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ABSTRACT

In this paper we study one feedback process wisicddapted to
ill-defined domains. Indeed, this process use stlapects than
expected solutions to propose a feedback. The &édtrocess is
based in a set of didactical aspects. In particutee feedback
targets the control element of knowledge, i.e.khewledge that
allows to validate one step in the problem solvmgcess. The
paper describes the feedback process and its ireplation in

the framework of one TEL system in orthopedic styge
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1. INTRODUCTION

In ill defined domain one of the challenges is tntinue to
develop new tutoring strategies and seek out waysombme
existing strategies [13]. This challenge still op@nparticular
when the domain has multiple and controversial tsmis or ill-
defined task structures [4]. In this framework ougsearch
question is how to design a tutoring feedback systdich is not
only based in defined solutions but in the knowarebteristics of
knowledge and learning situations.

We study one kind of feedback which is adaptedepistemic. It
is adapted because it takes into account the thaiidifferences
in relation to incoming knowledge and skills amatgdents [18].
It is epistemic because it is specific to the piet&nowledge at
stake and its learning characteristics. Compute epistemic
feedback involves knowledge from the learner, tkarring
situation and the learning domain [11].

We design a process to produce adapted episteraitbdeks
which includes one decisional model based in ao&elidactical
hypothesis. The process was implemented and téstde case
of orthopedic surgery.

The research discussed in this paper is developedhé

framework of the TELEOS platform [9] which is a
Technological Enhanced Learning environment fohapaedic
surgery. This platform proposes a set of resouimethe student
(haptic simulator, online course, clinical caseatlase) and a
diagnosis system able to analyse the student ptiodscand

make a knowledge diagnosis based in identifiedrotst
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Based in the model presented in this paper we afib@back
system in the TELEOS environment. This implemeatati
proposes a formative feedback which is delayedat.¢he end of
the exercise in the simulator. The model is preskrin the
section 4 and the TELEOS example is presenteckisdhtion 5.

2. RELATED WORKS

In some domains (like percutaneous screw fixations
orthopaedic surgery) tHenowledgeobtained by experience plays
an important role for both the expert teacher amel movice
learner during a problem-solving process. This Kkiod
knowledge, often tacit, refers to !work-relatedagtical know-
how that typically is acquired informally as a riésaf on-the-job
experience, as opposed to formal instruction." [22is kind of
knowledge is pragmatic, obtained by experience. ddeoer a
skillful learner, even a domain expert, often malssyeral
attempts before arriving at an acceptable solutibe: person
makes an error and then tries to correct the eseweral times.
Also there are multiple solutions and because spaits of the
knowledge are tacit the strategic to a good saluéice unclear.
This kind of problem is ill structured. Indeed, #drstructured
problem as one that is complex, with indefinitertstg points,
multiple and arguable solutions, or unclear stiatedor finding
solutions [19].

Several works address the problem to model ill robefi
knowledge and build feedback from these models] @b8 [20]).
Based in this previous works, Fournier-Vigier et [&] pointed
the design feedback difficulties in ill defined daims, in
particular the difficulties to provide domain knadge in ill
structure problems. All studied paradigms (cogamitivask
analysis, constraint-based modeling, expert systatg mining
algorithms) propose to describe task models usiiftgrent
techniques. The task models could be complete drapan all
cases the model is used to offer assistance tdetreer (ibid.
234). Most of the feedback systems in these appesatry to
guide the student to the intended solution, evehig described
partially and beside most of the feedback are gnahted.

We aim to study a model of feedback that is noy drdsed in
calculated solutions. We explore another feedbaakagigm
which is centered in the validation process moaa tthe attended
solution. In others words the feedback will be tedato the
characteristics of the controls brought into playring the
problem solving process: it was brought into playthe right
moment? It was valid or invalid? What is its nat@re

We would like to investigate how to produce an aedp
epistemic feedback that takes into account thesewleuge
characteristics and is able to handle the unceéyt@ioming from



the diagnosis results. Indeed, like more and matelligent
tutoring systems, we chose to use Bayesian network dior o
diagnostic knowledge.

From adaptive point of view, Shute & Zapata-RivEi@] propose

a four-process adaptive cycle connecting the learte
appropriate educational materials and resources.fdhigprocess
cycle include (ibid. p 9)apture of the information about the
learner,analyzethe information in relation to the learner model,
selectthe information for a particular learner amsentspecific
content to the student.

