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Abstract: User modeling in AIED has been extended in the past decades to 

include affective and motivational aspects of learner’s interaction in intelligent 

tutoring systems. An issue in such systems is researchers’ ability to understand 

and detect students’ cognitive and meta-cognitive processes while they learn. In 

order to study those factors, various detectors have been created that classify 

episodes in log data as gaming, high/low effort on task, robust learning, etc. 

When simulating students’ learning processes in an ITS, a question remains as 

to how to create those detectors, and how reliable their simulation of the user’s 

learning processes can be. In this article, we present our method for creating a 

detector of shallow modeling practices within a meta-tutor instructional system. 

The detector was defined using HCI (human-computer interaction) task model-

ing as well as a coding scheme defined by human coders from past users’ 

screen recordings of software use. The detector produced classifications of stu-

dent behavior that were highly similar to classifications produced by human 

coders with a kappa of .925. 

Keywords: intelligent tutoring system, shallow learning, robust learning, hu-

man-computer interaction, task modeling 

1 Introduction 

Advances in student modeling in the past two decades enabled the detection of 

various cognitive [3, 4, 8, 11, 13, 16, 17], meta-cognitive [1,6], and affective [2, 9] 

processes during learning based on classification of episodes in log data. Steps have 

been taken toward detecting when learning occurs [4] and to predict how much of the 

acquired knowledge students can apply to other situations [5, 6]. However, an obsta-

cle in such research is how to gain an understanding of the user’s cognitive or meta-

cognitive processes while learning. While some of the indicators used in the literature 



are common to any intelligent tutoring system, others are closely linked to the activi-

ties and pedagogical goals of a specific application. The adaptation of such indicators 

to the design of a new system often necessitates a detailed analysis of the new domain 

and how the tutoring system guides learners to acquire its skills and knowledge. In 

particular, an issue within this process is the ability to reach common ground between 

learner scientists that perform an analysis of learners (meta-)cognitive actions at a 

high level - via video or log analysis of student’s past actions for example – and the 

definition of the indicators by software engineers, related to how the system was im-

plemented, that can be used to simulate such processes in agreement with the con-

straints and functionalities of software. We view the specificity of detectors as un-

avoidable, so the best solution is to develop good methods for analyzing the new tu-

toring system and designing the detectors.  This short article describes our method 

and its application to out project, AMT. In the AMT project, a choice was made to use 

HCI (human computer interaction) task modeling - a method for formally represent-

ing human activity, and by extension, the behavior of an interactive system -, as well 

as video coding schemes from human coders, to develop the detectors. The detectors 

aim to evaluate student’s use of shallow and deep modeling practices with and with-

out being guided by a meta-tutor, on the domain of dynamic systems modeling. 

In Section 2, the AMT learning environment, for which the detectors were created, 

is introduced. In a third section, the task model of the user’s activity in AMT is de-

scribed. Next, the process of defining a coding scheme for the detector with human 

coders is presented, followed by the definition of the different classifications that 

define the value, the implementation and empirical evaluation of the detector. The 

final section summarizes the uses of task modeling within this work, and how it could 

be applied in future to other applications. 

2 AMT software: a meta-tutor to teach deep modeling of 

dynamic systems. 

AMT software teaches students how to create and test a model of a dynamic sys-

tem. In our modeling language, a model is a directed graph with one type of link, as 

illustrated in Figure 1.  Each node represents both a variable and the computation that 

determines the variable’s value.  There are three types of nodes.  

• A fixed value node represents a constant value that is directly specified in the prob-

lem.  A fixed value node has a diamond shape and never contains incoming links. 

• An accumulator node accumulates the values of its inputs.  That is, its current 

value is the sum of its previous value plus or minus its inputs.  An accumulator 

node has a rectangular shape and always has at least one incoming link. 

• A function node’s value is an algebraic function of its inputs.  A function node has 

a circular shape and at least one incoming link. 



The students’ learning objective is to draw a model representing a situation that is 

described in the form of a relatively short text.  In the example of Figure 1, the de-

scription of the problem was “ Rust destroys steel and can spread quickly. Suppose 

you take a large sheet of steel, such as one that might be used as the roof of the box-

car on a train, and you put it outside in the weather. Suppose it starts with a spot of 

rust that is 10 square inches in area. However, each week the rust spot gets bigger, as 

it grows by 30%. Therefore at the end of the first week, the rust spot is 13 square 

inches in area.” and the objective of the problem was to “Graph the size of the rust 

spot over 10 weeks.” 

The student constructs the model node by node, by filling in all information within 

each node in the form of four interactive tabs (description, plan, inputs, and calcula-

tions). During construction, students can use the Check button to evaluate the correct-

ness of the current tab, or the Solve it for me button to ask the system to fill out the tab 

automatically.  

