-num,
contract-sponsor in element p are deleted, the results of
these XPath expressions become empty. The three XPath
expressions with a predicate, denoted p5, p6, p7, are trans-
formed as follows (Table 5).

• Since element chem-struct (child element of ack) is
deleted, the predicate of p5 is deleted.

• Since element chem-struct-wrapper is renamed to
chem-struct-wrap, the predicate of p6 is renamed ac-
cordingly.

• Since element custom-meta-wrap is renamed to
custom-meta-group, the corresponding location step in
p7 is renamed to custom-meta-group.

Again our algorithm seems to work well despite of del state
operations. These results suggest that our algorithm can be
applied to XPath expressions under real world schema evo-
lutions. The total execution time of the algorithm for the 97
XPath expression and 733 update operations is 77.561 sec,
thus it takes an average 0.800 sec per one XPath expression.

7. CONCLUSION
In this paper, we proposed an algorithm for transforming

an XPath expression according to schema evolution allow-
ing element deletions. However, this is just an ongoing work
and we have a lot to do. First, we would like to extend
our algorithm so that it can handle more general XPath ex-
pressions, e.g., supporting sibling and parent axes. Second,
we use only two schema evolutions in our experimentation.
Thus we would like to evaluate our algorithm under more
real world schemas. Third, our algorithm supports neither
attribute nor entity declaration in schemas. These should
be incorporated into our algorithm.
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Table 2: XPath expressions whose results become empty under D222

/MSRREP/MATCHING-DCIS/MATCHING-DCI/REMARK/LIST/ITEM
/MSRREP/MATCHING-DCIS/MATCHING-DCI/REMARK/NOTE
/MSRREP/MATCHING-DCIS/MATCHING-DCI/REMARK/FIGURE/DESC
/MSRREP/MATCHING-DCIS/MATCHING-DCI/REMARK/FORMULA/FORMULA-CAPTION/LONG-NAME
//ADMIN-DATA/COMPANY-DOC-INFOS/COMPANY-DOC-INFO/PRIVATE-CODES/PRIVATE-CODE

Table 3: XPath expressions with predicate under D211 and D222

XPath expression p1: //DOC-REVISION/COMPANY-REVISION-INFOS/COMPANY-REVISION-
INFO[REMARK]/COMPANY-REF

Transformed result: //DOC-REVISION/COMPANY-REVISION-INFOS/COMPANY-REVISION-INFO/COMPANY-REF

XPath expression p2: //DOC-REVISION[COMPANY-REVISION-INFOS/COMPANY-REVISION-
INFO/REMARK]/MODIFICATIONS/MODEFICATION

Transformed result: //DOC-REVISION[COMPANY-REVISION-INFOS/COMPANY-REVISION-
INFO]/MODIFICATIONS/MODEFICATION

XPath expression p3: //DOC-REVISION[COMPANY-REVISION-INFOS/COMPANY-DOC-INFO/PRIVATE-
CODES/PRIVATE-CODE]/DOC-REVISIONS/DOC-REVISION/COMPANY-REVISION-
INFOS/COMPANY-REVISION-INFO/REMARK

Transformed result: nil

XPath expression p4: //P[FT]/STD
Transformed result: //P[L-1/FT]/L-1/STD

Table 4: XPath expression whose results become empty under D30

//table-wrap-group/table-wrap/speech/p/citation/conf-name
//table-wrap-group/table-wrap/speech/p/citation/conf-loc
//table-wrap-group/table-wrap/speech/p/citation/comment
//table-wrap-group/table-wrap/speech/p/citation/article-title
//table-wrap-group/table-wrap/speech/p/citation/annotation
//list-item/p/contract-num/named-content/ack/p
//p/contract-num/named-content/ack/boxed-text/sec
//p/contract-sponsor/named-content/verse-group/verse-group/verse-group
//statement/p/contract-sponsor/named-content/verse-group/verse-group
//statement/p/contract-sponsor/named-content/verse-group/verse-line

Table 5: XPath expressions with predicate under D23 and D30

XPath expression p5: //list-item/p/contract-num/named-content/ack[chem-struct]/p
Transformed result: //list-item/p/contract-num/named-content/ack/p

XPath expression p6: //license/p/preformat/named-content/supplementary-material[chem-struct-wrapper]/disp-
quote

Transformed result: //license/p/preformat/named-content/supplementary-material[chem-struct-wrap]/disp-quote

XPath expression p7: /article/front/journal-meta/custom-meta-wrap[custom-meta/meta-name]/custom-meta/meta-
value

Transformed result: /article/front/journal-meta/custom-meta-group[custom-meta/meta-name]/custom-meta/meta-
value