In relation to the selection step of the feedbdeky systems
propose a computer model which describes the decisi a
pedagogical feedback following an uncertain diagnddayo and
Metrovic [14] introduce the idea of PedagogicaligitSelection
(PAS) and identified three general approaches to p@duem in
intelligent tutoring systems that use Bayesian peta:

alternative strategies, diagnostic strategies,deuilsion-theoretic
pedagogical strategies (ibid., p 132).

For us a didactical decision is to propose the Be=mtiback and
depending on the diagnosis results. This decisieans a choice
between different possible hypotheses based on ctiida

analysis. We use a decision-theoretic approachdardo model
this process. The decision-theoretic strategy éslus some ITSs
to select tutorial actions that maximize the exeeattility. The

systems CAPIT [14] and DT tutor [16] use this steat

CAPIT is a system for learning capitalization anthgtuation in
English. To decide two kinds of next feedback (npsdblem
selection, error message selection) this systers ttse utility
function, which is based on the number of erroed the student
made [14]. DT tutor also uses a decisional modEbr!each
tutorial action alternative, the tutor computes ¢he probability
of every possible outcome of that tutorial acti(®), the utility of
each possible outcome in relation to the tutor'geotives, and
then (3) the alternative's expected utility by v@ig the utility of
each possible outcome by the probability that it wecur. The
tutor then selects the action with maximum expeatéitly with
utility functiort' [16]. In DT tutor, many factors related to the
student (their morale, behaviour, etc) have anuérfte on
expected utility. To propose the next feedback, tDidr chooses
first the theme where the feedback is focused andrsl the type
of feedback (help, hint, positive or negative femtl). DT tutor is
implemented in two learning systems, calculus alednentary
reading.

A further difference between these previous worksl aur
approach is that the decision feedback models peIpO
previously are not based on the nature of the obktrowledge;
in our case we would like to center the feedback tha
knowledge control dimension (knowledge that alldhes users to
validate their actions during the process) andike tinto account
the knowledge control specificities (pragmatic, ldestive and
perceptive-gestural). Another difference is that,our learning
environment, there are no well defined solutiond #us it is not
possible to define a priori, a list of actions aperted feedback.

Finally the factors considered in our system must the

parameters that can be established by researcttired, this is
multidisciplinary research that evolves and theesysmust adapt
to the evolution of didactic and medical analydBifferent

feedback hypotheses must be able to be tested.

3. THEORETICAL FRAMEWORK AND
DIDACTICAL HYPOTHESIS

According to research in cognitive psychology aihdtics, the
learner/situation interaction can be modelled psoblem-solving
process that engages itself different processgistlytilinked and
recurrent: identification of the situation, plangiraction, control
of actions# effects, regulation. The crucial rdleantrol elements
in this process has been pointed ([1],[17]), allugvthe subject to
decide whether an action is relevant or not, odegide that a
problem or sub-problem is solved.

This framework has some important consequencesuorwork
for our objectives related to the design of a festttsystem:

- ltis necessary tohoose characteristics of problerttt will
conduct to the right processes of learning accgrdio
professional objectives and to learner#s statenoivledge.
This, in turn, leads to the necessity to diagnassner#s
knowledge, and interpret this diagnosis to be ablerovoke
targeted learning through learners# actions antraisron
problems. Thus, one objective tife feedback system is to
consideris not only the actions but alsite controls brought
into play by the learner during the problem solvamgivity.

- Itis necessary tdistinguishand consider bothhe result(a
punctual state of the problem, intermediate orlfiaad the
problem solving processWe thus adopt a continuous
approach of diagnosis and learning process.

Besides, we argue that is necessary to distingtishcontrols
characteristics. These categories are related ¢owhy that
knowledge can be validated, and therefore, builtthe case of
orthopedic surgery we identify three categoriesclatative,
pragmatic and perceptive/gestural. The first catggdeclarative
knowledge, corresponds to shared knowledge, catistit a
common reference for professionals. It can be g
formally, and serves communication, discussionharges. The
second, pragmatic, is partly expressible, and iskeli to
individual experiences and situations. The thirchcaon the
perceptive and gestural (technical gesture likegisat gesture)
part, hardly expressible and embedded in particitaations.

