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Abstract. Diagnostic classification is an important part of clinical care, which 

is often the main determinant of treatment and prognosis. Clinicians� under- or 

over-confidence in their performance on diagnostic tasks can result in diagnos-

tic errors which can lead to delay in appropriate treatment and unnecessary in-

crease in the cost of medical care. This paper presents a version of SlideTutor 

aiming to reduce pathologists� and dermatopathologists� bias in diagnostic deci-

sion-making. This is accomplished by frequently prompting them to make met-

acognitive judgments of confidence, presenting them with the expert diagnostic 

solution path for each case, and de-biasing them by making them conscious of 

their metacognitive biases. This paper describes and summarizes the functional-

ities of SlideTutor, its cognitive training, tutoring phase, expert feedback, meta-

cognitive intervention, and the open learner model. 

1 Introduction and Background 

Intelligent tutoring systems (ITSs) are adaptive and personalized instructional systems 

designed to mimic the well-known advantages of human one-on-one tutoring over 

other types of instructional methods [e.g., 1]. ITSs are capable of accelerating and 

enhancing the training of novices by providing adaptive and individualized scaffold-

ing and feedback based on a complex interaction between several modules represent-

ing the domain knowledge as well as learner knowledge acquisition and development 

of expertise. The adaptive scaffolding and feedback in ITSs are targeted at improving 

student learning and fostering skills, such as making accurate metacognitive judg-

ments [see 2]. In contexts where the teacher has limited time to spend on presenting 

content, teaching problem solving skills, and providing tailored feedback to individual 

students, ITSs can prove extremely helpful by providing adaptive individualized in-

struction to learners, organize content, and point out their errors for as much time and 

as many iterations as the learner requires [3].  

ITSs can prove beneficial in training of highly specialized clinicians, such as 

pathologists. Training of specialized clinicians is very difficult in traditional training 

contexts for several reasons, including insufficient exposure to infrequently encoun-
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tered cases, and the increased workloads of mentors which limit the time for training 

the next generation of practitioners and increase the potential for clinical errors 

among less-experienced practitioners. Training of pathologists typically requires five 

or more years, which includes both residency training (3-5 years) and advanced fel-

lowship (1-3 years). In the context of training pathologists, ITSs could help alleviate 

many of the above-mentioned problems by providing a safe environment where resi-

dents can practice whenever they have time and as frequently as needed, and receive 

individualized feedback and guidance without inadvertently harming patients in the 

process. More specifically, ITSs can scaffold residents� accuracy of diagnoses, there-

by alleviating their overconfidence or under-confidence in their performance on diag-

nostic tasks. Overconfidence would cause the clinician to conclude the diagnosis too 

quickly, therefore neglecting to fully consider alternative hypotheses and all the evi-

dence in the case, which can result in diagnostic errors [4]. On the other hand, under-

confidence might lead them to order unnecessary or inappropriate additional testing 

and use consultative services, which increases the risk of iatrogonic complications 

(i.e., complications caused by medical treatment or diagnostic procedures), delays 

treatment, and unnecessarily increases the costs of medical care [5].  

In order to alleviate the problem of under- or overconfidence in residents� diagnos-

tic performance (i.e., poor calibration of judgment and performance), scaffolding 

needs to be provided to improve the accuracy of their metacognitive judgments (i.e., 

Feeling of Knowing, FOK) and eliminate any diagnostic bias. FOK is defined as the 

learner�s certainty of his/her actual performance [6]. ITSs can play a significant role 

in assisting pathologists in making more accurate metacognitive judgments about 

their diagnostic decision-making and performance, and as a result make more accu-

rate diagnoses.  
One of the important methods of scaffolding and improving learners� 

metacognitive skills and performance is the use of open learner models (OLMs) in 

ITSs. A student model is an important part of an ITS which observes learner behavior 

and builds an individualized qualitative representation of her/his cognitive and 

metacognitive skills and gets updated in real-time during learners� interaction with the 

ITS [7]. Learner models are usually embedded in the ITS architecture and are not 

visible to the students, however, several researchers [e.g., 8] have investigated the 

benefits of allowing learners to access their learner model (OLM). Research has 

indicated that the mere displaying of visualizations of OLMs in ITS interfaces raises 

the awareness of the learners, allowing them to reflect on different aspects of their 

learning and problem solving. Besides all the advantages of using OLMs in interac-

tive ITSs, according to [9], no study has investigated the use of OLMs for displaying 

metacognitive processes (e.g., metacognitive judgments of correctness of perfor-

mance). In spite of the great potential and possibilities offered by the use of medical 

