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Abstract. Simulation modelling helps designers to keep track of many
possible behaviours in a complex environment. Having a technique to
simulate the effect of peer impact on learning allows designers to test the
social effects of their educational software. We implement an agent-based
simulation model based on the ecological approach (EA) architecture [9].
The model considers learner attributes, learning object attributes and
two styles of peer impact to explore the effects when learners are either
positively or negatively impacted by high achieving peers. In this study,
we observe different patterns of behaviour based on the style of peer
impact and by limiting simulated learners’ access to information (the
EA metadata). Gaining understanding of these patterns will inform our
future work on recommending sequences of learning objects (LOs).

Keywords: simulated learning environments, simulated learners, eco-
logical approach, instructional planning

1 Introduction

Before taking an action in a learning environment, it is important for an intel-
ligent tutoring system (ITS) to have some way of estimating the likelihood that
the action will be successful, i.e. that it will benefit the learner(s) involved. To
compute such an estimate, there are many dimensions to consider such as: the
nature of the content being learned, the pedagogical style of the environment,
learning goals, individual learner characteristics, and social factors such as how a
learner’s own performance can be influenced by knowledge of peer performance.
Such complexity is often managed through the use of models.

Simulation modelling can be used by instructional developers for testing their
systems; this was identified by VanLehn, Ohlsson and Nason [11] in a survey of
possible uses of simulated students. One example is SimStudent by Matsuda et
al. [8] which can be used by designers to explore through simulation the effects of
various decisions on cognitive tutor design. Whether a model is used “internally”
(by an ITS to compute the next action) or “externally” (to evaluate a system de-
sign), a challenge remains: How does the model estimate the amount of learning
that occurs when a learner interacts with a Learning Object (LO)? In particu-
lar, we wanted to explore the impact on learning when learner performance is
influenced by the performance of peers. Some learners may become encouraged



when observing high peer achievement and perform even better than they would
have otherwise. Other learners might become discouraged in the same situa-
tion and perform even worse. Having a technique to simulate the effects of peer
performance would allow instructional developers to test social effects of their
designs. In this paper, we use simulation to explore the behaviours exhibited by
two different reactions to peer impact.

We describe our approach in Section 2, followed by the simulation study in
Section 3. It is possible to simulate many different kinds of educational software
in the ecological approach (EA) architecture [5], and then test the simulation
under various conditions to get insight into issues the designer is interested in.
Because our model is implemented in the EA architecture, our approach for mod-
elling peer impact can be used across many different styles of learning systems.
The data to feed our simulation is synthetic, but could, itself, be modelled on
data extracted from actual learner behaviour [5]. We follow with a description
of ongoing research that uses simulation for testing and developing a method for
recommending sequences of LOs, and conclude with a discussion of our findings.

2 Model Structure

In another paper [5], we have argued that it is not necessary to model every
detail of the learning process, but that systems can be tested in a simulation
that captures only the most relevant characteristics for a given purpose. There-
fore, we take an approach that lets an instructional developer choose different
dimensions — such as attributes of the learning objects, aspects of the pedagogi-
cal environment, attributes of the learner — and assign weights to each dimension
according to the priorities of the developer. This section describes the structure
of the simulation model so as to provide background for the experiment around
peer impact, described in Section 3.

The EA architecture [9] provides a way to record metadata about learner
interactions with LOs. As learners interact with LOs, any information that is
known about the learner at the time of the interaction can be saved as metadata
and associated with the LO. The EA assumes that each learner is represented by
a learner model that contains static attributes (characteristics) as well as other
data gathered as they interact with the LOs (episodic).

We developed an agent-based simulation model with very simple abstractions
of learners and LOs. Each learner agent has an attribute, aptitude-of-learner, a
number between (0,1), which we use to model the range of aptitudes (low to high)
different learners have for a given subject matter. In our model, this attribute is
assigned at the start of the simulation and does not change, but in future work we
plan to create more sophisticated simulations where this attribute is not static.
The simulated LOs have an attribute to represent difficulty level, which is also a
number between (0,1) where higher values represent more difficult material. The
simulated LOs are arranged into a random directed acyclic graph to represent
prerequisite relationships between the LOs.