The instruction is divided into three phases: (1) an introduction phase where stu-

dents learn basic concepts of dynamic system model construction and how to use the 

interface; (2) a training phase where students are guided by a tutor and a meta-tutor to 

create several models; and (3) a transfer phase where all scaffolding is removed from 

soft-ware and students are free to model as they wish.  The tutor gives feedback and 

corrections on domain mistakes.  

The meta-tutor requires students to follow a goal-reduction problem solving strat-

egy, the Target Node Strategy [18]. The basic idea is to focus on one node at a time 

(the target node) and completely define it before working on any other node.  This 

process decomposes the whole problem of modeling a system into a series of atomic 

modeling problems, one per node.  Like Pyrenees [2], it teaches students that if they 

just master this one difficult but small skill, then the rest of the problem solving will 

be straight-forward.  In addition, the meta-tutor complains if students appear to be 

guessing too much or giving up too early, just as the Help Tutor did [3].  

While students learn, their motivation, attention to details, and modeling depth can 

fluctuate. To assess students, the project needed detectors that detect shallow and 

deep modeling practices both with and without the meta-tutor. The measure should be 

usable in the transfer phase of the experiment as a dependent variable, because deep 

     

Fig. 1.   The left image is the example of model, with gray callouts added to explain the 

contents of nodes. The right image is the example of a node editor. 



modeling is the skill/knowledge that AMT teaches.  The depth measure should also 

apply to student’s behavior during the training phase so that we can check whether the 

instructional manipulations done during that phase have their intended effects (i.e., 

the measure serves as a manipulation check).  The detector should further operate in 

real time (i.e., it doesn’t require to know future actions or states in order to interpret 

the current action) so that it can be eventually be used by the system itself to condi-

tion its behavior. 

3 Task Modeling: analysis of user’s actions on software 

A task model is a formal representation of the user’s activity. It is represented by a 

hierarchical task tree to express all sub-activity that enables the user to perform the 

planned activity. The tasks need to be achieved in a specific order, defined in the task 

tree by the ordering operators. In AMT, every modeling activity follows the same 

procedure involving the same help features, task flow, and meta-tutor interventions. 

With a single task model of a prototypical modeling task, it is therefore possible to 

account for all of the user’s activity in software. Due to the complexity of the final 

model, only one sub-activity will be described in this paper, illustrated in Figure 2. 

Only part of the model is deployed in the figure, and some subtasks will not be de-

tailed here. In this part of the model the sub-activity the learner wishes to perform is 

to create a new node for the dynamic system s/he is currently modeling. We will first 

describe the task tree, and then insert the iterations and conditions that enable a formal 

verification of the flow of the task within the task model. 

Figure 2: Sub-task “Creating a Node” in the AMT activity task model using K-MADe 

 
 



Short description of the sub-task to model: 

In order for a node to be created, the description tab of the node editor needs to be 

completed by selecting a node description, which corresponds to a valid quantity in 

the system to model. Each node is unique and cannot be created more than once. The 

user can engage in the task only if at least one node still needs to be created for the 

model to be complete. 

Task tree and order of the tasks: 

At the top level of the task tree “Creating a node”, the learner can either attempt to 

create the node (task 1) or give up on the creation (task 2). The second task is repre-

sented in software by the user closing the node editor window, and can be done at any 

time during the task. The task “Creating a node” is over when a good description has 

been found and validated. The system can then try to initialize the selection and create 

the node.  

In the first level of the task “Attempting”, the learner first needs to select a node 

description (task 1.1), i.e.: what quantity the node will represent. S/he is then allowed 

to finish the creation of the node by validating the selection (task 1.2).  

In order to select a node description, the user first needs to choose a node descrip-

tion (task 1.1.1) among the set of node descriptions offered by the system. This proc-

ess involves the user choosing mentally one description (task 1.1.1.1), exploring the 

help features offered by software (task 1.1.1.2) and exploring the set of node descrip-

tions displayed (task 1.1.1.3). S/he can then select the node (task 1.1.2). This subtask 

is not described in Figure 1 for a lack of space. 

In order to validate the selection, the learner can choose to go back to the descrip-

tion of the problem to verify the correctness of his solution according to the problem 

to be simulated (task 1.2.1), and then has to validate the selection (task 1.2.1.2). When 

the user checks the validity of the selection, it can either be performed by checking 

the solution against the set of nodes still remaining to be modeled (task 1.2.1.2.1) or 

asking software to produce the solution (task 1.2.1.2.2). The user is allowed to ask for 

the solution only when a description has been checked at least once. 

