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Abstract. The time is ripe for a new look at the affordances of semantic net-

works as backbone structures for knowledge representation in intelligent tutor-

ing systems (ITSs). While the semantic space approach has undeniable value, 

and will likely continue to be an essential part of solutions to the problem of 

computer-based dialogue with humans, technical advances such the automatic 

extraction of ontologies from text corpora, now encourage a vision in which in-

telligent tutoring agents have access to forms of knowledge representation that 

allow them to more fully “understand” something of what they are talking about 

with learners. These developments have important implications for key ITS 

components including the structure of expert domain models, learner models, 

instructional modules, and dialogue strategies, particularly in respect to issues 

of transportability across systems. As such, they in turn have important implica-

tions for the design of a general-purpose framework such as the U.S. Army’s 

Generalized Intelligent Framework for Tutoring (GIFT). 
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1 Introduction 

The idea that a computer might be programmed to carry on an intelligent conversation 

with a human emerged in the early days of artificial intelligence, possibly as early as 

the 1940s, but was articulated most fully in computer pioneer Alan Turing’s famous 

“Turing test” [40] in which a human is invited to carry on a typed conversation with 

both a hidden human and a machine, and has to decide which is which. A computer 

program that passes the Turing test is considered to be intelligent. Early programs that 

were claimed to have passed the test included ELIZA [43], which employed the ping-

pong conversational strategies of a Rogerian psychotherapist, thus, allowing ELIZA 

to be “free to assume the pose of knowing almost nothing of the real world” [p. 42], 

and PARRY, which was designed to mimic the behavior of a paranoid schizophrenic, 

and reportedly fooled about half the psychologists who interacted with it [11].  
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SHRDLU [44] was similar to  ELIZA and PARRY in that it was capable of en-

gaging humans in something like natural language dialog, but distinctly different in 

one important respect; it actually “understood” something about what it was talking 

about, albeit within a highly restricted domain, a virtual world consisting of a set of 

wooden blocks of different shapes and colors. SHRDLU could be instructed to pick 

up a block, put it on top of another block, and would remember which block was now 

on top.  

SCHOLAR [9, 10, 17] is thought to have been the first program to demonstrate 

the use of mixed-initiative, natural-language conversation for the specific purpose of 

instruction, and as such is widely considered the first intelligent tutoring system [e.g., 

29,14]. The program was intended to demonstrate what Carbonell, a computer scien-

tist at Bolt, Beranek and Newman (BBN), termed an “information-structure-oriented” 

(ISO) tutorial system. In contrast to “ad hoc-frame oriented” (AFO) systems of the 

time, which were organized around “frames” of specific text strings, questions, and 

answers written by a human author, SCHOLAR drew its questions and answers di-

rectly from its own knowledge base, which, in the examples referenced here, consisted 

of a set of simple facts about the geography of South America.
8
  The following tran-

script, reported by Freedman [17], gives some sense of how these interactions went: 

 
SCHOLAR: The capital of Chile is Santiago. Correct or incorrect? 

STUDENT: Correct. 

SCHOLAR: That’s right. Approximately what is the area of Brazil? 

STUDENT: 2,500,000 square miles. 

SCHOLAR: Wrong. Please indicate if the following statement is correct or incorrect:  

       The area of Paraguay is approx. 47432 square miles. 

 

While it seems unlikely that SCHOLAR fooled anyone, the program was arguably 

ahead of its time in one important respect. SCHOLAR’s knowledge of the world was 

stored in a semantic network, a data structure that featured in the work of Carbonell’s 

colleagues at BBN, Ross Quillian and Allan Collins [32, 12, 13]. Semantic networks 

do not, in themselves, provide easy solutions to the problem of machine understand-

ing of human language; however, for reasons explained below, there is good reason to 

take a second look at the various affordances they may offer to designers of general-

purpose intelligent tutoring systems (ITSs), including general-purpose frameworks 

such as GIFT. 

2 Affordances of Semantic Networks for Intelligent Tutoring 

Systems 

Researchers in artificial intelligence have explored a range of solutions to the prob-

lem of representation of conceptual knowledge, from symbolic representations to 

purely statistical ones [25,19]. Semantic networks of the type employed by 

SCHOLAR, where concepts and their relationships are represented as nodes and edg-

                                                           
8
  Carbonell was born in Uruguay. A second database was developed to pro-

vide tutoring for an online text editing system. 
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es, are arguably closest to symbolic natural language in that noun-predicate-object 

clusters (semantic triples) are incorporated and preserved. In “semantic space” mod-

els, on the other hand, relationships among concepts are represented mathematically. 

Methods include Latent Semantic Analysis (LSA) [24], Hyperspace Analogue to 

Language (HAL) [26], Latent Dirichlet Allocation (LDA) [5], Non-Latent Similarity 

(NLS) [8]; Word Association Space (WAS) [39], and Pointwise Mutual Information 

(PMI) [33].  