The model execution revolves around an atomic action: the learner’s interac-
tion with a LO. This action might occur hundreds or thousands of times during
a simulation run, thus creating a multitude of EA metadata from which mea-
surements can be taken. In related work [5], we introduce the term evaluation
function to describe the function that computes the degree of success as result
of an interaction between a learner and a LO. We will use the term P/learned] to
describe the value that is generated by the evaluation function, i.e. the “proba-
bility that the learner learned the LO”, or the “system’s belief that the learner
knows the LO”. The P[learned] value is included as part of the EA metadata
that is associated with LOs after learners interact with them.

Our evaluation function is a weighted sum, where each term deals with a
dimension of learning to be considered. Each dimension of learning is calculated
with a mini function. For example, suppose Learner were a novice with aptitude-
of-learner=0.1. Next, suppose LOx were a fairly easy LO, which implies a high
probability of success. We use a mini function, difficulty-of-LO, to translate the
LO difficulty attribute into a high probability value, giving difficulty-of-LO=0.8.
Suppose we also wish to take into account that the likelihood of the learner
learning the LO is higher if the learner has already viewed prerequisite LOs.
Prerequisite information is given in the LO attributes. Our simulation model
has a function for hasPrerequisites which searches through the EA metadata to
discover whether the learner has indeed viewed the prerequisites and returns
1.0 if the answer is yes and 0.0 otherwise. If we want these dimensions to have
approximately equal weights, then we can define the evaluation function below
and obtain P[learned] as follows:

(w)(aptitude-of-learner) + (w)(difficulty-of-LO) + (w)(hasPrerequisites)
— (0.33)(0.1) + (0.33)(0.8) + (0.34)(1.0) = 0.637

If, on the other hand, we wish to give the aptitude a higher weight, such
as 60%, then the new value could be (0.6)(0.1) + (0.2)(0.8) + (0.2)(1.0), or
0.42. As expected, giving greater weight to this learner’s low aptitude decreases
the P[learned] somewhat. More dimensions can be incorporated so long as the
weights sum to 1.0. The evaluation function, implemented as a weighted sum,
will provide an estimated likelihood the LO has been learned between (0,1),
making it easy to compare averages of such P[learned] values between simu-
lation runs. However, we caution against comparing two simulation runs with
different evaluation functions (i.e. different weights or dimensions) because that
would be like comparing two numbers with different units of measure.

The independent variables in our experiment are the aptitude-of-learner val-
ues, the difficulty level values, the directed acyclic graph giving prerequisite re-
lationships between LOs, as well as a dimension called peer-impact, which is
explained in the next section.



3 Experiment

Our experiment is intended to explore through simulation the effects of peer
impact on learning. We motivate the experiment by visiting literature around
how peers can impact each other’s scores.

Students are impacted by their peers even in their ordinary lives. A study
was performed by Hanushek et al. [6] to clarify the impacts of peer group char-
acteristics on achievement in the context of family and school factors, race and
socio-economic status. Results suggested that students benefitted from higher
achieving schoolmates. In contrast, the American Academy of Pediatrics warned
that Facebook pages can make some children feel badly because they see them-
selves as being inferior to their peers [10]. This effect is due to the nature of
Facebook, where most users will censor their posts and only share the most pos-
itive information about themselves, skewing the view of reality. Along the same
lines, Daniel et al. [3] found in a study that learners will usually only participate
in online learning activities if they have trust in their peers or some degree of
self confidence.

Others have used simulations to study peer effects. Mao et al. [7] used a
simulation model to study the impact of social factors in a course where students
shared learning materials with each other. The output of Mao et al.’s model was
a comparison of the amount of sharing connected to status levels: gold, silver,
bronze, common. Populations fluctuated as users began at the common status
and gradually transitioned between levels. The paper concluded that simulation
models can be useful for developing and improving incentive mechanisms in
virtual communities. In a different study, Zhang et al. [12] studied the fluctuation
of a population of learners through various activities: registration, activation,
action and adaptation. The authors found that learners who participated the
most were also the ones most sensitive to changes in the community and had
the most fluctuations.

