
 105

Toward a Generalized Framework for Intelligent

Teaching and Learning Systems: The Argument for a

Lightweight Multiagent Architecture

Benjamin D. Nye and Donald M. Morrison

Institute for Intelligent Systems, The University of Memphis, Memphis, Tennessee
{bdnye and dmmrrson}@memphis.edu

Abstract The U.S. Army’s Generalized Intelligent Framework for Tutoring

(GIFT) is an important step on the path toward a loosely coupled, service-

oriented system that would promote shareable modules and could underpin

multiagent architectures. However, the current version of the system may be

“heavier” than it needs to be and not ideal for new or veteran ITS developers.

We begin our critique with a discussion of general principles of multiagent ar-

chitecture and provide a simple example. We then look at the needs of ITS de-

velopers and consider features of a general-purpose framework which would

encourage message-driven, multiagent designs, sharing of services, and porting

of modules across systems. Next, we discuss features of the GIFT framework

that we believe might encourage or discourage adoption by the growing ITS

community. We end by offering three recommendations for improvement.

1 Introduction

As the term is used in a seminal paper on the subject, “Is it an agent, or just a pro-

gram?” (Franklin & Graesser, 1997), an autonomous agent is

 ..a system situated within and a part of an environment that senses that envi-

ronment and acts on it, over time, in pursuit of its own agenda and so as to affect

what it senses in the future. (p. 25)

Because a human is also an agent according to this definition, in a sense any in-

telligent tutoring system may be considered a multiagent system (MAS), designed to

support interactions between two agents—the user and the intelligent tutor. However,

recent years have seen an increasing interest in the development of systems with

multiagent architectures in the more interesting sense that functionality is decentral-

ized across different software agents. In this paradigm, each agent has its own

knowledge base (set of beliefs), and carries out different tasks, either autonomously or

at the request of other agents. Agent-oriented services build on component-based

approaches by giving each component distinct goals that it works to fulfill. As a result,

the intelligent behavior of the system as a whole emerges from the collective behavior

of the individual agents—including, of course, the human user—allowing for what

 106

has been called “autonomous cooperation” (Hülsmann, Scholz-Reiter, Freitag,

Wucisk, & De Beer, 2006; Windt, Böse, & Philipp, 2005). For recent examples of

ITSs that employ multiagent architectures, see Bittencourt et al., 2007; Chen &

Mizoguchi, 2004; El Mokhtar En-Naimi, Amami, Boukachour, Person, & Bertelle,

2012; Lavendelis & Grundspenkis, 2009; and Zouhair et al., 2012). Although these

are for the most part prototypes, they serve as useful demonstrations of the general

approach.

Multiagent architectures depend on a shared agent communication language

(ACL) such as Knowledge Query and Manipulation Language (Finin, Fritzson,

McKay, & McEntire, 1994), FIPA-ACL (O'Brien & Nicol, 1998), or JADE

(Bellifemine, Caire, Poggi, & Rimassa, 2008), all of which are based on speech act

theory (Austin, 1965; Searle, 1969). The ACL, combined with a shared ontology (se-

mantic concepts, relationships and constraints), allows the agents to exchange infor-

mation, to request the performance of a task, and, in certain cases—such as when one

agent requests access to restricted data—to deny such requests (Chaib-draa & Dignum,

2002; Kone, Shimazu, & Nakajima, 2000). A multiagent architecture therefore con-

sists of a distributed “society” of agents (Bittencourt et al., 2007), each with its own

agenda, semantically-organized knowledge base, and ability to send and receive mes-

sages. The messages take the form of speech acts, including requests, directives, as-

sertions, and so forth. Here is an example:

request

:receiver pedagogical agent

:sender NLP agent

:ontology electronics

:content (define, capacitor)

where the message is clearly identified as a request, the receiver is a pedagogical

agent, and the sender is a natural language processing (NLP) agent that translates

utterances from human language into messages the pedagogical agent can understand.