Now that the different actions of the learner are defined, the iterations and condi-

tions will help represent the flow of the activity on the subtask “Selecting a node de-

scription” (task 1.1). 

Iterative and Optional tasks 

• Task 1.1 is iterative: it is possible to make several selections before trying 

to finish the description by validating. 

• Task 1.1.1.2 is optional: The learner is not forced to explore the help fea-

tures to choose a description, this is merely a choice on the learner’s part. 

• The main task, “creating a node”, is iterative until the node is created or 

the activity is abandoned. The later is represented in the task model by an 

interruptible task: the learner can stop his/her creation of node activity any 

time by choosing to close the node editor window. 

Conditions on tasks: 

• Main task 1 has a pre-condition attached to it: the software only allows the 

user to engage in a creation of a new node if there is at least one node re-



lated to the modeling of the dynamic system that still remains to be cre-

ated. 

A first task model was created to represent learner’s activity on software without 

the presence of the meta-tutor. This corresponds to the first version of software, which 

was evaluated against the interface including the meta-tutor in [18]. This second soft-

ware interface includes a text-based agent that intervenes as the students engage in 

modeling to help them achieve deeper modeling behaviors, by applying constraints to 

the user’s actions and giving meta-cognitive feedback. The meta-tutor was therefore 

added to the task model under the type “system” and the model was completed to 

include the constraints and interventions of the meta-tutor. 

The final task model produced represented all possible actions of the learner on 

software in order to model a dynamic system. Next, a study of these actions, which 

led to the definition of the depth detectors, is detailed. 

4 Detecting when students are modeling using shallow practices 

The task model developed with K-MADe was used to define the episode structure.  

The first step in creating a coding scheme is to define a unit of measurement for the 

user’s modeling actions. The task model clearly highlighted the different sub-

activities the learner could engage in, referred to as goals. All goals are interruptible 

tasks in favor to accessing the help features
1
 or abandoning the completion of the 

current goal for a new one. After a brainstorming session where researchers studied 

how students’ actions fell in line with those goals, the following unit of depth, called 

“segment”, was defined. This established the unit of coding to be used in the next 

phase.  

Screen videos representing the learners’ use of the AMT software with and without 

the meta-tutor were recorded during an experimental study described in [6]. These 

videos were studied to determine how much shallow vs. deep modeling occurred and 

the contexts, which tended to produce each type. A coding system was then created 

for video recordings of the learners’ behavior. Three iterations of design for this cod-

ing scheme were performed, ending with a coding scheme that reached a multi-rater 

pairwise kappa of .902. The final coding scheme mapped learners’ behavior to six 

classifications, which were implemented as the following depth detectors[AIED short 

paper] 

 

• GOOD_METHOD: The students followed a deep method in their model-

ing.  They used the help tools appropriately, including the one for planning 

each part of the model. 

• VERIFY_INFO: Before checking their step for correctness, students 

looked back at the problem description, the information provided by the in-

struction slides, or the meta-tutor agent. 

                                                             
1
 It is to be noted that two help systems are available to users: (1) referring back to the instruc-

tions always available for viewing, and (2) looking at the problem situation where all details 

of the dynamic system to model are described. 



• SINGLE_ANSWER:  The student’s initial response for this step was cor-

rect, and the student did not change it.  

• SEVERAL_ANSWERS: The student made more than one attempt at 

completing the step.  This includes guessing and gaming the system: 

o The user guessed the answer, either by clicking on the correct an-

swer by mistake or luck, or by entering a loop of click and guessing to find 

the answer. 

o The user “games the system” by using the immediate feedback 

given to guess the answer: series of checks on wrong answers that help de-

duce the right answer. 

• UNDO_GOOD_WORK: This action suggests a modeling misconception 

on the students’ part. One example is when students try to run the model 

when not all of the nodes are fully defined. 

• GIVEUP: The student gave up on finding how to do a step and clicked on 

the “give up” button. 

Another detector was defined as a linear function of the six episode detectors.  It 

was intended to measure the overall depth of the students’ modeling, therefore provid-

ing an outcome measure in the transfer phase in future experimental studies.  It con-

sidered two measures (GOOD_ANSWER, VERIFY_INFO) to indicate deep model-

ing, one measure (SINGLE_ANSWER) to be neutral, and three measures 

(SEVERAL_ANSWERS, UNDO_GOOD_WORK, and GIVE_UP) to indicate shal-

low modeling. 

Once the coding scheme reached a sufficient level of agreement between coders, 

the task model was used to adapt the coding to students’ actions on the software. The 

episodes that were coded for depth by human analysts in the sample video were ana-

lyzed by creating scenarios from the task model within K-MADe.  The validation of 

six detectors’ implementation involved three human coders, who watched a sample of 

50 episodes, paying attention to the depth of modeling exhibited by the student’s ac-

tions, and chose the classification that best represented the depth of the learner model-

ing at the time of the detected value.  A multi-rater and pairwise kappa was then per-

formed, reaching a level of inter-reliance of .925. 

