
 137

 XNAgent: Authoring Embodied Conversational Agents

for Tutor-User Interfaces

Andrew M. Olney, Patrick Hays, & Whitney L. Cade

Institute for Intelligent Systems & Department of Psychology

365 Innovation Drive

Memphis, Tennessee 38152

{aolney,dphays,wlcade}@memphis.edu

http://iis.memphis.edu

Abstract. Embodied conversational agents are virtual characters that engage

users in conversation with appropriate speech, gesture, and facial expression.

The high cost of developing embodied conversational agents has led to a recent

increase in open source agent platforms. In this paper, we present XNAgent, an

open source platform for embodied conversational agents based on the XNA

Framework. By leveraging the high-level class structure of the XNA Frame-

work, XNAgent provides a compact implementation that is suitable both as a

starting point for the development of a more advanced system and as a teaching

tool for AI curricula. In this paper we describe how we created an embodied

conversational agent in XNA using skeletal and morph animation, motion cap-

ture, and event-driven animation and how this process can facilitate the use of

embodied conversational agents in the Generalized Intelligent Framework for

Tutoring.

Keywords: XNA, ECA, GIFT, agent, HCI, conversation, interface, tutoring

1 Introduction

It is well known that we unconsciously and automatically interact with computers

using social norms [1]. Embodied conversational agents (ECAs) capitalize on this

phenomena as characters with human-like communicative capabilities. By doing so,

ECAs leverage pointing, gestures, facial expressions, and voice to create a richer hu-

man-computer interface. As a result ECAs have been used in diverse AI applications,

including education [2], where they form an important part of the tutor-user interface.

ECAs combine research in discourse, computer animation, speech synthesis, and

emotion. Consequently ECA systems tend to be costly to build [3] As a result, in the

past decade, a great deal of tutoring research has used closed-source platforms such as

Microsoft Agent [4], adapted commercial/open source game engines [5], or low-level

libraries like OpenGL [6]. These approaches present different types of challenges.

Game engines usually have support for basic character animation but lack native lip-

sync and fine animation control, and game engines come with a complex API with

 138

many features that may not be relevant for education research, e.g. bullet/explosion

physics or first-person shooter perspective. Conversely low-level libraries have no

similar irrelevant complexity but require designing the AI from the ground up. Given

the challenges of both the game-engine and low-level routes, recent researchers have

released open source platforms for ECA development [7, 8, 9, 10] based on either

game engines or low-level libraries.

The design and development challenges described above for ECAs are manifest

in the development of computer-based training environments and have recently been

addressed by the Generalized Intelligent Framework for Tutoring Framework [11].

One of the design goals of the Generalized Intelligent Framework for Tutoring

(GIFT) is to provide authoring capability for the creation of computer-based training

components. One such component is the tutor-user interface, which in modern intelli-

gent tutoring systems often uses an ECA. Accordingly, in this paper we present an

open source solution to ECA development that meets the design goals of the GIFT

Framework. Rather than use a game engine with its inherent complexities or a low-

level library that requires a large investment of initial development, we present an

ECA platform that combines the best of these using Microsoft’s XNA framework [12].

By providing high-level libraries, a runtime environment for managed code (C#), free

development tools, and extensive support in the form of code samples, official forums,

and commercially available books at all levels, the XNA framework provides a solid

foundation for ECA development. In this the following sections we describe how we

implement the face and body of XNAgent using skeletal and morph animation via

vertex shaders, motion capture, and event-driven animation. At each step the content

creation pipeline is outlined to illustrate how XNAgent may be adapted to new AI

contexts. We conclude by considering the design goals of the GIFT Framework and

how they are addressed by XNAgent.

2 Face

The face of an ECA can be considered independently of the body in terms of speech,

emotions, and facial expressions. The classic reference for facial expression is the

Facial Action Coding System, which uses the anatomy of the face, primarily in terms

of muscle groups, to define facial action units [13]. While it is certainly possible to

create “virtual muscles” and animate with them, a number of other real-time ap-

proaches exist which give satisfactory results [14]. Perhaps the most well-known and

widely used facial animation approach is morph target animation.