In this case the pedagogical agent can fulfill the request because it has access to an

ontology in the domain of electronics, and “knows” how to extract a definition from

it, by following an algorithm or production rule. Here’s another example:

tell

:receiver pedagogical agent

:sender emotion sensor

:ontology learner affect

:content (learner, confused)

where the receiver is again a pedagogical agent, but in this case the sender is an emo-

tion sensing agent reporting its belief that the learner is currently confused. Again, the

pedagogical agent can process the contents of the message because it has access to a

“learner affect” ontology. As a final example, consider the following:

tell

:receiver LMS agent

:sender pedagogical agent

 107

:ontology learningExperiences

:content (learner, “passed”, “helicopter simulation training”)

where in this case the pedagogical agent is the sender, and the receiver is an LMS

agent, which is being told that a certain learner has passed a training course.

These simple examples illustrate several important principles regarding the nature

and behavior of multiagent systems. First, note that all three of the software agents are

capable of autonomous action, in accordance with their own agendas, and without the

need for supervision. The pedagogical agent need not ask the emotion sensor to report

its estimate of the learner’s affective state. Rather, the emotion sensor reports its be-

liefs automatically and autonomously, as it does for any agent that has subscribed to

its services. Similarly, when it has judged that a learner has passed a course, the peda-

gogical agent informs the LMS agent, again without having to be asked, simply be-

cause the LMS agent has subscribed to its services.

These agents are “lightweight” in the sense that their power lies in their ability to

exchange messages with other agents, and to process the contents of these messages

based on ontologies that are shared with the agents they exchange messages with, but

not necessarily by all of the agents in the system. For example, the NLP agent and

pedagogical agent must both have access to the electronics ontology, and the LMS

agent and pedagogical agent must both share the ontology of learner experiences, but

neither the emotion sensing agent nor the LMS agent need to know anything about

electronics.

Note also that, assuming that the agents’ messages are sent over the Internet, all

four agents (including the learner) can be at different, arbitrary locations, whether on

servers or local devices. Also, any agent can be replaced by any other agent that per-

forms the same function and uses a compatible ACL and associated ontology. If an

emotion-sensing agent comes along that does a better job than the original, then, so

long as it reads and writes the same kinds of messages and has a compatible ontology

(e.g., terms can be translated meaningfully from one ontology to the other), the other

agents don’t need to be reconfigured in any way. Most importantly, the functionality

and value of membership in the society for all participants can increase incrementally,

perhaps even dramatically, by registering new agents with new capabilities, or by

upgrading the capabilities of the existing members.

Transforming a monolithic ITS legacy system into one with a distributed,

multiagent architecture requires two steps: breaking apart existing components into

agents and developing ACLs with ITS-tailored ontologies. By encouraging ITS de-

velopers to reorganize their systems as services, the Generalized Framework for Intel-

ligent Tutoring (GIFT) provides strong support for this process (Sottilare, Goldberg,

Brawner, & Holden, 2012).

2 Criteria for a MAS ITS Framework

Before discussing GIFT specifically, general criteria required for an effective multi-

agent ITS framework will be discussed. To understand the criteria for a development

framework, one must understand something about the stakeholders involved. In this

case, as we are focusing on the software development practices of an ITS, these

stakeholders are the research groups that develop these systems. So then, what do

 108

such groups look like? A recently completed systematic literature review of papers

including the terms “intelligent tutoring system” or “intelligent tutoring systems”

found that the majority of ITS research was split between two types: major ITS fami-

lies (those with 10 or more papers in a 4-year period) and single-publication projects

(Nye, 2013). Together, these account for over 70% of ITS research with each ac-

counting for a fairly equal share. This means two things. First, any generalized

framework should be able to accommodate major ITS projects that have a large prior

investment in tools. Second, it means that such a framework should also embrace

contributions from new developers who are often focused heavily on only a single

ITS component (e.g., linguistic analysis, assessment of learning, haptic interfaces). So

then, an ideal framework would facilitate breaking down legacy architectures into

multiagent systems and would also make it easy for one-off developers to add or re-

place a single component. The framework should also not be locked-in to a single

template for the components included in the system: not all systems can be easily

broken down into the same components. However, this walks a fine line: too much

structure hinders innovative designs, while too little structure offers little advantage

over a generic architecture (e.g., off-the-shelf service-composition frameworks).