These are not the same that the classical divisicdknowledge

between declarative and procedural. For examplet pé

procedural knowledge is validated in a declarativenner (is a
reference for professionals and transmitted in dadative way),

part is validated in a pragmatic manner (by expeeg and can
also be validated in a perceptive-gestural manwba( is seen,
felt). This second kind of activity is ill defingdsk, i.e. there are
not clear strategies for finding solutions at eatbp of the

problem solving process.

Because we have some characterised resources in ouB.1 Characterization of didactical hypothesis’

environment, the feedback is built in several stégdsas a target,
an objective, a form and content. It is createchvetdecision-
making process based on several PAS (PedagogicabnAc
Selection). In each step of the process, the chatmtegy
corresponds to the degree of dependency of therstegtation to
the domain knowledge.

factors

Based in previous framework our objective is to pose a
feedback system able to take into account the taddc
hypothesis.

First of all and as explained above, each conttement of
knowledge is labelled according to its nature: aextive,



pragmatic, or perceptual/gestural. Then, concerikingwledge
related to the user#s action, it is labelled adegrth the moment
it appears in the resolution process and accorttings possible
validity.

This last element necessitates some clarificatiomowledge
elements are diagnosed by the environment, acapitdiruser#s
set of actions and knowledge domain of validity, lasing

mobilized (brought into play) in a valid situatistate (inside its
validity domain), not mobilized or mobilized in amvalid

situation state (outside its validity domain).
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Figure 1. Result of knowledge elements diagnosed

The output can be considered like a tri-dimensispalce (shown
in Figure 1), where each knowledge elemen}, (@ our case
controls, has a probability distribution accorditag their state
(invalid, valid, or not-used). In the given examplee knowledge
element ¢ is brought into play in a valid manner with a
probability of 73%.

Based in this result we made choices concernindpdisé relevant
type of feedback to be provided to the user, adogrth previous
diagnosed elements.

Thus, to produce epistemic feedback, the didactcwllysis is
based on the characteristics (state, order, tytpg, @& the control
knowledge element and the classes of situationsaéle Also,

to integrate the adapted dimension the feedbackepmohas to
take into account the student knowledge (the disignesult) and
the characteristics of the learning environmentsduveces
manipulated by the student and the characteristitsthe

problem).

4. THE PROCESS TO PRODUCE AN
ADAPTIVE EPISTEMIC FEEDBACK

This process has four related steps. First, ouisidec model
chooses the knowledge element(s), proposed by idognakis
system, which will target the feedback. Secondeiermines the
feedback#s apprenticeship objective for the chtmeet. Third,
according to the target and the objective, it detees the
relevant form of feedback from the existing formghe learning
environment. Finally, according to the form, thecideon model
formulates the feedback by defining its contente Tnocess is
conceived from objectives and didactical hypothesisnmed up
in 83, which are represented like parameters irsyiseem.

In the next paragraphs, we describe each steptail.de

4.1 Chose the target of the feedback

This step can be shown as the selection of knowledgments
which are target by the feedback. The selectiomfisienced
essentially by the knowledge diagnosis results thrdcontrols#
characteristics. In our case the knowledge elemants the
controls which are brought into play during theljeon solving

activity. At each student action a list of contralere diagnosed.
The results of one step can be seen like in ther€ig. This
diagnosis system is described in Chieu et al. [4].

We use influence diagrams to represent this stefeocision. It is
used to represent and to calculate the decisioringak several
applications [6], [7]. In the influence diagrameith are decision
nodes and utility nodes as well as chance nodes.

We have chosen this approach because it allowsngaldcisions
under uncertainty. Indeed, the learner's state mdwkedge,
produced by the diagnosis, will be deduced fromneaactions
with a degree of uncertainty, so our model hastegate the best
feedback according to this input.

In our model (Figure 2) there are knowledge nodbe Eval

nodes that represent the result of the diagnasisppprenticeship
utility node (hexagonal node) and target decisionden
(rectangular node with the list of candidate eletmeor

knowledge to be targeted). The inference in thégydim allows
selecting &knowledge element as target. Indeed, the resuteof
inference gives the values of the utilities for lredaowledge
element, the highest one will be the targeted ehtnfier the

feeback.

e
. i

TargetDecision

To apply the inference in the diagram, we definddretion that
models the preferences from an apprenticeship pafintiew,

which is the utility function. The preferences wileé described
numerically under the notion of utility U, where d1)> U(a2)
means the decision-maker prefer action a2 compardte action
al.