In general terms, these semantic space models identify the meaning of a word 

through “the company it keeps” [15:11], that is, by examining the co-occurrence of 

words across large numbers of documents and using this data to calculate statistical 

measures of semantic similarity. This approach has been used successfully in a variety 

of applications where measures of document similarity are useful, such as in text re-

trieval and automatic scoring of student essays [25]. In intelligent tutoring applica-

tions, probabilistic semantic space engines allow for the automatic creation of domain 

models as “bags of words” [20]. For example, AutoTutor employs LSA measures of 

text similarity to evaluate the extent to which a learner’s answers to its questions cor-

respond to scripted correct answers consisting of unordered sets of expected words 

and phrases [42]. 

When applied to the problem of knowledge representation in intelligent learning 

systems, the selection of one approach over another results in important trade-offs. 

Although the choice of probabilistic semantic models in intelligent tutoring systems 

avoids the time-consuming tasks involved in  creating more granular, linguistically 

encoded models of domain knowledge, it also imposes significant constraints on the 

functionality of the system, including limits on its ability to engage in true dialog with 

a human learner, which in turn constrains both its ability to represent what is in the 

learner’s head and  the nature and quality of the apparent (virtual) social relationship 

between the agent and the learner. 

Most importantly, an agent that relies exclusively on a probabilistic semantic mod-

el cannot generate substantive questions of its own, nor can it respond to a learner’s 

questions. Rather, because its knowledge is enclosed in a “black box” [1] it is limited 

to asking scripted questions with scripted answers, then evaluating the extent to which 

the learner’s answers conform. As a result, it naturally assumes the role of a tradition-

al pedagogue, a teacher who looks only for correct answers to questions.  

2.1 Some Recent Developments 

In spite of these limitations, in recent years the use of probabilistic, black box seman-

tic models has been favored over semantic network representations, owing, as noted 

above, largely to the difficulties inherent in laborious manual authoring of useful do-

main models based on semantic networks [35]. However, over the past decade or so 

this situation has begun to change in important ways. While the extraction of proposi-

tions (semantic triples) from connected text—the building blocks of semantic network 

solutions—remains as one of the hardest problems in artificial intelligence and ma-

chine learning [35,19], considerable progress has been made [e.g., 2, 31, 30, 6, 4].  
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For example, Berland & Charniak [2] developed an algorithm which, given a 

seed word such as car, and a large corpus of text to mine, identified the following as 

possible fillers for the slot ___ is-part-of ____[car]: headlight, windshield, ignition, 

shifter, dashboard, radiator, brake, tailpipe, etc. Similarly, Pantel & Ravichandran 

[31] describe an algorithm for automatically discovering semantic classes in large 

databases, labeling them, then relating instances to classes in the form X is-a Y. For 

example, for the instances Olympia Snowe, Susan Collins, and James Jeffords, the 

algorithm settled on republican, senator, chairman, supporter, and conservative as 

possible labels, meaning that it could form the basis for assertions such “Olympia 

Snowe is a republican.”   

Other relevant work includes the corpus of annotated propositional representa-

tions in PropBank [30], and AutoProp [6] a tool that has been designed to 

“propositionalize” texts that have already been reduced to clauses. More recently, 

members of the DBpedia project [4] have been working to extract semantic triples 

from Wikipedia itself. As of September 2011, the DBpedia dataset described more 

than 3.64 million “things,” with consistent ontologies for some 416,000 persons, 

526,000 places, 106,000 music albums, 60,000 films, 17,500 video games, 169,000 

organizations, 183,000 species and 5,400 diseases. A similar project, Freebase, allows 

users to edit ontologies extracted from Wikipedia [27], while YAGO2 [21] is a 

knowledge base of similar size (nearly 10 million entities and events, as well as 80 

million facts representing general world knowledge) that includes the dimensions of 

space and time in its ontologies. All of these projects employ a form of semantic net-

work to represent conceptual knowledge. 

Given the labor required in building formal representations of procedural 

knowledge by hand, it is natural to consider the possibility of automatic extraction of 

production rules from text corpora, using machine learning (data mining) methods 

similar to those for extracting declarative knowledge. As it turns out, work on this 

problem is already producing promising results. For example, Schumacher, Minor, 

Walter, & Bergmann [36] have compared two methods of extracting formal “work-

flow representations” of cooking recipes from the Web, finding that the frame-based 

SUNDANCE system [34] gives superior results, as rated by human experts. Song et al. 

[37] have tested a method for extracting procedural knowledge from PubMed ab-

stracts. Jung, Ryu, Kim, & Myaeng [23] describe an approach to automatically con-

structing what they call “situation ontologies” by mining sets of how-to instructions 

from the large-scale web resources eHow (www.eHow.com) and wikiHow 

(www.wikihow.com). 