In morph target animation, a version of the head is created for each desired ex-

pression. For example, one version for smiling, frowning, or a “w” lip shape. Each of

these shapes becomes a target for interpolation, a morph target. If two morph channels

exist, e.g. a neutral face and a smiling face, the interpolation between them can be

described by the distance between matching vertices across the two faces. In practice,

this distance is often normalized as a weight such that a weight of 1 would push the

neutral face all the way to happy. The advantage to using morph target animations is

that each morph target can be carefully crafted to the correct expression, and then

mixtures of morph targets can be used to create huge number of intermediate expres-

sions, e.g. smiling while talking and blinking.

 139

FaceGen Modeler, by Singular Inversions, is a popular software package for cre-

ating 3D faces that has been used in psychological research on gaze, facial expression,

and attractiveness [15]. FaceGen Modeler contains a statistical model of the human

face with approximately one hundred and fifty parameters to vary face shape and

texture. Using FaceGen Modeler, a virtual infinite variety of human faces can be cre-

ated by manipulating these parameters, and for a given custom face FaceGen Modeler

can output thirty-nine morph targets including seven emotions and sixteen visemes

(the visual correlates of phonemes used for lip-sync). XNAgent uses FaceGen Model-

er output, so a correspondingly large variety of faces can be implemented in XNAgent.

Since XNA does not provide native support for morph targets, we have imple-

mented them using vertex shaders. A shader is a program that runs directly on the

graphics card. In XNA, shaders are written in High Level Shader Language that re-

sembles the C programming language, and the shaders compile side by side with C#.

To implement morph target animation, XNAgent’s vertex shaders operate on each

vertex on face and perform bilinear interpolation (interpolation on two axes). Thus

there are three versions of the XNAgent head loaded at any particular time: a neutral

head that was skinned with the body (see Section 3), a viseme head for the current

viseme, and an emotion/expression head for the current emotion. It is possible to have

more channels for additional morphing, and these are easily added if necessary.

XNAgent utilizes a dynamic, event-driven animation system for facial expres-

sions. Three categories of facial animation are currently supported, including blinking,

lip-sync via visemes, and facial expressions. Blinking is implemented using a model

of blinking behavior in humans [16] in its own thread. Because the most salient fea-

ture of blinking is perhaps that the eyelids cover the eyes, XNAgent imitates blinking

through texture animation rather than morph target animation. In texture animation

the texture of the face is switched quickly with another version of the face. In the case

of blinking the two textures are nearly identical except the blink texture’s eyes are

colored to match the surrounding skin, thus simulating closed eyes.

Lip-syncing through morph target animation is controlled by the agent’s voice, i.e.

a text-to-speech synthesizer. Some speech synthesizers generate lip-sync information

during synthesis by producing visemes, the visual correlates of phonemes. Each

viseme unit typically includes the current viseme and the viseme’s duration. In a

viseme event handler, XNAgent sets the current viseme morph target and its duration

using these values. In the Update() loop, the viseme’s time left is decremented by the

elapsed time. In the Draw() loop, the viseme morph is expressed with a weight based

on the remaining time left. Thus the lip sync remains true independently of the

framerate speed of the computer running XNAgent and linearly interpolates between

visemes.

Morphing expressions like emotions require a more flexible approach than

viseme animations. For example, a smile can be a slow smile that peaks at a medium

value, or a rapid smile that peaks at an extreme value. To capture these intuitions, our

expression morph animation has parameters for rise, sustain, and decay times, with a

maximum weight parameters that specifies what the maximal morph will be during

the sustain phase. Currently these three phases are interpolated linearly.

 140

3 Body

Non-facial movements, or gestures, appear to greatly differ from the face greatly in

terms of communicative complexity, forming sign language in the extreme case. Our

approach is therefore to model the entire body as a collection of joints, such that ma-

nipulating the values of these joints will cause the body to move. This common ap-

proach to animation is often called skeletal, or skinned animation [17].

