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Abstract. The Item Response Theory is a successful technique generally used
in testing systems. Its application in problem solving environments requires the
collection of large amount of data. That issue is stressed with ill-defined do-
mains in which the actions that a student could accomplish are difficult to pre-
dict. Known IRT models could not be as appropriate as it is desired to that ap-
plication and we have to explore new alternatives. One of these alternatives is a
new family of models called quasipolytomous models of IRT. These models are
halfway between dichotomous and polytomous models and require less data
than polytomous models being more informative than dichotomous ones. Vali-
dating these new models is a very difficult issue in a real environment since
student knowledge level is not observable. A simulation environment could
help us to verify new models of IRT. Besides, with a simulator we can study
different scenarios and observe how our model behaves in them.
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Knowledge Estimate, Item Response Theory.

1 Introduction

Student modeling in problem solving environment is an important issue in the AIED
field. Constraint-Based Modeling (CBM) [1] and Cognitive Tutors (CT) [2] are the
outstanding approaches in that matter. CBM models are a set of constraints associated
to principles in the domain that could be either violated or not, those constraints are
related to declarative principles of the domain. CT inferred procedural student know-
ledge directly from student interactions through a technique called Knowledge Trac-
ing [2] which is based on Bayesian procedures and estimates the probability that a
student has learned a certain rule of the domain given his/her actions.

Procedural knowledge could be also inferred by other techniques such as the Item
Response Theory (IRT) [3], which is one of the most important strategies of declara-
tive knowledge assessment in testing systems. Our proposal of applying IRT to prob-
lem solving environment sets a connection between problem solving environment and



testing, that is, if we make a matching between the elements of problem solving and
the elements of testing we can, directly, apply IRT to infer procedural knowledge. In
this sense, we model the solution of each problem as a directed graph where nodes are
states of the solution path of the problem and edges are transitions between states.
Using that representation each node could be understood as a question and each edge
as an option in the question.

Our challenge is also to develop an automatic (or semiautomatic) procedure for min-
ing the problem solving path from the logs of students’ performance while solving it.
This mining process would lead us as well to infer the IRT components which will be
used for diagnosing the procedural knowledge. Furthermore, we also want this proce-
dure to be dynamic, that is, the solution path and the inference of IRT components
have to be updated dynamically when new logs will be available. Accordingly, the
problem graph will include all possible student actions, so when a student completes
an action that never was completed by another student it has to be included in the
problem graph. These new actions have to be taken into account when the procedural
knowledge is assessed, that is, the calibration procedure of the IRT has to be done
when new actions are incorporated to the problem graph.

There are, mainly, two families of IRT-based models according to how they update
the estimated student knowledge in terms of the student’s response: dichotomous and
polytomous models. Dichotomous models consider each response as either correct or
incorrect whereas polytomous models consider each response individually. These
traditional IRT models could not be as good as it is expected dealing with this type of
calibrations since dichotomous models are not as informative as we need in this kind
of problems and there will be actions with little evidence (maybe actions followed by
1 or 2 students) to polytomous calibration, especially in ill-defined domains where the
set of possible actions is very large.

In order to explore new IRT models that fit better with our challenges we have de-
veloped a simulation environment in which virtual students (with a known real proce-
dural knowledge of the domain) solve virtual problems (simulating their behavior
according to their prior knowledge) and we have compared their estimated knowledge
with their real knowledge. In this sense, we have developed a new family of IRT-
based models called quasipolytomous models which are halfway of dichotomous and
polytomous models considering not all possible responses but a subset of them.

2 Item Response Theory Models

The IRT is one of the most successful and well-founded strategies for knowledge
inference in testing systems [3]. IRT infers and models student performance by means
of some probabilistic functions called characteristic curves, the idea is that student’s
results could be explained by a set of non-observable factors (for instance, the know-
ledge level).

There are a lot of IRT models, based on how the models update the estimated stu-
dent knowledge in terms of his/her response they could be [4]:



e Dichotomous models: Each response is considered as either correct or incorrect.
When a student selects an option in a question test, his/her estimated knowledge is
updated according to whether the option selected is the correct one or if that is oth-
er. These models require only a characteristic curve per item that represents the
probability that a student with a certain knowledge level answers it correctly. This
characteristic curve is called item characteristic curve (ICC).

e Polytomous models: Each possible response has its own characteristic curve called
operating characteristic curve (OCC) [5], which expresses the probability that a
student select that answer [6]. The student estimated knowledge is updated by
means of the OCC related to the selected response.