While the implications of this work for the development of intelligent learning 

systems remain unclear, the possibilities inherent in semantic data mining of both 

declarative and procedural knowledge clearly deserve attention. It seems the most 

likely scenario is that future systems will employ different knowledge representations 

for different purposes. For example, Rus [35] describes the use of a hybrid solution, 

Latent Semantic Logic Form (LS-LF), for use in the extraction of expert knowledge 

bases from corpora such as textbooks. Also, while the use of semantic networks in 

particular domains may allow an agent to engage in something approaching intelligent 

conversation regarding these domains, the agent may still need a way of coping with 

user utterances that it cannot handle in any other way, much as humans make educat-

ed, intuitive guesses about the meaning of ambiguous or confusing utterances. For 
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example, Hu & Martindale [22] discuss the use of a semantic vector model as a means 

of evaluating the relevance and novelty of a given utterance in a series of discourse 

moves, which is clearly useful in the event that an agent has no other way of evaluat-

ing a user’s utterance.  

2.2 Implications for General-purpose Tutoring Systems 

The field of intelligent tutoring has come a long way in the four decades that separate 

us from the time of SCHOLAR. A recent estimate [28], identified some 370 ITS “ar-

chitecture families,” or which 12 were considered “major architectures,” defined as 

those with at least ten scholarly papers published between the years 2009-2012. How-

ever, in spite of these efforts (representing investments of untold millions of taxpayer 

dollars), the field has not yet had much of an impact on educational practice. The 

study cited above, for example, estimated less than 1 million users worldwide. To put 

this in perspective, a recent estimate puts the number of school-age children in the 

U.S. at 70 million, and in the world at over 1 billion [7].  

Important barriers to more widespread adoption and impact of ITSs include two im-

portant and related problems. One is the high cost of authoring domain-specific sys-

tems, recently estimated to require between 24 and 220 hours of development time for 

one hour of instruction, with a mean of around 100 hours [16]. A second problem is 

that ITSs tend to be constructed as “unique, one-of-a-kind, largely domain-dependent 

solutions focused on a single pedagogical strategy” [38]. Among other things, because 

components are not shareable, this means that returns on investment in particular 

systems is limited to whatever impact those particular systems might on their own, 

like stones tossed into a pond that make no ripples. 

The use of semantic networks to represent expert domain knowledge might go far to 

reduce authoring costs and could also lead to portable expert models, and, by exten-

sion, learner models. As we have seen, a considerable amount of work is already go-

ing on in the semi-automatic (i.e., supervised) extraction of domain ontologies from 

text corpora. What this means, conceptually, is that the ontology of a particular do-

main becomes not just a single person (or team’s) unique description of the domain of 

interest, but a structure that emerges from the way the domain is represented linguisti-

cally in some very large number of texts, written by different authors. While it is true 

that supervised extraction introduces and reflected the biases of the human supervi-

sors, ontologies constructed in this way arguably have much more in common than 

those constructed entirely from scratch for specific purposes. The ability to extract 

domain models directly from text corpora also, of course, speeds the development 

process, and, to the extent that expert models  constructed in this way are architecture-

independent, they are more likely to acquire general currency than dedicated models 

developed for the particular purposes of specific systems. Finally, to the extent that 

learner models, or at least some portion of them, are seen as overlays of expert models 

(i.e., flawed or incomplete versions of expert maps), these may also become trans-

portable across systems, and because these models can be expressed mathematically, 

as graphs, it becomes possible to estimate differences between learner models and 

expert models computationally.  
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3 Conclusion 

While the specific affordances of semantic networks in respect to problems of 

knowledge representation, learner modeling, and conversational fluency of intelligent 

agents have yet to be fully explored, and while such structures do not by any means 

solve fundamental problems, the future is indeed promising. As argued here, the 

movement to structure the vast store of human knowledge on the Web in the form of 

explicit ontologies, as evidenced in the Semantic Web project and its many associated 

technologies, is well underway, and has undeniable momentum. The future of human 

knowledge representation almost certainly lies in this direction, with some obvious 

potential benefits to ITS developers. For example, to the extent that expert domain 

models are conceived as populated ontologies, then it becomes easier to conceive of 

portable domain models, and, to the extent that a learner models are also conceived of 

as populated ontologies, then learner models can also be portable across systems. 

Interestingly, the underpinnings of the Semantic Web originated in the work of Ross 

Quillian, the same work that SCHOLAR, the ancestor of modern ITSs, was based on. 

Now that the technology is beginning to catch up with that initial vision, the time has 

arguably come to take another look at the affordances of semantic networks. In par-

ticular, the designers of systems such as GIFT, which seek to provide a general-

purpose framework for development of ITS systems of the future, are advised to look 

carefully at the specific implications of the reemergence and increasing importance of 

semantic networks as general-purpose structures for representing the knowledge of 

both experts and learners, and as the basis for bringing these structures into alignment 

through natural processes of teaching and learning. 
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