
 54

Integrating GIFT and AutoTutor with Sharable

Knowledge Objects (SKO)

Benjamin D. Nye

Institute for Intelligent Systems

University of Memphis, Memphis, TN 38111

benjamin.nye@gmail.com

Abstract. AutoTutor and the Generalized Intelligent Framework for Tutoring

(GIFT) are two separate projects that have independently recognized the need

for greater interoperability and modularity between intelligent tutoring systems.

To this end, both projects are moving toward service-oriented delivery of tutor-

ing. A project is currently underway to integrate AutoTutor and GIFT. This pa-

per describes the Sharable Knowledge Object (SKO) framework, a service-

oriented, publish and subscribe architecture for natural language tutoring. First,

the rationale for breaking an established tutoring system into separate services is

discussed. Secondly, a short history of AutoTutor’s software design is reviewed.

Next, the design principles of the new SKO framework for tutoring are de-

scribed. Finally, the plans and progress for integration with the GIFT architec-

ture are presented.

Keywords: Intelligent Tutoring Systems, Service Oriented Architectures,

Message Passing, Design Patterns, Systems Integration

1 Introduction

Intelligent tutoring systems (ITS), despite effectiveness as instructional technology,

have historically suffered from monolithic design patterns (Murray, 2003). Roschelle

and Kaput (1996) referred to tutoring systems as “application islands” for their lack of

interoperability. A recent systematic literature review by the author of this paper

found little evidence of newer tutoring systems sharing components or working to-

ward a common base of components (Nye, 2013). This lack of modular ITS services

reduces the availability of ITS software by preventing sharing of ITS components

between systems. This problem increases the cost of ITS development and imposes a

high barrier to entry for new systems.

An improvement over this design would be a component-based and service-

oriented architecture, allowing composability of ITS components. Composability

would greatly benefit ITS research, due to the high interdisciplinary skill-set needed

to build a full tutoring system. Service oriented design would allow specialists to

focus on individual components, while sharing common components. It would also

 55

greatly reduce the waste of reimplementing components that could be shared by ITS.

However, this concept is not new. Roschelle and Kaput (1996) suggested component-

based design over a decade ago, but little meaningful progress has been made toward

that end. Part of the problem was the relative novelty of tutoring systems: fewer estab-

lished examples existed and there was less consensus about the definition and func-

tionality of an ITS.

More recently, central researchers have noted that different ITS tools share many

of the same high-level behaviors (VanLehn, 2006; Woolf, 2009). This consensus

implies a common ontology for describing the high level functions of ITS compo-

nents and the meaning of information passed between them. While literature consen-

sus does not constitute a formal ontology, it indicates the possibility of a grammar for

talking about the types of information communicated between different parts of an

ITS. An argument against the feasibility of this approach might be the disconnected

nature of many subfields of ITS research, which come from different theoretical

backgrounds that are not easily integrated (Pavlik and Toth, 2010). With that said,

regardless of the underlying theory, the external behaviors (e.g., giving a hint) and

core assessments (e.g., learning gains) are quite similar. The need to maintain theoret-

ical coherence does not mean that a common ontology is infeasible, but simply indi-

cates that there are limits to its useful granularity. For example, does a user-interface

care how a hint is generated? If not, the user interface should be able to display hints

from any system capable of generating hints. By taking advantage of the distinct roles

and functions within a tutoring system, breaking down an individual tutoring system

into distinct, sharable components is possible. Moreover, a significant number of

components of the tutoring system are secondary to the tutor’s theoretical concerns

but pivotal to their operation. Machine learning algorithms, data storage interfaces,

facial recognition software, speech synthesis, linguistic analysis, graphical interfaces,

and tutoring API hooks for 3D worlds are enabling technologies for tutoring systems

(Pavlik et al., 2012; Nye et al., 2013).

AutoTutor and the Generalized Intelligent Framework for Tutoring (GIFT) are

two separate tutoring frameworks that have independently recognized the importance

of modularity and interoperability in tutoring design. AutoTutor is a highly-effective

natural language tutoring system where learners talk through domain concepts with an

animated agent (Graesser et al., 2004a). Learning gains for AutoTutor average 0.8σ

over reading static text materials on the same topic (Graesser et al., 2012). GIFT is a

service-oriented framework for integrating tutoring capabilities into static material,

such as a PowerPoint, and interactive environments, such as a simulation or a serious

game (Sottilare et al., 2012). This paper describes the process of moving AutoTutor

toward a service-oriented paradigm and the progress toward integrating AutoTutor

with GIFT.