Accommodating these different ends of the spectrum requires a lightweight and

flexible architecture. However, what do we mean by “lightweight?” There are multi-

ple meanings for a “lightweight framework” and most of them are favorable in this

context. The following features can be either lightweight or heavy: (1) hardware re-

quirements, (2) software expertise to design services, (3) software expertise to use

existing services, (4) software expertise to stand up the message-passing layer be-

tween agents, and (5) minimal working message ontology. The first requirement is

that the no special hardware or excessive computational overhead should be required

to use the framework. The computational requirements should be light, rather than

imposing heavy overhead or unnecessary inter-process or remote service calls.

Components requiring significant setup or maintenance (e.g., databases, web-servers)

should be optional or, at a minimum, streamlined with default setups that work out of

the box.

Assuming self-interest, for both types of developers (veterans and newcomers),

the cost of designing or redesigning for the framework would need to be exceeded by

the benefits. This means minimizing development overhead to create new services or

refit old services for the framework. The generalized framework would need to allow

easy wrapping or replacement of existing designs, rather than forcing developers to

maintain two parallel versions of their ITS. Researchers and developers are unlikely

to develop for a framework that requires extensive additional work to integrate with.

This means that new developers should need to know only the minimal amount of

information about the framework in order to integrate with it. There should be little to

no work to create a simple service that can interoperate with the framework and de-

fault wrappers should exist for multiple programming languages to parse raw messag-

es into native objects. Such wrappers or premade interfaces would allow even rela-

tively “heavy” communication between agents, while keeping developers from need-

ing to know these protocols.

The framework must also make it easy to take advantage of services that others

have implemented, such as through a repository of publically-available services. At

 109

minimum, it should be significantly easier to use existing services than it is to add a

module to the system. This means that the minimal use case (e.g., the “Hello world”

case) for the system should be very simple. For example, a single installed package

should make it possible to author (or copy) a single text file configuring the system to

create a basic ITS test system. Anything required to run a basic example beyond these

requirements indicates a “heavier” setup requirement to begin using the framework. If

this part of the framework is heavy, first-time ITS authors would be unlikely to use

the framework. Moreover, without such ease-of-use, established ITS developers

would be unlikely to rework their code to fit such a framework unless they were com-

pensated for these efforts. In the long term, the success and survival of a general

framework for tutoring relies on its ability to contribute back to the ITS community. If

researchers and developers benefit by reusing services in the system, they will use it.

Otherwise, it will fall into obscurity.

Standing up message passing coordination must be lightweight as well. This

means that developers should need to expend minimal effort to invoke a layer capable

of exchanging messages between services. As such, this layer should have a strong set

of defaults to handle common cases and should work out of the box. Additionally, it

should be possible to invoke this layer as part of a standalone application (message

passing in a single process) or as a remote web service. Consideration must also be

given to mobile devices, as mobile applications have specific limitations with respect

to their installation, sandboxing (access to other applications), and data transmission.

Finally, agent communication relies on specific messaging languages codified

explicitly or implicitly. Three major paradigms are possible to control this communi-

cation. The oldest and most traditional paradigm defines API function interfaces for

various types of agents or agent functionality, where “messages” are technically func-

tion calls on agents. This approach, however, is fragile and better-suited for synchro-

nous local communication than for asynchronous distributed agents. The second para-

digm is to define a centrally-defined ontology of messages, which each having an

agreed-upon meaning. The main advantage of this system is that it imposes consisten-

cy: all agents can communicate using this predefined ontology. However, agreeing

upon a specific ontology of messages is an extremely hard task in practice. This ap-

proach is “heavy” from the perspective of learning and being constrained by the on-

tology. The ultimate goal of a shared and stable ontology for ITS is valuable, but of-

fers formidable pragmatic challenges. The third paradigm allows ad-hoc ontologies

of messages. At face value, this approach seems flimsy: the ontology of messages is

not defined by the agent communication language and services can define their own

messages that may not be meaningful to other services as a result. However, this ap-

proach is actually fairly popular in research on agent communication languages (Li &

Kokar, 2013) and in recent standards bodies, such as the Tin Can API associated with

SCORM (Poltrack, Hruska, Johnson, & Haag, 2012). These approaches standardize

the format of messages (e.g., how they are structured) but not the content. Instead,

certain recommendations for tags and messages are presented but not required. This

approach is lightweight: only a small ontology is required and developers are free to

extend it.