This research, and other research, shows that a learner’s score can be im-
pacted by peer performance. We decided to explore this issue by creating a
notion of “peer impact”, where learners respond differently from one another
according to how well other learners are doing in mastering the LOs. This takes
the form of a new dimension in our evaluation function called peer-impact. Like
the other dimensions we discussed in Section 2 (aptitude-of-learner, difficulty-of-
LO, hasPrerequisites), this is a function that produces a value between (0,1) to
represent a positive or negative impact on P[learned]. In our experiment, we use
the following Equation 1 to compute P[learned] each time a learner visits a LO.

.25(apt-of-learner) + .25(diff-of-LO) + .25(hasPrereq) + .25(peer-impact) (1)

We created two styles of peer impact called reinforcing and balancing which
refer to a comparison between an individual learner’s average P[learned] on
the LOs they have viewed so far, compared to the average P[learned] of all
learner agents, which we call “class average”. The information to compute these



P[learned] averages is obtained from the EA metadata. Each learner is given
one of these styles at the start of the simulation and it remains fixed. Future
work could explore more sophisticated learner agents where this attribute is not
static.

The reinforcing style means that the learner’s score is “attracted” to the class
average P[learned]. That is, when the class average is higher than their own, the
peer impact function for a reinforcing learner produces a value close to 1; thus
the learner will perform even better than they would have otherwise. This is a
positive feedback loop, because as the learner performs better so does the class
average thus further encouraging the learner to do better. If the class average is
lower than their own, then the peer-impact function gives a value close to zero;
thus the learner will do even worse than they would have otherwise.

Balancing is the opposite. In this case, a learner’s score is “repelled” from
the class average Pllearned]. That is, when the class average is higher than the
individual’s average P[learned], then their score will be pulled down lower than
it would have been otherwise. This is a negative feedback loop because when
the class average is high, the learner’s average goes in the other direction. When
the class average is low, then the learner’s score will be boosted higher than it
would have otherwise. In Figure 1, we show the peer-impact function (the values
0.2 and 0.8 were chosen as thresholds to allow clear effects of the two types of
learner to emerge).

if currentLearner BALANCING
if class average is HIGHER than mine

set peerImpact == randomNumBetween(0.0,0.2)
if class average is LOWER than mine
set peerImpact == randomNumBetween(0.8,1.0)

if currentLearner REINFORCING
if class average is HIGHER than mine
set peerImpact == randomNumBetween(0.8,1.0)
if class average is LOWER than mine
set peerImpact == randomNumBetween(0.0,0.2)

Fig. 1. Function to generate peer-impact for a given learner at a given time in the
simulation

The dependent variable in our experiment is the P[learned] values generated
by the simulation; we gain insight into whether the peer impact has a posi-
tive or negative effect by observing the relative P[learned] values. We varied
this experiment under six conditions. We varied the proportions of balancing
and reinforcing styles: mostly balancing, mostly reinforcing, and fifty-fifty. For
instance, if the model is set to mostly balancing, when new learners are initial-
ized, they have a high chance of being assigned the balancing personality and
a low chance of being assigned the reinforcing personality. These three propor-



tions were each run under two difficulty levels: one with mostly easy LOs and
high aptitude learners, and the other with mostly difficult LOs and low aptitude
learners. These six conditions were hand picked to be representative samples on
a curve of possible population mixes that should provide some insight about the
effect of these two kinds of personality on the learning environment. We ran each
of the six conditions 5 times because our model is stochastic; it produces slightly
different results each time even under the same starting conditions.