In our case the apprenticeship utility functionppé, E), allows
us to calculate the a priori utility to focus feadk on an element
knowledge of a candidate (c) by taking into accotinat set of
knowledge elements (E). Then, the inference in itifeience

diagram calculates the estimated utility for eacindidate

according to the diagnosis results. In other wotts, utility

function initializes the calculation in the influem diagram and
then the inference algorithm deduces the decisions.

As we can see, in the previous figure the diagmnery simple;
our contribution is basically in the definition thfe apprenticeship
utility function that takes into account the dideat hypothesis,
which we explain in the next paragraphs

4.1.1 Apprenticeship utility function

This utility function allows initializing a priorutilities according
to the factors that influence the target decisidfe identified
some factors as the element state and the elemaraateristic:

1. Element State is the diagnosis result. It reprssthe
manner of using the knowledge element in the proble
solving process: Used-valid, Used-invalid, natdis

2. Element Type, it is linked to the validation eriax for
each identified knowledge, like explained after,our



current Teleos example it can be !declarative",

Ipragmatic” or !perceptive-gestural”;

3. Element Order represents the step of problenirepin
which this element intervenes.
intervene in several problem-solving steps, fomepie
the control knowledge related to the profile X-regn
intervene in several steps of the activity;

4. Element Context indicates the context of problem-
solving in which this element intervenes. It can be

$general# or $particular#. For example, in the afase

An element can
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We define the nature utility Jd.dc) from the didactical
hypothesis as followsiitlis more important to focus the feedback
on an element appearing in the solving of a genprablem than
to focus it on an element appearing in a particutantext. Like
the Utility type function case, we express thisdying a higher
value of utility to the nature target chosen (imsthase if c is
general Yontex(C)= 2).

surgical domain, some steps and knowledge control According to these considerations, we have defarealgorithm
elements could be especially for the scoliosis that calculates the apprenticeship utility functamd initializes

intervention.

From all of these factors we define in the equatibnUapdC, E)
the utility to choose a candidate elementas feedback target in
taking into account the set of knowledge elemdgtss the sum
of all the utilities related to each factor.

UapP(C'E) [USIaIéC’E) tUType(C) ~Uorder(c) (Ucome@) (1)

In our didactical hypotheses, these factors dohaet the same
weight in influencing the choice of the target. Shwe attribute
to each factor a priority variabld) E J and ¢ which represents
its weight in the utility calculation.

We define in the equation (2) the utility of chaasia candidate
as a target according to its statg.idc, E), as the sum of utilities

for each pair of candidatesand elemeng in E; n is the number
of knowledge elements of the set E.

n
Usarl®@€2,-8) | Usiade)) ")

In addition, we define the state utility in the l@alfor each pair

UsiaidC, §). The values are defined according to didactical

hypotheses and the domain of knowledge.

For example, the didactical hypothesis is more important to
focus the feedback on an element that is used imalid way

than to focus it on an element that it didn’t userepresented by
a value where Ustate(c = lused_valid", ee)Ustate(c = !not-

used", e ). In other words, we propose one utdigte table that
allows selecting between two elements situatechéndiagnosis
results space (shown in Figure 1) according to thesen

didactical hypothesis.

The definition of the type utility hdc) from didactical

hypothesis can batlis more important to focus the feedback on a

declarative element than to focus it on a pragmatie’. We
express this by giving to declarative elementshiigher value of
utility. In this example, the {}4c) = 3 if ¢ is declarative and 2 if
it is pragmatic. In the present implemented versitie system
doesn#t take into account the perceptive-gestunalwledge
because the didactical analysis is ongoing, big modelled to
integrate it in an easy and modular manner.