Lightweight ad-hoc message ontologies show the most promise for an ITS

framework using agent message passing. By standardizing the message format, any

two services can syntactically understand any message passed to it. However, it al-

 110

lows developers to choose any set of messages for their agent communication lan-

guage. While in theory this could lead to a Babylon of disjointed ontologies, in prac-

tice developers will typically attempt to use established formats for messages first, if

they are available. Much like the original design of a computer keyboard or choice of

which side of the road to drive on, the starting ontology for a framework can provide

a powerful self-reinforcing norm that guides influences work. As such, it is possible

to define a core set of suggested messages that are used by the initial set of agents

designed for the framework. Additional messages could then be added to the “com-

mon core ontology” of messages when they became common practice among new

agents added to the service.

3 The GIFT Framework as a MAS ITS

Given these five characteristics, we now look at how well the GIFT architecture

matches them in its current form. First, it must be noted that the intentions of the

GIFT project are both ambitious and admirable: without the general shift toward ser-

vice-oriented design for ITSs there would be little value in discussing multiagent ITSs

that build upon service-oriented principles. However, this analysis finds that the cur-

rent implementation of GIFT appears heavier than would be ideal for the needs and

practices of ITS developers. This does not mean that GIFT is a bad architecture, simp-

ly that it is an architecture that is geared toward the needs of stakeholders other than

existing ITS developers (e.g., end-users, sponsors, etc). A great deal of emphasis is

placed on reliability and stability, which is more reflective of enterprise use rather

than rapid development. The current GIFT implementation implies a “consume and

curate” service model rather than a “collaborative repository” service model. With

help from GIFT experts, it is certainly possible to integrate tutoring services with

GIFT and deliver this tutoring effectively using the architecture. However, the archi-

tecture does not seem light enough to allow researchers to build it into their own

toolchain. This section first examines the strengths of GIFT as a generalized frame-

work for developing tutoring systems and then considers limitations that might be

addressed by future releases.

By far, the primary advantage over existing systems is its dedication to service-

oriented principles and modular design. GIFT is the first serious attempt to develop a

platform intended to inject a common suite of tutoring services into a variety of appli-

cations, including web applications and 3D games (Sottilare, Goldberg, Brawner, &

Holden, 2012). GIFT also has a strong commitment to standards-based communica-

tion protocols, supporting the Java Messaging Service (JMS) for service communica-

tion. Finally, GIFT was developed in Java so it can be efficiently interpreted on web

servers and has strong cross-platform capabilities. The hardware requirements for the

core GIFT system are also light. Modern systems should have no trouble running the

GIFT services and communication layer. Overall, GIFT appears to be well-optimized

for efficient delivery and hosting of tutoring web services.

However, the current GIFT implementation has significant limitations as a devel-

opment framework for tutoring systems. First, the current implementation does not

offer an easy road for standing up a minimal working example using the GIFT

 111

framework. Installing and setting up the core framework for use is a multi-step pro-

cess with multiple stages and some third-party dependencies. Running the framework

also requires setting up a dedicated database, which could never be considered a light

feature. While some GIFT ITS may benefit from such a database (e.g., those hosting

surveys), many prototype ITS might make do with simpler triple-stores, serial data

(e.g., delimited text files), or even no persistent data storage. Additionally, setting up

the GIFT framework does not differentiate between the core architecture meant to

handle communication between services versus the services that are bundled with the

architecture. A barebones version might remedy this limitation. Services also com-

municate using a classical API paradigm, which does not offer much flexibility com-

pared to a more explicit message-passing approach. This means that a developer

would need to inspect individual service interfaces to figure out the appropriate

accessors. Effectively, this locks developers into an ontology of how services should

act (i.e., remote API requests) rather than what they should know (e.g., generic beliefs

or knowledge). While this may seem like a subtle difference, a service that only

needs to broadcast its knowledge can sidestep designing who receives that infor-

mation and how it should be used. Finally, GIFT lacks service stubs or wrappers in

common languages (e.g., Java, Python, C#) that would make it easy to develop a ser-

vice that conforms to the framework.