(a) Dichotomous item (b) Polytomous item

Fig. 1.Characteristic curves of an item under dichotomous and polytomous models

Polytomous models are more informative than dichotomous ones since they take
into account each possible response independently instead of considering each answer
as correct or incorrect.

Figure 1 shows the curves of an item of both the dichotomous and polytomous
models of IRT. The dichotomous model is shown in Figure 1(a) and has only the ICC
which is the probability of answering correctly this item (y-axis), given a certain
knowledge level (x-axis). The polytomous model is presented in Figure 1(b).Each
item choice has its own characteristic curve which is the probability of choosing this
choice (y-axis), giving a certain knowledge level (x-axis).

The most popular proposals for modeling the dichotomous characteristic curves are
the logistic models, which use logistic functions. These models could be classified,
considering the number of parameters that the function has. According to this classifi-
cation there are 3 kinds of logistic models: 1PL, 2PL, and 3PL, with one, two and
three parameters, respectively. A generic 3PL ICC of an item .X; is defined as follows:
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Where D is a parameter introduced to fit the curve similar to the normal curve, para-
meter g; is the discrimination, parameter b; is the difficulty, parameter ¢;is the guess-
ing parameters of the item X;, and 0 is the knowledge level.

There are a lot of polytomous models of IRT. In our work we have considered the
IRT-model proposed by Thissen and Steinberg for multiple-choice items [7]. In this
model besides the observable categories (selectable choices) there is another non-
observable and latent category called “don 't know” (DK) that expresses the probabili-
ty that a student does not know how to answer the item. Each observable category has
a portion of the category DK included since students who do not know will select an
observable category. The formula of each observable category is exposed below, X;
represents the response to the item i and /4 is the category selected:
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category O is the non-observable category DK and d, is the portion of that category
included in each observable category /. The parameters denoted by a reflects the
order, as well as discrimination, for the categories, and the parameters denoted by ¢
reflect the relative frequency of the selection of each alternative.

3. Introducing IRT in problem solving

The application of IRT to problem solving environments requires a polytomous
model since each student action should be taken into account; a dichotomous model
only would be able to establish if an action is correct or incorrect. However, some
actions could have little evidence and IRT calibration could be not as accurate at it is
expected. For that reason, we have developed a new family of models of IRT called
quasipolytomous models of IRT which are on the halfway between dichotomous and
polytomous ones.

Quasipolytomous models consider not all choices as independent but only those
that have enough evidence. For instance, let us consider an item witch 20 choices
(what is usual in problem solving environment if we include all student actions), if 8
of them have been selected only by 1 or 2 students they do not offer us enough evi-
dence to do a polytomous calibration. Instead of doing it, we consider these 8 choices
as a simple choice reducing the number of OCCs from 20 (one per choice) to 13 (12
individual choices and an extra choice that group the other 8) that have, all of them,
evidence enough to do an IRT calibration.

In testing systems there could be items with a lot of choices too, let us consider
figure 2 in which the number of choices is 120 since we have to take into account the
permutation between these 5 elements.



Fig. 2. An item with 120 choices

3 Simulation environment

In order to verify quasipolytomous models we have developed a simulator in which
virtual students have a real (prior) knowledge assigned and they have to solve some
virtual problems according to their knowledge level. Once the students solve the pro-
posed problems, their knowledge is estimated by means of a quasipolytomous model
of IRT and then, these estimations are compared with the students’ real knowledge.

3.1  Virtual problems

In this simulation environment, a virtual problem is represented as a collection of
items; each item is a state of problem solving path with a certain number of possible
transitions to other states. These transitions are the choices of the item.

While students are solving problems, new students’ actions could appear in the
system and they need to be included in the model. For that reason, virtual problems
are not static entities but they can change during students’ interactions.

At the beginning, each problem has only the ideal solution path, that is, those
nodes that are part of the ideal solution. Those nodes are modeled by dichotomous
items according to the equation 1.A characteristic curve, the ICC, is enough to model
this kind of items. Students who do not answer correctly the item could, with some
probability, make a new action at this step of problem solving. Then the opposite
curve (i.e. 1-ICC) is branched into two curves changing the original dichotomous item
to a polytomous one. According to the former explanation, students’ actions could
provoke the addition of new nodes to the problem graph.