A typical result is shown in Figure 2 (fifty-fifty, high difficulty with low apti-
tude learners). Each line represents the average P[learned] of different portions
of the simulated learner population: the lightest thin line for all learners, black
thin line for the learners who were assigned the reinforcing personality, and the
dark grey thin line for the learners who were assigned the balancing personality.
Normally, our simulation model would be used to evaluate a particular instruc-
tional planning technique, but because this experiment is intended to illuminate
peer impact, the order in which LOs are consumed isn’t important. Therefore,
the simulated learners, of which there are 80, visited random LOs, of which there
are 100.
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Fig. 2. Typical result

At the start of the simulations, the class average starts at zero. The balancing
simulated learners had higher scores in this state because this is the behaviour
defined in the evaluation function — that balancing learners do well when the class
average is lower than their individual average. The learning gradually increases
for both groups as the simulated learners visit more and more LOs. Although
the results seem low overall — P[learned] only reaching short of 0.3 — this is due
to the number of LOs (100) created in the simulation and the time it would
take for learners to visit them all. We ran the simulation again with only 30
LOs and observed the same patterns, but with a steeper slope; the average
P[learned] reached around 0.5. This raises interesting questions about whether
the amount of time required to learn a set of LOs should actually be represented
with a linear function. In reality, learners would get tired or lose interest or
change their learning goals. Future work could compare instructional plans with
learners having different levels of stamina.



The thick lines in Figures 2 and 3 represent subsets of the balancing and
reinforcing personalities whose behaviour we wish to discuss in this experiment.
Simulated learners do not have access to the actual class average, but com-
pute the average based on what other simulated learners have allowed them to
perceive about their performance. Based on Daniel et al.’s [3] results that confi-
dent learners are more likely to share their success, simulated learners with high
P[learned] values shared their EA metadata, while those with lower P[learned]
values did not. This creates a suppression effect, where each simulated learner
has access to different information in the computation of how others are doing,
depending on which other learners have suppressed information at the time they
are computing the average.

The thick grey line shows only the balancing learners with low aptitudes while
the thick black line shows only the reinforcing learners with high aptitudes. At
the start of the simulation, the thick black line is below the thick grey line: it is
perhaps surprising that a group of simulated learners with high aptitudes would
have overall lower scores than a group of simulated learners with low aptitudes.
We highlight this because it shows that different parts of the evaluation function
— peer-impact, aptitude-of-learner etc. — can dominate at different times. In this
case, high aptitude can be dominated by peer impact for reinforcing personalities
when the class average is low.

In Figure 3, we observe another interesting phenomenon by injecting 80 more
simulated learners halfway though the experiment, a somewhat contrived situa-
tion, although one that might happen in the real world if, say, two classes merged
partway through a course, or if two study groups in an online course were mashed
together, or due to the openness of many online courses (e.g. MOOCSs) when new
learners can join any time. Under most of the experimental conditions we tried,
such as the typical result in Figure 2, although the influx of new learners caused
the class average to drop (as expected, because each new learner starts with an
average P[learned] of zero), there was no apparent change in the relative rank-
ing of the groups of learners being measured. That is, if the balancing learners
had the highest average before the influx, this continued afterward. However, in
about a third of the runs with low difficulty LOs and high aptitude learners, the
influx of learners caused a phase shift: now the thick black line jumps above the
thick grey line (see Figure 3). This makes sense: the balancing learners who tend
to do more poorly when the class average drops, do just that. The influx also
creates a situation where there are now learners with high averages intermin-
gled with learners with zero averages; this creates a different environment than
the starting condition where everyone started at zero. Different environmental
conditions cause the model to exhibit different behaviour. With the suppression
effect deactivated, all learners have access to the same information. In this con-
dition, we observed that the thick grey line overlapped with the thick black line
and there was no apparent phase shift (i.e. no lines crossing over).