5 The different uses of the Task Model 

The task modeling language K-MAD and its task model creation and simulation 

environment, K-MADe [7] were chosen for the following reasons: the environment 

enables the creation and replay of scenarios of student’s actions, a set of functionali-

ties not described here enable a formal verification of the model. Additionally the 

associated simulation environment ProtoTask [14] allows non-specialists in task mod-

eling to visualize the flow of the task model, via scenarios in a clear and simple man-

ner.  

The use of K-MAD helped in the creation of the detectors and are a first step in of-

fering an alternative technique to simulated learners, by tackling the following prob-

lems: 



• Breaching the gap between learner scientists’ understanding of how the 

learning process works and programmers’ definition of the application 

flow, functionalities, and indicators. 

• Enabling a formal validation of software flow, understandable by all. 

• Using simulated learners scenarios to define the detectors. 

A researcher in educational technology - expert in teaching modeling and part of the 

AMT project - and an HCI practitioner, realized the task model. The former was an 

expert on how AMT software was designed in terms of pedagogical content and task 

flow. His expertise focused in particular on the actions the students were al-

lowed/incited/forbidden to do within software at each moment of the modeling task. 

The HCI practitioner was not familiar with intelligent tutoring systems or meta-tutors. 

She was involved in the creation of the task model in a consulting capacity, in regards 

to her expertise in task modeling of interactive systems.  

The task model could be defined at the level of the user’s planning of actions and 

system flow, with iterations and conditions alone. However, the objects in K-MADe 

enable us to represent the constraints of the learner’s actions concretely and to apply a 

formal verification of task flow. It was therefore possible to represent the set of de-

scriptions as either valid or invalid, to detect when a node has been checked and the 

result of that check, and to add constraints on the checking procedure such as to avoid 

node duplication. This enabled a formal verification of software flow prior to validate 

its fidelity to learner scientists’ ideas about possible actions on software and the un-

derlying processes involved. 

Once the model was constructed, the use of ProtoTask to visualize software flow 

and follow learners’ possible sets of actions allowed by software enabled the ability to 

simulate learners by creating scenarios of use that could be played and replayed at 

will, focusing on the cognitive and meta-cognitive levels of learner’s experience on 

software. In the process of creating our detectors, a video analysis of learner’s past 

actions was performed. The model could be used to check the possible actions of 

users with what the designer of the system wanted to offer as functionalities and soft-

ware flow. During this analysis, the task model could be used once again to define 

scenarios that simulated learner’s pertinent behaviors using ProtoTask. Once those 

scenarios were formed, the task analyst came back to the original K-MAD modeling 

language and studied the similarities and contrasts between scenarios to define the 

rules that govern the detection of shallow and deep modeling practices within AMT. 

Once the task model identified points of detection of such practices, it became easy 

for programmers to go back to software and implement the rules. 

6 Conclusion and Future Work 

In this paper, a method to create a detector of deep modeling within a meta-tutor 

using HCI task modeling and video coding schemes was described. The main out-

come of this process was the creation of detectors inferring the depth of students’ 

modeling practices while they learn on a meta-tutoring system, reaching a multi-rater 

and pairwise kappa score of .925. We believe the use of the task model to define shal-



low and deep modeling practices by helping to create the detectors to be of value for 

any simulated learning environments, in particular for indicators that a common to all 

learning tasks present in a tutoring system. 

In interdisciplinary teams, the design of indicators can lead to communication is-

sues due to misunderstandings and a lack of common ground between analysis made 

at a high level of learners’ cognitive and meta-cognitive processes, and the representa-

tion of those behaviors within software.  In particular, video-coding processes can 

become costly when the coders’ understanding of the details of how the system works 

differs from how the system actually works. Our experience using K-MADe and Pro-

toTask highlighted an ease in this project in gaining a better view of the tutoring sys-

tem and the detection of deep modeling within the interface. In particular, the use of 

ProtoTask by the non-specialists in task modeling helped clarify issues of task flow 

and the definition of the set of user’s actions at each moment of interaction.  

A limitation of the method is the applicability to different types of tutoring sys-

tems. In AMT, a single task model was able to represent the entirety of a users’ learn-

ing activity. In tutoring systems that teach a set of skills through different pedagogical 

approaches for diverse types of learning tasks, the creation of such task models might 

prove more costly and may not be completely adapted to the creation of detectors that 

need to be adapted to each task specifically.  
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