Fig. 3. Addition of new curves to an item



Figure 3 shows how new curves are added to an item. Firstly we have the opposite
ICC curve which expresses the probability that a student, given his/her knowledge
level, will answer the item incorrectly. This is curve marked as « in the figure. Curve
a 1s branched into curves b and ¢ when the action represented by curve ¢ is added to
the model; finally, curve c is branched again and then curves d and e are added to the
item. The item was, at the beginning, a dichotomous item with two possible res-
ponses; then a new action was included in it and, as a consequence, the wrong curve
was converted in other two curves. Again a new action was added to the model and
the item changes to a 4-choices item.

3.2  Virtual students

A virtual student is an entity that has a real (prior) knowledge associated and is
able to solve problems according to it. The idea is that, depending on its knowledge
level, the student could go on through the problem graph by completing an action or
other. Further, they could accomplish new actions with a certain probability.

A student will select an action of the state according to his/her knowledge level and
the characteristic curve since these curves are probabilistic functions of the know-
ledge level. Figure 4 shows an example of a virtual student selecting a choice in a 4-
choice item. That student will select each choice with a probability of 0.2, 0.38, 0.18
and. 0.24 respectively. When a non-correct action is selected, there will be a probabil-
ity that the student will accomplish a new action and, therefore, this curve will be
branched into other two.

Since real knowledge of virtual students is assigned before simulation, we can
choose what population distribution we want in each experiment. It is an important
feature of the simulation since we can study the impact of different kind of population
in order to validate new models in all cases or only in some of them.
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Fig. 4. Virtual student selecting a choice



4 Experimentation

In order to verify our model in a simulated environment, we have conducted some
experiments with virtual students and virtual problems. The experiments have been
accomplished to verify the model with different population distributions as well as
different models of IRT and different number of problems.

4.1 Experiment description

The experiments accomplished with our simulator were able to compare scores of-
fered by quasipolytomous models of IRT in different situations. Each experiment has
been accomplished 30 times in order to reduce the impact of anomalous data. The
number of virtual students in each experiment was 1000.

In order to get confidence results we have not done the calibration IRT phase, in-
stead of that, we have estimated knowledge level with the known curves of each mod-
el. Polytomous models could not be as accurate as expected including the calibration
stage since some item choices could have not enough evidence to be calibrated prop-
erly. The student estimated knowledge level is calculated using the formula of the
equation 3, the probability of having a specific knowledge level given the steps fol-
lowed by the student solving the problem is calculated multiplying the probability of
selecting each step given the knowledge level.

P(8|s1,82, ) = [1i=1 P(5:16) (3

In our experiments, virtual students have solved two problems with 10 items. We
have accomplished mainly three experiments varying the population distribution, the
probability of generating new actions and the item difficulty respectively. In our expe-
riments, we have compared accuracy of knowledge level estimation obtained by a
quasipolytomous model with those obtained by polytomous and dichotomous models
with the same data.

The accuracy of knowledge level estimation was calculated using the next formula,
where 6 is the real knowledge, 0" is the estimated knowledge, and N the number of
students:

N (9—6%)2
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We have chosen four types of population distribution to accomplish the experi-
ment. First, a normal distribution of population was selected; the probability of having
a knowledge level was centering in the middle of knowledge range, since that range
was [-3, 3]; the distribution was centered in 0. The second population was a uniform
one, in which the probability of having a knowledge level is equally distributed. The
other two populations were a low-level and a high-level population, which were nor-
mal distributions centered in small and high values respectively. Figure 5 shows the



knowledge level distributions used in our experiments. From left to right they are the
normal, the uniform, the low-level, and the high-level distribution respectively.

Fig. 5.Students’ knowledge level distributions used in the experiments

The impact of the generation of new actions was also studied in our experiments.
To this end, we have conducted experiments varying the percentage of adding a new
action giving it values of 1%, 1.5%, 2%, and 2.5%. More than 2.5% of adding new
actions could lead to a very large number of curves in the model.

Finally, we have also considered the difficulty of the items. We have conducted an
experiment changing the value of this parameter. The difficulty value is calculated
according to a normal distribution centered in a certain value, which is the difficulty
average. We have done our experiments with values of -1, 0, and 1, respectively.