2 Prior AutoTutor Design Patterns

The original AutoTutor design was implemented as a standalone desktop application

to teach computer literacy, which also relied on platform-dependent elements such as

the Microsoft Agent (Peter Wiemer-Hastings et al., 1998). Since an installed applica-

 56

tion made AutoTutor harder to deliver, a subsequent version reimplemented the tutor-

ing system as a web-based application (Graesser et al., 2004a). Since that time, vari-

ous tutoring systems that followed in AutoTutor’s footsteps have used a mixture of

desktop and web-based designs. While many of these systems share conceptual prin-

ciples and some share authoring tools, reuse of components and services between

these different tutoring projects has been limited. So then, while Roschelle and Kaput

(1996) spoke of “application islands,” AutoTutor and related systems have evolved as

a sort of “application archipelago” of related but independent tutoring systems. While

the principles of AutoTutor have been influential, code reuse has been limited, even in

projects that explicitly extend AutoTutor, such as AutoTutor Lite (Hu et al., 2009).

AutoTutor’s package that handles linguistic analysis is a counter-example to this

pattern. Coh-Metrix provides a suite of linguistic analysis tools, such as latent seman-

tic analysis, regular expression matching, and domain corpora (Graesser et al., 2004b).

While this tool started development nearly a decade ago, it remains under active de-

velopment and is used regularly by AutoTutor and other projects. This longevity may

be attributed to its focused scope and purpose as a toolbox for linguistic analysis.

Additionally, Coh-Metrix has the advantage that it is primarily algorithmic and algo-

rithms do not tend to change much.

By comparison, the landscape of educational computing has changed greatly over

that period: web-based applications replaced many desktop applications, then full-

featured Java web applications were replaced by lighter JavaScript and Flash clients

with server-side code written in languages such as Python and C#. AutoTutor designs

have mirrored these trends fairly closely, with the original AutoTutor written as a

desktop application (Peter Wiemer-Hastings et al., 1998), the next iteration being a

Java-based web application (Graesser et al., 2004a), and systems such as AutoTutor

Lite relying on Flash, JavaScript, and Python (Hu et al., 2009). In the process of

changing platforms and programming languages, a great deal of development work

has been lost to a cycle of re-implementation to match the needs of a changing tech-

nology landscape.

Based on this history, how could design patterns be improved to encourage reuse

and interoperability? The first principle, demonstrated by Coh-Metrix, is embodied by

the Unix philosophy: “Do one thing and do it well” (Raymond, 2003). This is funda-

mental to service-oriented design, where boundaries between components are strict.

The second principle is that delivery platforms may evolve rapidly. Just as AutoTutor

has adapted to web delivery for desktops, mobile applications are becoming an im-

portant platform. Tutoring systems need to minimize platform-dependence. Finally,

the best programming languages for different platforms vary. Moreover, existing

tutoring systems have large investments in their code base. Components need to

communicate using language-agnostic standards for different tutoring systems to in-

teroperate. Service-oriented designs, while not yet common in tutoring systems, offer

significant advantages for the next generation of ITS.

3 Sharable Knowledge Objects

AutoTutor is moving in this direction with Sharable Knowledge Objects (SKO),

which allow creating tutoring modules by composing a mixture of components: local

 57

static media, remote static media, local components, and web services. These compo-

nents are categorized in terms of two questions: 1. Is the component local? and 2. Is

the component static or interactive? While the current focus of this work is on ser-

vice-oriented web delivery, the design is also intended to support communication

between components in the same process. By using a uniform messaging pattern,

components can be developed without consideration of whether they will be used on a

local device or accessed as a remote service.

In design pattern terms, SKO’s are being developed to follow the service compo-

sition principle. In service composition, a composition of multiple services can be

considered a single service when creating a new composition of services. Service-

oriented design is largely the same concept as component-based design, except with

the added complexity that the components may be distributed across time and space

as part of a distributed network. So then, what is a SKO? A SKO declares a composi-

tion of services intended to deliver knowledge to a user, with the expected use case

being tutoring in natural language. In this context, the SKO framework is not a re-

implementation of AutoTutor but a framework for breaking AutoTutor down into

minimal components that can be composed to create tutoring modules that may or

may not rely on the traditional AutoTutor modules. These minimal components are

intended to be used as part of a service-oriented design.

Figure 1 shows an overview of the new SKO framework. The core of the new

SKO framework relies on a publish-and-subscribe architecture based entirely on pass-

ing messages that convey semantically-tagged information. These patterns significant-

ly improve the flexibility of service composition for tutoring. Publish and subscribe

frees individual components from explicit knowledge of any other services. The com-

ponent knows only its own state, the messages that it has received, and the messages

that it has transmitted. SKO is viewed as a way to split AutoTutor into separate, easi-

ly-reusable components. Secondly, SKO is intended to unify components from differ-

ent systems that have evolved from AutoTutor along divergent paths by adding their

unique functionality as services.

Exploring the details of each of these services is outside the scope of this paper.