Overall, deploying the GIFT architecture and attempting to develop a new service

for the system are both heavy tasks rather than lightweight ones. Without support

from the GIFT project, this would make developing for the framework quite costly.

The software expertise to design services is heavy, since there are few tools to make

this process easier. Despite using a service-oriented paradigm, the system does not

offer a suite of example services or stub service in common programming languages.

Unless developers have expertise in Java and can carefully inspect the available API,

they would not be able to integrate a new service into GIFT. The software expertise to

use existing services is also heavy. The minimal use-case example currently installs

all GIFT services and requires a database. Services are not handled using a repository

or package manager approach, but are simply installed with no streamlined method to

manage them. Since there is no way to install the service communication layer as a

standalone system, the software expertise to stand up any message-passing layer be-

tween agents is also heavy. Finally, no message ontology is available because the

system messages are invoked to carry API calls between services. While ontologies

for GIFT have been discussed, these ontologies are focused on the types of services in

the system rather than the types of messages employed (Sottilare, 2012). This forces

communication between services to revolve around the API of services rather than on

the information they are passing.

In its current form, the GIFT framework would not be well-suited for a

multiagent system ITS. It also does not support many of the aspects of such a frame-

work that would aid either of the major classes of ITS developers to base their pro-

jects on GIFT. A one-off innovation, such as a PhD candidate’s thesis project, would

likely be significantly burdened by the effort to stand up the system without help and

would need to learn the API for existing services before they could be useful. A large

group focusing on an established ITS architecture would be limited by these factors

and also by the lack of interfaces and supporting tools for the programming languages

used by their legacy projects. Most importantly, since services do not communicate

 112

using a more general agent communication language, significant effort will likely be

required to tailor communication to the specific API function interfaces. Without the

ability to specify a common message ontology for the agent communication language,

it would be impractical to develop a multiagent tutoring system using GIFT. Tradi-

tional API’s based on interfaces are not well-suited to this task, as they conflate pro-

cess names with the meanings of the data they produce. Traditional API functions are

also poorly suited for dynamic function binding and other advanced patterns that

could be used by message-passing agents.

4 Discussion and Recommendations

This analysis has explored the potential benefits and requirements related to building

an intelligent tutoring system based on multiagent architecture principles and an agent

communication language. These requirements were then compared with the GIFT

framework’s current capabilities. Our finding is that the current implementation of

GIFT is not currently well-suited to these advanced design patterns. While hardware

requirements are low, software expertise to design new GIFT services and to use the

existing GIFT services is fairly high. Additionally, message system of GIFT current-

ly reflects an API pattern with heavy reliance on knowing the other services in the

framework. This is unfortunate, as lighter publish-and-subscribe patterns have be-

come increasingly popular in the industry due to their adaptability (Jokela,

Zahemszky, Rothenberg, Arianfar, & Nikander, 2009). This said, GIFT represents a

project that is far closer to these patterns than any prior ITS project. GIFT has also

spurred discussion on patterns for service-oriented tutoring that were not previously at

the forefront of ITS design.

Based on this analysis of GIFT, some design recommendations are indicated for

future iterations. From the perspective of developing tutoring agents, the first major

recommendation is to center communication of services around explicit message

passing where agents publish their knowledge using speech acts. To support this goal,

feedback should be gathered from major ITS research groups to propose messages for

an initial ontology of recommended messages that determine the information passed

between components of the system. To add services to the GIFT framework, develop-

ers should only need to know this ontology of messages so they can use it or extend it

accordingly. Services should not need to know who their messages are received by,

only what messages they receive, what messages they produce, and when they wish to

produce a message.