We define the utility order: Uorder(c), from theddctical
hypothesis lit is more important to focus the feack on an
element appearing in a primary stage of the solttrag to focus
it on an element appearing in later stages". Thuspossible that
an element appears in several stages. We definatithig order
in equation (3); m is the number of steps whers #ement
appears and O(c) is its order. The first time a tdontroli is
identified Oi(c) = 1

the utility table from a set of knowledge elemeniih their
characteristics. In this algorithm we create, ficdt all, the
coefficients# matrix eoeff» in relation to the number of
knowledge elements (k), and then we calculate thte autility
table for each candidate. It is calculated basedfanmula 4,
wherek is the number of the column, j is the possibl¢estd the
knowledge element (used-valid, invalid or not-usaddiHypo is
one of the didactic vectors A,B or C related to #hate of the
targeted candidate in colurkn

3
ValeurUtilitéEtat k] : Coeffl j,K * Hypd j] (4)
i1
This algorithm needs to be to running only oncégragettle the
didactical hypothesis. The inference in the infeediagram then
uses probabilities resulting from the diagnosis #ah calculates
utility values to infer the estimated utility foraeh element.
Finally, the target for the feedback is the elemiatt has the
maximal estimated utility value (Figure 3) calcelht It is
possible to have some elements with the same méxiitity.

(=] 0 o

TargetUtility
-

| o

@ Value

Indexed by ‘TargetDecision’
Sigmad2 = -384.9

Sigmald = 7351

Sigma34 = 280.1

Sigma8 = -383.9

Sigma9d = 566.1

Sigmad3 = 775.1

Sigma7 = -308.0

TargetDe

Figure 3. Inference Diagram decision result

As we presented before, we have chosen to reprebeldactical
hypotheses as parameters in the utility functiohisTchoice
makes our model flexible to add or modify didadticgpotheses.
For examplefor the factor 'Type of Knowledge" if the didacsic
hypothesis is it is more important to focus the feedback on an
pragmatic element than to focus it on a declaratin€', then it is
sufficient to give the parameter that represengsutility for an
pragmatic element a value higher than the utilitye declarative
element Y,{c=pragmatic)> Ypd{c=declarative).

4.2 Choose the objective of the feedback

After choosing the target, the decision model deiees its
feedback objective in order to give, from the léagnpoint of
view, a semantic to the feedback intention. In ocwdel we
distinguish several feedbacks. Indeed, if the takgewledge is
diagnosed (with a higher probability) as $brougka play in an



invalid manner# (BPI) the feedback is not the s#me if this
target knowledge is diagnosed as $not broughpiaiet (NBP).

We have defined a procedure that determines thdbéek

objective by applying an analysis on the targetelet state. The
principle of this procedure is that it segments disgnosis space
into several zones, and it attributes an objectiveeach zone.
Then, the feedback objective corresponds to the mowhich the

target element is situated. This step permits despfrom an
uncertain state of knowledge to fixed objectivedeairning. The

number of segmented zones and the objective fdn eane is

customizable in our model.

Figure 4. Example of segmentation of the knowledggements
space to determine the feedback objective

In this example, if the knowledge element is inedn(!if P(NBP
) — P(BPI) > 0.25 and P(NBP) — P(BPV) > 0'35 then the
feedback objective is to !verify" if the targetdchowledge is
understood by the learner. The possibilities predo$or the
feedback objective are: verify, reinforce and deifitze. The
meaning ofverify feedback is to propose a type of feedback to
improve the diagnosis related to a set of knowletiygeted
elements (for example, proposing another problererevispecific
targeted knowledge has to be mobilized). The idéathe
reinforcefeedback is to support the user in relation toténgeted
knowledge elements (for example a positive feedbackloser
clinical case that was studied or solve anotheblpra where the
targeted knowledge could be used). Finallgstabilizefeedback
has the objective to show that the targeted knoyded used in

a wiki with concepts the content has to be relateth the
targeted knowledge element.

This step is not generic, it depends on the kinteeflback forms
that the TEL system has. For this reason this at#ipbe more
detailed in the next section where we explain thsecstudy
where we implemented the feedback process.

5. THE TELEOS SYSTEM EXAMPLE

The analyzed procedure is about surgical orthopaedi
percutaneous (without incision) operation. It iseleped in [21].
It could be summarized as follows: The surgeori firserts a pin
in the bone through the skin. S/he makes the pagress in the
bone, taking several X-rays to validate the pin#srse at
different steps of its progression. The X-rays alldm br her to
Ireconstruct” a complete vision of the position tfe pin, in
relation to the bone. If s/he recognizes any proklén those
views, s/he restarts the operation process, tadugher pin and
correcting its entry point and/or direction. Untibw we have
analyzed the sacroiliac screw operation and théebrplasty.
The description procedure does not have to be cmphd well-
defined but the goal is to extract from the divgrsif each
particular situation, the significant controls ekmts, from a
learning point of view, of the surgical procedure.