Even though the observed patterns are merely a result of the evaluation
function implementation — that is, the model is simply doing what it was pro-
grammed to do — it helps system designers to keep track of the different possible
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Fig. 3. Condition showing phase shift

behaviours as they try to design systems to support learning in all of these
conditions: low or high aptitude learners, easy or difficult material, peer effects,
prerequisites and many other possible dimensions, with each behaving differently
in different situations. Without simulation, it is unlikely we would have made
our observations about the phase shift as well as the observation about the high
aptitude reinforcing learners having lower scores than low aptitude balancing
learners. These observations reveal the specific circumstances that instructional
developers should address in order to maximize the expected learning. For ex-
ample, the system could be programmed to intervene when it detects that the
current class average will push a learner’s expected outcome in an undesirable
direction. When the class average is higher than an individual’s average, the
scores of other learners should be displayed more prominently for the balancing
learners but not for the reinforcing learners.

Through this experiment, we have also shown that simulations can be used to
test unexpected situations. Future experiments could test for influxes of new LOs
instead of new learners. Other variations could look at adding or removing LOs to
impact the difficulty level of the course or the level of expertise of peer learners.
When we injected a herd of simulated learners, we observed some surprising
results. But, by examining the underlying dynamic behaviour as the simulation
proceeded, we could actually explain why these results happened, thus gaining
more intuition about learning that would help to better inform an experiment
that might be carried out with real learners.

4 Other Research Directions

In ongoing work, we are also developing a technique for recommending sequences
of LOs. Instructional planners have been built that explore different kinds of se-
quencing such as sequencing things of the same type, like “lessons” or even
sequencing several types of activities, like presentations and assessments [1].
Our method involves using the EA metadata to identify “trails” of LOs. We are
investigating the use of user-based and item-based approaches to generate recom-



mendations of these trails using Apache Mahout '. Using information captured
in the EA metadata, we create metrics for giving sequences a score to reflect the
quality of the sequence, for example does P[learned] increase or decrease over the
sequence. We are also exploring changes to the evaluation function to favour se-
quences that suggest coherence, such as trails that give learners a view of the big
picture before going into the details. Sequences with high scores are then used
as a basis for recommending sequences to other learners. Our study will examine
whether learners receiving sequence recommendations see any improvement over
learners receiving one LO recommendation at a time.

Other work in simulating recommender systems for learning systems has
been done by Drachsler et al. [4]; but the main difference is that this work did
not involve sequences, peer impact or the EA architecture. Champaign [2] uses
the ecological approach architecture to use the experiences of past learners to
suggest sequences of LOs for future learners while also studying the impact of
peer ratings, which are not the same as our peer impact because our peer impact
is linked to the evaluation function.

Even with the simplistic models of learners and LOs we have presented so
far, the peer impact experiment demonstrates the combinatorics of the various
features is already becoming too complex to rely on human intuition; this is one
of the main reasons for simulation modelling.

5 Conclusion

We created simulated learners whose overall learning was influenced by one
of two styles of peer impact. Our study demonstrated that different patterns
emerge when when simulated learners change their own behaviour based on the
behaviour of the group and when these learners have limited access to informa-
tion due to others’ ability to suppress their EA metadata. In some conditions, a
phase shift occurred from the initial situation where the class average is zero to a
new situation with some learners having relatively high averages. The simulated
learners prior to the influx had higher averages because they had the opportu-
nity to visit LOs before the arrival of the new simulated learners. One style of
peer impact is not universally better or worse than another, but each has ad-
vantages in different circumstances. It is important for instructional developers
to understand such patterns. In future work, the use of simulations with the EA
architecture will shed more light on peer impact and will allow us to also factor
in the effects of different kinds of sequence recommendations.

The EA metadata make it easy to look deeply into the underlying dynamics
and identify the conditions that create such behaviours. The EA metadata also
allow us to change the inputs of the simulation and take measurements, as we
did to compare the P[learned] averages between learners with different styles of
peer impact. By using the EA architecture for the simulation studies, the later
construction of a real learning system is made easier if the real system also uses

! http://mahout.apache.org/



the EA architecture. That is, if the real system also stores information about a
learner’s interaction with a LO as metadata associated with the LO, then esti-
mating the likelihood of success for a real learner follows the same methods used
by developers to estimate the success of simulated learners.
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