In skinned animation a character “shell” is first created that represents a static

character. An underlying skeletal structure is created for the shell with appropriate

placement of joints and placed inside the shell. The shell and skeleton are then bound

together such that a transformation on the underlying skeleton is mirrored in the shell;

this result is known as a rigged model. Once a model is rigged, it may be animated by

manipulating the skeleton and saving the resulting joint position data. Every saved

movement creates a keyframe, and when these keyframes are played back at a rapid

rate (e.g. 30 fps) the rigged model will carry out the animated action. Alternatively

motion capture technologies can extrapolate joint position data from naturalistic hu-

man movement. In this case the resulting animation is still a keyframe animation.

In order to create a body for XNAgent, we used several software packages to

form what is commonly known as a 3D authoring pipeline. At each stage of the pipe-

line there are multiple available techniques and software packages, making navigating

this space a complex process. In brief, there are three major phases to creating a body

with gestures, namely model creation, rigging, and animation. Model creation can be

extremely difficult for non-artists without initial materials to work from. To facilitate

the process of body creation, we used the face model generated by FaceGen Modeler

together with the FaceGen Exporter to export the face model to the Daz Studio soft-

ware package. This process seamlessly combines the face and body models and auto-

rigs the body with a skeleton. Daz Studio allows for comparable customizations of the

body (gender, size, shape) as FaceGen does for the face. In addition, Daz Studio

comes with a variety clothing and accessory packs that can be applied to the body in a

drag and drop manner. In effect, several hundred hours of 3D authoring can be ac-

complished by a novice in less than an hour.

In order to create realistic animations, we primarily used the low-cost iPi Desktop

Motion Capture system from iPi Soft. The simplest camera configuration for this

system uses the Microsoft Kinect camera. Once the motion capture has been recorded

by iPi, it can be merged and edited using AutoDesk 3DS Max, where ultimately it is

exported for XNA using the kw X-port plugin. A complete description of this process

is beyond the space limitations of the current discussion, but a full tutorial, including

software installer and step by step slides, is available from the corresponding author’s

website
9
.

In order to achieve similar functionality to interpolating visemes, skinned anima-

tion clips require mechanisms for blending and mixing. Simply put, blending is end to

end interpolation, like a DJ fading from one song to the next. Mixing breaks the ani-

mation into components and plays them simultaneously, like a DJ taking the beat

from one song, vocals from another, and playing them together. Blending and mixing

can be done simultaneously if clips are playing in different regions of the skeleton

9
 http://andrewmolney.name

 141

while being blended with other clips in those same regions. XNAgent uses the Com-

munist Animation Library [18] to perform blending and mixing. Currently in

XNAgent the skeleton is divided into center, left side, right side, and head regions.

These regions are used to represent the following tracks: idle, both arms, left arm,

right arm, and head. Animations are assigned to tracks at design time and then played

with weights according to what other animations are currently playing in their track.

For example, the idle animation consists of motion capture of a person standing and

slightly swaying. Some degree of the idle animation is always playing in all the tracks,

but when other animations are played in those tracks they are played with a higher

weight. Thus lower priority animations like idle will be superseded by higher priority

animations in a relatively simple manner.

Animations are triggered in XNAgent by inserting animation tags into the text to

speak, either dynamically or manually. When the TTS encounters the tag, it schedules

the animation immediately. The mixing properties of the animation are specified in

the tag to create new versions of animations, similar to morphing. For example, since

the idle animation is always playing, it can be given more weight relative to an arm

gesture to create a “beat” gesture [19]. Thus a normal full arm extension animation

can be dampened arbitrarily using weighting, bringing the arm closer to the body with

increasing weight. In addition, the speed of the animation clip can be modulated to

control for the appropriate speed of the beat gesture, since beat gestures are often

quick and fluid.

Although XNA has some level of built in support for skinned animations, com-

bining skinned animations with morph target animations requires a custom vertex

shader. In XNAgent there are two vertex shaders that operate separately on the head

and body of the agent. The head shader applies morphing to calculate a new vertex

position and then applies the transformation defined by skinning. This allows the head

to be applying morph targets (e.g. speaking) while also nodding or shaking. The se-

cond vertex shader focuses strictly on the body and so does not require morphing.