4.2  Experiment results

Experiments conducted suggest that polytomous models of IRT perform more ac-
curately than dichotomous ones. This result is not surprising, since polytomous mod-
els are more informative. Experiments also show that quasipolytomous models of IRT
are not as accurate as polytomous ones but more accurate than dichotomous ones.
Besides, results obtained by quasipolytomous models are very similar to those ob-
tained by polytomous ones.

Table 1 shows results obtained with different population distribution. In all cases
accuracy obtained by polytomous models are better than obtained by dichotomous
and quasipolytomous models. These differences are higher in the normal distribution
and lower with a low-level population.

Table 1.Accuracy of IRT models changing the population distribution

Distribution dichotomous quasipolytomous polytomous
Normal 4.153118 0.7957639 0.6714305
Uniform 3.841433 0.6284451 0.5397757
Low-level 2.290098 0.4186174 0.2723583
High-level 3.784738 0.8671618 0.8108576

We can see in the former table that differences between results obtained by quasi-
polytomous models and polytomous ones are not significant.

Our second experiment conducted studied how affects the probability of adding a
new action. To this end, we changed the percentage of adding a new action from 1%



to 2.5%. Table 2 shows those results, when we increase the probability of adding a
new action the accuracy of dichotomous and quasipolytomous models gets worse
since but the accuracy of the polytomous models gets better since they obtain more
precise information.

Table 2.Accuracy of IRT models changing the percentage of adding a new action

% new action dichotomous quasipolytomous polytomous
1.0% 3.291380 0.6609889 0.6126646
1.5% 3.489956 0.6695576 0.5845097
2.0% 3.613464 0.6778118 0.5593333
2.5% 3.674588 0.7016298 0.5379146

Finally, we have compared results obtained by these models varying item (solving
path step) difficulty average. The student knowledge level used in our experiment is
in the range [-3, 3]. We have considered average item difficulty of -1, 0, and 1. An
item with difficulty of b, will be answered correctly by a student with knowledge level
of b; with a probability of 0.5. Table 3 shows the results of this experiment, the dicho-
tomous models have a better behavior when the difficulty is below 0, however quasi-
polytomous and polytomous models get better results when the difficulty increases.
Polytomous and quasipolytomous models accurate better when the item difficulty is
higher since it allows the model to have more curves to estimate the student know-
ledge level.

Table 3.Accuracy of IRT models changing the item difficulty average

Difficulty dichotomous quasipolytomous polytomous
b=-1 2.364223 1.2011291 1.0558448
b; =0 3.131082 0.5410807 0.4450589
b; =1 5.056735 0.2902812 0.2199130

5 Conclusion

In this paper, we have validated a new approach that uses the Item Response
Theory, a well-founded theory generally used for declarative knowledge estimation in
testing systems, to infer procedural skills in problem solving environments. To do
that, we have developed a new model of IRT, the quasipolytomous model. This model
is halfway between dichotomous and polytomous models being more informative
than dichotomous models and needing less amount of data than polytomous ones.

This verification could be difficulty accomplished in a real environment, since we
need to know the prior knowledge level of students to measure the estimation accura-
cy. This knowledge level, however, is a latent trait that is not observable. In addition,



we needed a controlled environment where the students’ performance was not biased
by external factors. For all these reasons we have developed a simulation environ-
ment.

Using a simulation environment we can choose the nature of the population in or-
der to study how well the model performs in different situations and with different
students’ samples. We also can decide the difficulty of the steps of the problem (i.e.
items): before any calibration, the simulator is able to decide what items are more
difficult and what are easier.

Other advantage of using a simulation environment is that we can repeat each ex-
periment in order to reduce the impact of anomalous data. Furthermore, we can
present the problems to a large number of students, which could be difficult in a real
environment.

Regarding the quasipolytomous model of IRT, our experiments show that its appli-
cation is useful in problem solving environment (besides any kind of procedural task,
and in declarative domains for inferring declarative knowledge), especially if we
work with ill-defined domains in which the amount of possible new actions is very
large. Quasipolytomous models of IRT offer similar estimations as polytomous mod-
els but need less data. Besides, quasipolytomous models of IRT are more informative
than dichotomous ones since they collect data from correct and incorrect responses.
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