ITSs, few of these systems have been fully developed [e.g., 9] and only a fewer have 

been empirically evaluated [e.g., 10].  
In this paper, we describe an adapted version of SlideTutor, an ITS which scaffolds 

pathology residents� accuracy of metacognitive judgments using different metacogni-

tive interventions and an OLM for presenting metacognitive accuracy. The paper does 

not include our evaluation of the effectiveness of the implemented modules. 
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2 Description of the Medical ITS: SlideTutor 

The SlideTutor intelligent tutoring system (http://slidetutor.upmc.edu) was modified 

for use in this study. The computational methods and the architecture of the original 

system have been previously published [11].  For the current study, the system uses a 

modular architecture implemented in the Java programming. SlideTutor provides 

users with cases to be solved under supervision by the system. Cases incorporate vir-

tual slides, which are gigabyte size image files created from traditional glass slides by 

concatenating multiple images from a high resolution robotic microscope. Virtual 

slides are annotated using a custom built editing environment to produce case repre-

sentations of discrete findings and their locations. A separate Ontology Web Lan-

guage (OWL) based expert knowledge base consists of a comprehensive set of evi-

dence-diagnosis relationship for the entire domain of study. A reasoning module uses 

a decision tree approach to construct a dynamic solution graph (DSG), representing 

the current state of the problem and all acceptable next steps including the best-next-

step. As for the interface, participants use a graphical user interface (Fig. 1) to exam-

ine and diagnose the cases. Participants can pan and zoom in the virtual slide, locate 

findings using the mouse, and select from lists of findings and qualifiers, such as size 

and type, from a tree-like representation. Once findings are specified, they appear as 

evidence nodes in the diagrammatic reasoning palette (Fig 1). Afterwards, partici-

pants assert hypotheses using a separate tree-based menu, which eventually appear as 

nodes in the diagrammatic reasoning palette. Support links can then be drawn be-

tween evidence and hypothesis nodes to specify relationships between the two. Final-

ly, one or more hypotheses may be dragged to the diagnosis window, and selected as 

the final diagnosis(es) before proceeding to the next case.  

Fig. 1. SlideTutor interface 
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2.1 The Dynamic Book 

An interactive knowledge browser has been developed (called the Dynamic Book) 

that shows feature-diagnosis relationships as well as glossary information on all fea-

tures and diagnoses in the selected domain of dermatopathology (i.e., perivascular 

diseases) (Fig. 2). A description of the domain and the cases is presented in the next 

section. A total of sixty-two diagnoses and fifty-seven findings are presented in this 

interface. Six of the diagnoses comprising six patterns were used in the tutoring phase 

of the study. By clicking on each one of the diagnoses, an image is presented in the 

interface showing an example of how the disease presents on a patient�s skin. A de-

scription of the diagnosis was also presented under the image. Additionally, a list of 

potentially associated findings is presented to the right of the image and diagnosis 

description. A zoomed-in virtual slide image accompanied each of the findings in the 

list, where the presentation of the finding is indicated by an arrow. A description of 

the particular finding together with a list of potentially associated diagnoses is also 

presented. In order to guide the exploration of participants during the Dynamic Book 

phase towards important parts of the book, they are provided with a list of tasks to 

work through which pertained to a mix of patterns they would encounter in the tutor-

ing phase and ones they would not.  

Fig. 2. Dynamic book interface 

2.2. Pathology Cases 

The Perivascular Dermatitis domain was selected for the current SlideTutor study 

because the domain is well-tested, includes patterns (i.e., a combination of evidence 

identified in a particular case) with multiple cases, and more cases are available than 

other domains. Also, Perivascular Dermatitis is a large domain and it is unlikely that 

participants would have complete knowledge of this diagnostic area. 20 cases were 

used for the tutoring phase. Cases were obtained from the University of Pittsburgh 
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Medical Center (UPMC) slide archive and from private slide collections. Diagnoses 

were checked and confirmed by a dermatopathologist prior to inclusion in the system 

repository. For each case, a knowledge engineer and an expert dermatopathologist 

collaborated in defining all present and absent findings, their locations on the slide 

(case annotation), and relationships among findings and diagnoses (knowledge-base 

development). Each diagnosis included a set of one or more diseases that matched the 

histopathologic pattern.  