4 Working with XNAgent

One of the most important aspects of any ECA is its ability to integrate into an AI

application. Game engines typically don’t support integration well and rather present

a fullscreen interface for the game, as does XNA. Although text input and other user

interface functions can be carried out inside XNA, they are difficult because XNA

doesn’t provide the native support commonly expected by GUI designers. For exam-

ple, key presses in XNA are interpreted based on the framerate of the game, meaning

that a normal keystroke will produce a double or triple production of letters or num-

bers. To address the integration issue, XNAgent provides an XNA environment inside

a Windows form control. That means that adding XNAgent to an interface is as sim-

ple as selecting the XNAgent control from the Visual Studio toolbox and dropping it

on a form. The primary method to call on the control is Speak(), which processes both

text to speech and animation tags as described in previous sections. In summary, the

process for using XNAgent is (1) create a 3D model using the authoring pipeline de-

scribed above (2) import the model to XNAgent (3) call XNAgent from your applica-

tion using the Speak() method. We have previously integrated XNAgent into the Guru

 142

intelligent tutoring system shown in Figure 1 and conducted a number of experiments

[20].

Figure 1: XNAgent running in the Guru intelligent tutoring system.

We argue that XNAgent fulfills many if not all of the design goals for GIFT au-

thoring components [11]. XNAgent decreases the effort of authoring ECAs through

its 3D authoring pipeline. Similarly it decreases the skills required for authoring

ECAs by making authoring a drag-and-drop process, rather than a pixel-by-pixel pro-

cess. XNAgent’s animation framework allows authors to organize their knowledge

about pedagogical animations and helps structure pedagogical animations. Perhaps

most importantly in a research environment, XNAgent supports rapid prototyping of

ECAs with different properties (gender, size, or clothing) for different pedagogical

roles (teacher, mentor, or peer). XNAgent supports standards for easy integration with

other software as a Windows form control. By cleanly separating domain-independent

code from specific 3D model and animation content, XNAgent promotes reuse. Final-

ly XNAgent leverages open source solutions. Not only is XNAgent open source, but

every element in its 3D authoring pipeline either has a freeware version or is free for

academic use. Moreover, the recent version of MonoGame, an open source imple-

mentation of XNA, promises to make XNAgent cross platform to desktop and mobile

devices beyond the Windows desktop.

 143

5 Conclusion

In this paper we have described the XNAgent platform for developing embodied con-

versational agents. Unlike existing ECA platforms that require either low level

graphics programming or the use of complex game engines, XNAgent is written using

a high level framework (XNA). Our contribution to this research area is in showing

how to implement appropriate speech, gesture, and facial expression using skeletal

and morph animation via vertex shaders, motion capture, and event-driven animation.

We argue that the XNAgent platform fulfills most of the authoring design goals for

GIFT with respect to authoring ECAs. It is our hope that XNAgent will be used by

adopters of GIFT to facilitate creation of dialogue based tutoring systems that use

ECAs.

6 Acknowledgments

The research reported here was supported by the Institute of Education Sciences, U.S.

Department of Education, through Grant R305A080594 and by the National Science

Foundation, through Grant BCS-0826825, to the University of Memphis. The opin-

ions expressed are those of the authors and do not represent views of the Institute or

the U.S. Department of Education or the National Science Foundation.

7 References

1. Nass, C., Steuer, J., Tauber, E.R.: Computers are social actors. In: Proceedings of the

SIGCHI conference on Human factors in computing systems: celebrating interdependence.

CHI ’94, New York, NY, ACM (1994) 72–78

2. Dunsworth, Q., Atkinson, R.K.: Fostering multimedia learning of science: Exploring the

role of an animated agent’s image. Computers & Education 49(3) (November 2007) 677–

690

3. Heloir, A., Kipp, M.: Real-time animation of interactive agents: Specification and realiza-

tion. Applied Artificial Intelligence 24 (July 2010) 510–529

4. Graesser, A.C., Lu, S., Jackson, G.T., Mitchell, H., Ventura, M., Olney, A., Louwerse,

M.M.: AutoTutor: A tutor with dialogue in natural language. Behavioral Research Meth-

ods, Instruments, and Computers 36 (2004) 180–193

5. Rowe, J.P., Mott, B.W., W. McQuiggan, S.W., Robison, J.L., Lee, S., Lester, J.C.:

CRYSTAL ISLAND: A Narrative-Centered learning environment for eighth grade micro-

biology. In: Workshops Proceedings Volume 3: Intelligent Educational Games, Brighton,