The second major recommendation is the need to separate the GIFT services

from the GIFT communication layer. If GIFT is truly a general framework, it must

ultimately provide a specialized communication layer as its core. Other services

should be treated as plug-ins that can be installed or removed using a package-

management approach. This includes the core GIFT services that are bundled with the

system. Separating the services from the core architecture would greatly simply the

ability to provide a minimal working example and would make the system more flex-

ible overall. As the system itself appears to be designed with such boundaries in mind,

this should primarily be a matter of how setup packages are structured and installed.

 113

Related to this issue, a very basic installation that works “out of the box” must be

available for developers to start working with GIFT.

The third major recommendation is that GIFT should provide small suites of

utilities, wrappers, and stubs to help develop services using a variety of common lan-

guages. A generalized system must not assume that developers will convert their code

to Java or build their own communication wrappers for their native language. While

the use of remote procedure API calls has sidestepped this issue slightly, it has not

completely removed it. Additionally, a more flexible message-passing paradigm

would require such supporting tools to an even greater extent.

Finally, in the present analysis we have focused only on issues of system archi-

tecture, as is proper given that GIFT intends to serve as a general purpose framework,

not a stand-alone ITS. However, in so doing we have arguably paid insufficient atten-

tion to other important issues that GIFT approaches, such as the need for shareable

domain models, learner models, and instructional modules. As the developers of

GIFT have pointed out, legacy ITSs tend to be built as “unique, one-of-a-kind, largely

domain-dependent solutions focused on a single pedagogical strategy” (Sottilare,

Brawner, Goldberg & Holden, 2012:1). After some four decades of independent effort,

a case can be made that the time has come for a much greater degree of collaboration

and sharing among members of the ITS community, including both veterans and new-

comers. This means not just the sharing of ideas, but of working software objects and

structures. The development of a lightweight, multiagent architecture that supports

“autonomous cooperation” among communities of distributed software agents united

by an emergent common language offers a first step in the process, but it is by no

means the last.

5 References

1. Austin, J. L.: How to do things with words. Oxford University Press, New York (1965)

2. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE: A software framework for devel-

oping multi-agent applications. Lessons learned, Information and Software Technology,

50(1), 10–21 (2008)

3. Bittencourt, I. I., de Barros Costa, E., Almeida, H. D., Fonseca, B., Maia, G., Calado, I., Sil-

va, A. D.: Towards an ontology-based framework for building multiagent intelligent tutoring

systems. In: Simpósio Brasileiro de Engenharia De Software. Workshop on Software Engi-

neering for Agent-oriented Systems, III, João Pessoa, 2007. Proceedings of the Porto

Alegre, SBC, pp. 53–64 (2007)

4. Chaib-draa, B., Dignum, F.: Trends in agent communication language. Computational Intel-

ligence, 18(2), 89–101 (2002)

5. Chen, W., Mizoguchi, R.: Learner model ontology and learner model agent. Cognitive Sup-

port for Learning-Imagining the Unknown, 189–200 (2004)

6. El Mokhtar En-Naimi, A. Z., Amami, B., Boukachour, H., Person, P., Bertelle, C.: Intelli-

gent Tutoring Systems Based on the Multi-Agent Systems (ITS-MAS): The Dynamic and

Incremental Case-Based Reasoning (DICBR) Paradigm. IJCSI International Journal of

Computer Science Issues 9(6), 112–121 (2012)

 114

7. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication lan-

guage. In: Proceedings of the third international conference on Information and knowledge

management, pp. 456–463. ACM (1994, November)

8. Franklin, S., Graesser, A.: Is it an Agent, or just a Program?: A Taxonomy for Autonomous

Agents. In: Intelligent agents III agent theories, architectures, and languages, pp. 21–35.