2.3 The Coloring Book and Metacognitive Judgments 

For the intervention condition, once participants complete identifying findings, hy-

potheses, and diagnoses for a case, they progress to an interface called the Coloring 

Book (Fig. 3A). In this interface, they indicate if they are sure or unsure of the items 

they identified for the case (i.e., FOK judgments) by clicking on them and coloring 

them as either green (sure) or yellow (unsure). Next, they are presented with a win-

dow with a slider where they indicate how accurate they think their self-assessments 

in the coloring book were (ranging from underconfident to overconfident). After-

wards, they are presented with correct findings, hypotheses, and diagnoses for the 

respective case (colored in green) and incorrectly identified items as red. After reflect-

ing on their performance and the feedback from the system, they are presented with a 

window juxtaposing the sliders for their self-assessment of their FOK judgments and 

the evaluation of the tutor based on their performance and their FOK judgments (the 

open learner model: OLM) (Fig 3B). At the bottom of the window, one or more indi-

vidual findings or diagnoses may be listed, which reflects the participant�s cumulative 

accuracy in previous cases as well as the current case for the particular finding or 

diagnosis. At the end, they are asked to make another metacognitive judgment and 

state whether they would feel confident solving similar cases, to which they respond 

on a 6-point Likert scale ranging from �not confident� to �very confident�. This con-

cludes the case, and progresses them to the next case.  

Fig. 3. Coloring book interface (A) and the OLM (B) 
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3 Study Timeline 

As part of the design of the study and interface of the ITS, the study phases and time-

line were determined as follows (Fig. 4). An approximate total time of four hours was 

allocated as the participant session time. At the beginning and after signing the in-

formed consent form, the participants were administered a test (pre-pre-test) of their 

prior knowledge of the domain targeted by the current version of SlideTutor (i.e., 

Perivascular diseases). Next, they spent 30 minutes acquiring cognitive knowledge of 

the domain while accomplishing a task given to them by the experimenter (Dynamic 

Book phase). Afterwards, another test of cognitive knowledge of the domain was 

administered (pre-test). Once the test was completed, they proceeded to the tutor 

training and tutor use phase (in intervention or control condition) where they solved 

20 cases and indicated their confidence in their responses and were shown an OLM 

(intervention condition), or solved the cases and progressed with no feedback from 

the system (control condition). At the end, a post-test was administered to gauge their 

knowledge gains during interactions with the tutor. A detailed description of the ITS, 

the tests, dynamic book, and the tutoring interventions is presented below. 

Fig. 4. Study timeline 

4 Measures 

4.1 Cognitive Measures 

In order to measure the prior cognitive knowledge of the domain at the beginning of 

the tutoring session, cognitive gains after the cognitive learning phase, and the 

knowledge gains after the tutoring session, three 24-item tests were administered. 

Three versions of each test were created, and the test order was randomized per ses-

sion to control for order effects. Each test comprised of 24 questions, and the ques-

tions were a mix of tutored and untutored items. Tutored items were about the materi-

al that was presented in the cases seen with the tutoring system, while untutored items 

were about material that was not covered by the tutoring system. Three question types 

were used in the tests: finding, diagnosis, and differentiate questions. Finding ques-

tions consisted of a static microscopic image with an arrow pointing at a feature to be 

identified. Diagnosis questions consisted of a list of findings, and participants had to 

provide the diagnosis(es) that match the findings. Differentiate questions consisted of 

two diagnoses, and participants had to provide a feature that can be used to differenti-
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ate the two. After responding to each question, participants were asked to rate if they 

were sure or unsure of their responses using radio buttons (FOK metacognitive judg-

ment).  

4.2 Metacognitive Measures 

Feeling of knowing (FOK) metacognitive judgment measures were collected on all 

test items in the three cognitive knowledge tests and on all findings, hypotheses, and 

diagnoses identified in cases in the tutoring phase. The FOK measures were collected 

as binary values: sure vs. unsure. The data from metacognitive ratings on test ques-

tions were only used for analyses after the study was completed. However, the meta-

cognitive judgment ratings for items identified in cases in the tutoring phase in the 

Coloring Book layout (see section 2.3) were used for calculation of a measure of 

over- or under-confidence called Bias, which was presented to the participant after 

solving the case and indicated their confidence in the items they identified in the case 

(in the OLM: see section 2.3). The bias score is calculated by subtracting the relative 

performance on all items (total correct items divided by all items) from the proportion 

of items judged as known (total sure items divided by all items) [12]. Figure 5 indi-

cates how bias scores are calculated. Positive bias scores indicate over-confidence and 

negative scores indicate under-confidence. When performance perfectly matches the 

rated confidence level, the bias score equals zero. In other words, the bias score indi-

cates the direction and degree of lack of fit between confidence and performance [13]. 