UK (July 2009) 11–20

6. Lester, J.C., Voerman, J.L., Towns, S.G., Callaway, C.B.: Deictic believability: Coordinat-

ing gesture, locomotion, and speech in lifelike pedagogical agents. Applied Artificial Intel-

ligence 13 (1999) 383–414

7. Damian, I., Endrass, B., Bee, N., André, E.: A software framework for individualized

agent behavior. In: Proceedings of the 10th international conference on Intelligent virtual

agents. IVA’11, Berlin, Heidelberg, Springer-Verlag (2011) 437–438

 144

8. Heloir, A., Kipp, M.: Embr — a realtime animation engine for interactive embodied

agents. In: Proceedings of the 9th International Conference on Intelligent Virtual Agents.

IVA ’09, Berlin, Heidelberg, Springer-Verlag (2009) 393–404

9. de Rosis, F., Pelachaud, C., Poggi, I., Carofiglio, V., De Carolis, B.: From Greta’s mind to

her face: modelling the dynamics of affective states in a conversational embodied agent.

International Journal of Human-Computer Studies 59(1-2) (2003) 81–118

10. Thiebaux, M., Marsella, S., Marshall, A.N., Kallmann, M.: SmartBody: behavior realiza-

tion for embodied conversational agents. In: Proceedings of the 7th international joint con-

ference on Autonomous agents and multiagent systems - Volume 1, Estoril, Portugal, In-

ternational Foundation for Autonomous Agents and Multiagent Systems (2008) 151–158

11. Sottilare, R.A., Brawner, K.W., Goldberg, B.S., Holden, H.K.: The generalized intelligent

framework for tutoring (GIFT). Technical report, U.S. Army Research Laboratory â” Hu-

man Research & Engineering Directorate (ARL-HRED) (October 2012)

12. Cawood, S., McGee, P.: Microsoft XNA game studio creator’s guide. McGraw-Hill Prof

Med/Tech (2009)

13. Ekman, P., Rosenberg, E.: What the face reveals: basic and applied studies of spontaneous

expression using the facial action coding system FACS. Series in affective science. Oxford

University Press (1997)

14. Noh, J., Neumann, U.: A survey of facial modeling and animation techniques. Technical

Report 99-705, University of Southern California (1998)

15. N’Diaye, K., Sander, D., Vuilleumier, P.: Self-relevance processing in the human amygda-

la: gaze direction, facial expression, and emotion intensity. Emotion 9(6) (December 2009)

798–806

16. Pelachaud, C., Badler, N., Steedman, M.: Generating facial expressions for speech. Cogni-

tive Science 20 (1996) 1–46

17. Gregory, J.: Game engine architecture. A K Peters Series. A K Peters (2009)

18. Alexandru-Cristian, P.: Communist animation library for xna 4.0 (December 2010)

19. McNeill, D.: Hand and mind: what gestures reveal about thought. University of Chicago

Press (1992)

20. Olney, A., D’Mello, S., Person, N., Cade, W., Hays, P., Williams, C., Lehman, B.,

Graesser, A.: Guru: A computer tutor that models expert human tutors. In Cerri, S.,

Clancey, W., Papadourakis, G., Panourgia, K., eds.: Intelligent Tutoring Systems. Volume

7315 of Lecture Notes in Computer Science., Springer Berlin / Heidelberg (2012) 256–261

Authors

Andrew Olney is presently an assistant professor in the Department of Psychology at

the University of Memphis and the associate director of the Institute for Intelligent

Systems. His primary research interests are in natural language interfaces. Specific

interests include vector space models, dialogue systems, grammar induction, robotics,

and intelligent tutoring systems.

Patrick Hays is a research assistant at the University of Memphis. He is a recent

graduate with a BA in Psychology. Patrick's work focuses on 3D animation, 3D mod-

eling, graphic arts, and human-computer interaction.

 145

Whitney Cade is a graduate student in the Department of Psychology at the Universi-

ty of Memphis. Her research interests include intelligent tutoring systems, expert

tutors, pedagogical strategies, 3D agents, and machine learning.