Instead, this section will focus on how different users would interact with and benefit

from a SKO. While certain features of SKO are still under development, these exam-

ples describe how different users will interact with the completed SKO framework.

To the learner, a SKO acts as a single module of instructional content focusing on a

single lesson (e.g., learning how to complete a given math problem). For AutoTutor

Lite, a web page loads a talking head and a user-input box, often with a button to

begin a tutoring session. The SKO module does not specify any rules or functions.

Instead, it relies on components to send messages. So then, user input triggers on the

tutoring button generates a message from the user interface component. The tutoring

engine reads that message and selects tutoring dialog, which is sent off as a new mes-

sage. The animated agent and text-to-speech services read this message and cause the

talking head to speak the message to the learner. By sharing a student model in a

learning management system, multiple SKO can be combined into larger lesson units.

 58

Fig. 6. Sharable Knowledge Object Framework for AutoTutor

To an advanced developer, a SKO is a collection of services. Advanced de-

velopers design new services and create SKO templates that can be filled in by in-

structors. These designers can create a SKO template using an advanced interface,

where they would define the set of services within a SKO template and how these tie

into the user interface. However, the advanced developer is not expected to add any

domain content. Instead, they merely specify placeholders for content that is required

or allowed. Based on these placeholders, a form-based authoring wizard would be

created to allow instructors and domain experts to create specific SKO based on the

template.

To an instructor, a SKO is a series of forms where they enter their expert data and

produce working tutoring modules that they can test immediately. For example, an

advanced developer could make a SKO template for guiding a student through solv-

ing an Algebra problem. From this, a form would be generated to allow an instructor

to specify solution steps and tutoring dialogs associated with each step. An instructor

could complete this form multiple times to enter content for different problems. This

development is intended to be collaborative. By storing SKO in cloud hosts, different

authors can edit or test each module. This also greatly facilitates SKO delivery, as a

web-based SKO can be directly tested after creation.

4 Integration with GIFT

As part of the project to integrate AutoTutor with GIFT, AutoTutor Lite is being bro-

ken down into distinct services to fit into the SKO framework. Rather than focus on

the low-level details of how AutoTutor and GIFT are integrating, the high-level pro-

cess will be outlined. There is no canonical set of services that a given tutoring system

should be broken down into so that it can be integrated into GIFT. However, the gen-

eral integration process followed by AutoTutor might serve as a model for other sys-

 59

tems considering GIFT integration. This integration has five phases: 1. identifying

complementary functionality, 2. determining distinct “parts” of the AutoTutor Lite

system, 3. specifying the functionality, inputs, and outputs of each part, 4. building

web services, and 5. working with GIFT developers to add these to the GIFT distribu-

tion.

In the first phase, to identify complementary functionality between GIFT and

AutoTutor, a large table of various key features for each system was created. This

table helped identify the tools that GIFT had already implemented and those that

AutoTutor Lite could contribute. This process identified that AutoTutor’s main con-

tributions were conversational pedagogical agents, interactive tutoring, improved

student modeling, and semantic analysis tools to compare sentence similarity. In the

second phase, the full AutoTutor Lite system was examined to find distinct parts: sets

of functionality that could be meaningfully split into distinct components. GIFT is

meant to be a generalized system, so re-usable components offer more value to the

system. To find these divisions, we looked for parts that only needed and returned

small, well-formed information from other parts (e.g., the semantic service can com-

pare any two sets of words and return a similarity value). In the next phase, the func-

tions, inputs, and outputs of each part were determined. After that, we started building

web services for each part. Web services were used because they follow communica-

tion standards that mean that AutoTutor code does not need to be in the same lan-

guage as the GIFT code, nor does it need to run on the same computer. Finally, as

versions of these web services have been completed, they have been provided to

GIFT for integration into the system. This is an important part of the process, as test-

ing with GIFT has helped uncover hurdles about the scalability and limitations of

these new services. As these services are completed, they are being integrated into

releases of GIFT.

Overall, integration with GIFT dovetails with a larger movement of AutoTutor

toward a service-oriented architecture. This redesign will not only help integration

with GIFT, but also with other systems in the future. Figure 2 shows how AutoTutor

services are expected to integrate into the GIFT framework. AutoTutor services are

shown on the right side of the diagram and include the semantic analysis service (for

analyzing user input), learner’s characteristic curve (LCC) service (a simple type of

student model), tutoring service for AutoTutor Lite, a service for text-to-speech, and

an animated agent service. Some of these components are already available as web

services. Once these services are available, GIFT will be able to incorporate basic

AutoTutor Lite tutoring as part of its framework. The message-passing SKO frame-

work will then standardize how AutoTutor communicates with GIFT. Additional

services not displayed are also anticipated, such as a persistent student model, authen-

tication service, and services for wrapping assessments such as multiple choice tests.