The bias score for each case was presented to the participant in the form of a slider 

ranging from under-confident to perfect to over-confident with a cursor indicating the 

participant�s bias score.     

Fig. 5. FOK contingency table and the calculation of bias 

5 Conclusion 

We described the functionalities of a version of SlideTutor aimed at reducing the 

metacognitive bias of pathologists and dermatologists while diagnostic decision-

making by deploying metacognitive interventions and using an open learner model to 

aid participants in reflecting on their diagnostic performance. Open learner models 

have not been used in the previous studies for displaying the metacognitive perfor-

mance of participants [8], and the current iteration of SlideTutor is novel in this re-
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gard. The Dynamic Book interface used for the cognitive learning phase provided 

participants with an environment to conduct a targeted search and knowledge acquisi-

tion (targeted at completing the task assigned by the experimenter). As mentioned 

above, since the domain chosen for this version of SlideTutor is a very large domain, 

a cognitive learning phase was deemed necessary in order to provide the opportunity 

for acquisition of some cognitive knowledge and freely explore the glossary of diag-

noses and findings.  

Acknowledgment 
The authors gratefully acknowledge the support of this research by the National Li-

brary of Medicine through grant number 5R01LM007891.  

References 

1. Koedinger, K., Aleven, V., Roll, I., & Baker, R. (2009). In vivo experiments on whether

supporting metacognition in intelligent tutoring systems yields robust learning. In A.

Graesser, J. Dunlosky, D. Hacker (Eds.), Handbook of metacognition in education. 383-

413. Mahwah, NJ: Erlbaum.

2. Azevedo, R., & Hadwin, A. F. (2005). Scaffolding self-regulated learning and metacogni-

tion: Implications for the design of computer-based scaffolds. Instructional Science, 33,

367-379.

3. VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring sys-

tems, and other tutoring systems. Educational Psychologist, 46(4), 197-221.

4. Graber, M. L., Franklin, N., & Gordon, R. (2005). Diagnostic error in internal medicine.

Archives of Internal Medicine, 165 (13), 1493-1499.

5. Berner, E. S. & Graber, M. L. (2008). Overconfidence as a cause of diagnostic error in

medicine. The American Journal of Medicine, 121 (5A), S2-S23.

6. Metcalf, J., & Dunlosky, J. (2008). Metamemory. In H. Roediger (Ed.), Cognitive psy-

chology of memory (Vol. 2, pp. 349-362). Oxford:  Elsevier.

7. Bull, S. (2004). Supporting Learning with Open Learner Models. Proceedings of 4th Hel-

lenic Conference with International Participation: Information and Communication Tech-

nologies in Education, Athens, Greece. Keynote.

8. Bull, S., & Kay, J. (in press). Open learner models as drivers for metacognitive processes.

In R. Azevedo & V. Aleven (Eds.). International handbook of metacognition and learning

technologies. Amsterdam, The Netherlands: Springer.

9. Azevedo, R., & Lajoie, S. (1998). The cognitive basis for the design of a mammography

interpretation tutor. International Journal of Artificial Intelligence in Education, 9, 32-44.

10. El Saadawi, G. M., Tseytlin, E., Legowski, E., Jukic, D., Castine, M., Fine, J., . . . Crow-

ley, R. S. (2008). A natural language intelligent tutoring system for training pathologists:

implementation and evaluation. Advances in Health Sciences Education: Theory and Prac-

tice, 13, 709-722.

11. Crowley, R. S., & Medvedeva, O. (2006). An intelligent tutoring system for visual classi-

fication problem solving. Artificial Intelligence in Medicine, 36 (1), 85-117.

12. Kelemen, W. L., Frost, P. J., & Weaver III, C. A. (2000). Individual differences in meta-

cognition: Evidence against a general metacognitive ability. Memory & Cognition, 28(1),

92-107.

13. Schraw, G. (2009). A conceptual analysis of five measures of metacognitive monitoring.

Metacognition and Learning, 4(1), 33-45.

28