Springer Berlin Heidelberg (1997)

9. Hülsmann, M., Scholz-Reiter, B., Freitag, M., Wucisk, C., De Beer, C.: Autonomous coop-

eration as a method to cope with complexity and dynamics?–A simulation based analyses

and measurement concept approach. In: Y. Bar-Yam (ed.), Proceedings of the International

Conference on Complex Systems (ICCS 2006), vol. 2006. Boston, MA, USA (2006)

10. Jokela, P., Zahemszky, A., Rothenberg, C., Arianfar, S., Nikander, P.: LIPSIN: Line speed

publish/subscribe inter-networking. In: ACM SIGCOMM Computer Communication Re-

view, 39(4), pp. 195–206. ACM Press (2009, August)

11. Kone, M. T., Shimazu, A., Nakajima, T.: The state of the art in agent communication lan-

guages. Knowledge and Information Systems, 2(3), 259–284 (2000)

12. Lavendelis, E., Grundspenkis, J.: Design of multi-agent based intelligent tutoring systems.

Scientific Journal of Riga Technical University. Computer Sciences, 38(38), 48–59 (2009)

13. Li, S., Kokar, M. M.: Agent Communication Language. In: Flexible Adaptation in Cognitive

Radios, pp. 37–44. Springer New York (2013)

14. Nye, B. D.: ITS and the Digital Divide: Trends, Challenges, and Opportunities. In: Artificial

Intelligence in Education (In Press).

15. O'Brien, P. D., Nicol, R. C.: FIPA–towards a standard for software agents. BT Technology

Journal, 16(3), 51–59 (1998)

16. Poltrack, J., Hruska, N., Johnson, A., Haag, J.: The Next Generation of SCORM: Innovation

for the Global Force. In: The Interservice/Industry Training, Simulation & Education Con-

ference (I/ITSEC), vol. 2012, no. 1. National Training Systems Association (2012, January)

17. Searle, J. R.: Speech acts: An essay in the philosophy of language. Cambridge University

Press (1969)

18. Sottilare, R. A.: Making a case for machine perception of trainee affect to aid learning and

performance in embedded virtual simulations. In: Proceedings of the NATO HFM-169 Re-

search Workshop on the Human Dimensions of Embedded Virtual Simulation. Orlando,

Florida (2009, October)

19. Sottilare, R. A.: Considerations in the development of an ontology for a generalized intelli-

gent framework for tutoring. In: Proceedings of the International Defense and Homeland Se-

curity Simulation Workshop (2012)

20. Sottilare, R. A., Goldberg, B. S., Brawner, K. W., Holden, H. K.: A Modular Framework to

Support the Authoring and Assessment of Adaptive Computer-Based Tutoring Systems

(CBTS). In: The Interservice/Industry Training, Simulation & Education Conference

(I/ITSEC), vol. 2012, no. 1. National Training Systems Association (2012, January)

21. Windt, K., Böse, F., Philipp, T.: Criteria and application of autonomous cooperating logistic

processes. In: Gao, J.X., Baxter, D.I., Sackett, P.J. (eds.) Proceedings of the 3rd Internation-

al Conference on Manufacturing Research. Advances in Manufacturing Technology and

Management (2005)

22. Zouhair, A., En-Naimi, E. M., Amami, B., Boukachour, H., Person, P., Bertelle, C.: Intelli-

gent tutoring systems founded on the multi-agent incremental dynamic case based reason-

ing. In: Information Science and Technology (CIST), 2012 Colloquium, pp. 74–79. IEEE

(2012, October)

 115

Authors

Benjamin D. Nye is a post-doctoral fellow at the University of Memphis, working on

tutoring systems architectures as part of the ONR STEM Grand Challenge. Ben re-

ceived his Ph.D. from the University of Pennsylvania and is interested in ITS archi-

tectures, educational technology for development, and cognitive agents.

Dr. Chip Morrison is a Faculty Affiliate at IIS. A graduate of Dartmouth, Dr. Mor-

rison holds an M.A. from the University of Hong Kong and an Ed.D. from Harvard.

His current research interests include models of human cognition and learning, and

the application of these models to conversation-based intelligent learning systems.