 60

Fig. 7. Integration of AutoTutor and GIFT

5 Limitations and Future Directions

The SKO framework is intended to separate components based on the knowledge

transferred between them, represented as semantic messages. This process will greatly

improve modularity, enable AutoTutor to be implemented using a service-oriented

design, and support interoperability with GIFT. However, modularity is limited by the

information each component must share. Certain functions of the tutoring system are

more easily separated into distinct components than others. For interoperating with

additional tutoring systems, agreeing on a common set of messages may also be a

challenge.

Currently, the publish-and-subscribe version Sharable Knowledge Object frame-

work is under active development. In parallel with this work, AutoTutor Lite is being

broken down into services and consumed by GIFT using traditional API’s. Work in

this area is focused on converting the semantic analysis services and AutoTutor Lite

tutoring interpreter into services. Message-passing interfaces will then be incorpo-

rated into each service and they will be composed using the publish-and-subscribe

SKO framework.

Acknowledgements The core SKO architecture is sponsored by the Office of

Naval Research STEM Grand Challenge. Integration of AutoTutor Lite services

with GIFT is sponsored by the Army Research Lab.

 61

6 References

1. Graesser, A.C., Conley, M.W., Olney, A.: Intelligent tutoring systems. In: Harris, K.R.,

Graham, S., Urdan, T., Bus, A.G., Major, S., Swanson, H.L. (eds.) APA Educational psy-

chology handbook, Vol 3: Application to learning and teaching, pp. 451–473. APA, Wash-

ington, DC (2012)

2. Graesser, A.C., Lu, S., Jackson, G.T., Mitchell, H.H., Ventura, M., Olney, A., Louwerse,

M.M.: AutoTutor: A tutor with dialogue in natural language. Behavior Research Methods,

Instruments, and Computers 36(2), 180–192 (2004a)

3. Graesser, A.C., McNamara, D.S., Louwerse, M.M., Cai, Z.: Coh-Metrix: Analysis of text

on cohesion and language. Behavior Research Methods, Instruments, and Computers

36(2), 193–202 (May 2004b)

4. Hu, X., Cai, Z., Han, L., Craig, S.D., Wang, T., Graesser, A.C.: AutoTutor Lite. In: AIED

2009. IOS Press, Amsterdam, The Netherlands (2009)

5. Murray, T.: An overview of intelligent tutoring system authoring tools. In: Authoring

Tools for Advanced Technology Learning Environments, pp. 493– 546 (2003)

6. Nye, B.D.: ITS and the digital divide: Trends, challenges, and opportunities. In: AIED

2013 (2013)

7. Nye, B.D., Graesser, A.C., Hu, X.: Multimedia learning in intelligent tutoring systems. In:

Mayer, R.E. (ed.) Multimedia Learning (3rd Ed.). Cambridge University Press (2013)

8. Pavlik, P.I., Maass, J., Rus, V., Olney, A.M.: Facilitating co-adaptation of technology and

education through the creation of an open-source repository of interoperable code. In: ITS

2012. pp. 677–678. Springer, Berlin (2012)

9. Pavlik, P.I., Toth, J.: How to build bridges between intelligent tutoring system subfields of

research. In: Aleven, V and Kay, J and Mostow, J. (ed.) ITS 2010. LNCS, vol. 6095, pp.

103–112 (2010)

10. Peter Wiemer-Hastings, Arthur C. Graesser, Derek Harter: The foundations and architec-

ture of AutoTutor. In: Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J. (eds.) ITS

1998. LNCS, vol. 1452, pp. 334–343. Springer, Berlin (Sep 1998)

11. Raymond, E.S.: The Art of UNIX Programming. Addison-Wesley (2003)

12. Roschelle, J., Kaput, J.: Educational software architecture and systemic impact: The prom-

ise of component software. Journal of Educational Computing Research 14(3), 217–228

(1996)

13. Sottilare, R.A., Goldberg, B.S., Brawner, K.W., Holden, H.K.: A modular framework to

support the authoring and assessment of adaptive computer-based tutoring systems

(CBTS). In: I/ITSEC (2012)

14. VanLehn, K.: The behavior of tutoring systems. International Journal of Artificial Intelli-

gence in Education 16(3), 227–265 (2006)

15. Woolf, B.: Building intelligent interactive tutors: Student-centered strategies for revolu-

tionizing e-learning (2009)

Authors:

Benjamin D. Nye is a post-doctoral fellow at the University of Memphis, working on

tutoring systems architectures as part of the ONR STEM Grand Challenge. Ben re-

ceived his Ph.D. from the University of Pennsylvania and is interested in ITS archi-

tectures, educational technology for development, and cognitive agents.