The analysis, made in [21], allows us to identifyaial aspects of
the surgical procedure. We identified primarily ttthe pin#s
positioning is the most important part of the prhae, the
definitive screw being placed along this pin. Settpnwe notice

the crucial role of X-ray controls. As the surgezamnot directly
visualize the operating area, he has to interpsegésture through
these controls. This necessitates two levels @fpmetation. On
the first level, the surgeon has to ensure thatday is valid

(i.e. being oriented in order to represent whais iintended to
represent); on the second level, the surgeon cak & the

validity of the pin#s position according to anatwahicriteria on
the X-ray.

Table 1. Examples of knowledge controls for sacradc screw

an invalid manner in these kinds of problems (bgl&xing the
right way in the course, proposing a counter exanimpm the

clinical case database or proposing another proltere if the
knowledge is used, the result could be wrong)

4.3 Determine the feedback form
In this step, the decision model chooses the nedstant form of

feedback linked to the type of the target knowled@gmment and
the feedback objectivedinforce, verify, destabilize

Here the idea is to associate one kind of feedlfawok to the

feedback objective and the type of the targetedwiexge
element. In this step we need to consider the ressyroposed
to the student. Indeed more and more TEL systenposes

several resources to the student. For examplesiftivironment
has a wiki with concepts we can associate it tora fof feedback
when the targeted knowledge element is declaratind the

feedback objective is to reinforce.

Control Control elements of knowledge Domains of
Type validity
declarative The pin#s trajectory must be completeali
intra-osseous
declarative If the pin is well positioned then thia | PB, PC, PE
appears as a point on the profile X-ray
Pragmatic If the pin would become extra ossepuaC, PD
by being pushed in S1, 1cm after the
median line, then it can be stopped at the
median line
Pragmatic If the pin would become extra ossequBA,PD,PF
then it can be stopped just lcm afier
having reached S1
Perceptive- | If the pin was in the sacroiliac and theAll
gestural resistance force decrease then the |pin
would become extra osseous

This association is a simple table where we cancimahe
resources with a pair <type of knowledge, feedlmgkctive>.

4.4 Determine the feedback content

The content is essentially related to the form esdback. Here
the objective is to determine the content of thedBack in
relation to the feedback form. For example if teedback form is

Thus, we identified the control knowledge elememthjch are
related to surgeons# actions during the interventicey allow
surgeons to validate their actions; some examplesslown in
Table 1. The controls have a domain if validitg, they are valid
for a set of problems. The control type is alsmtdied: it could
be declarative, pragmatic, or perceptive gestural.



model; Adjusting the position and the incidencehaf
fluoroscopic image intensifier; Drawing the cutaneouskmngr
on the body of the patient model; Producing andialiging
radiographies; Manipulating the surgical tool thgbta mouse or
through haptic interface; Verifying the trajectary a 3D bone
model when it has been validated (Figure 5). |s ffaper we are
focused on the pelvis operation.

In the previous figure we can see on the righthef graphical
interfaces (b and c), two 2D images representirg lést two
radiographies produced by the user. In the topHefid corner,
there is the 3D model of the patient, and the satdool, the user
is able to see the 3D bone model only when thedtajy is
validated.

5.1.2 Clinical cases database

The role of the Clinical Case agent is to illugtrathe
consequences of a proposed trajectory. It is ebdatawhere we
can find pertinent information related to differguitases (before,
during and after the operation).

http://www-sante.ujf-grenoble)fthat
explains the declarative knowledge (anatomy, saftgicocedure,
tools, etc.) about sacroiliac percutaneous scregephent. It is
based on online courses and academic documentatiwh,is
improved by interaction between the didactical ex@sd the
surgeons.

For this part we use ontology with a set of rulesda in OWL

language. We have developed a semantic web moditfemore

than eighteen web pages, which have metadata baseatology.

This module proposes not only syntactic links, &lsb semantic
ones; it allows the redirection to precise andvahe chapters of
the online course. The implementation of this medsilexplained
in previous work [8].

5.2 ADAPTIVE AND EPISTEMIC
FEEDBACK PROCESS

Like introduce in the paper the implemented feelllgaocess is a
delayed feedback, i.e. the TELEOS system propdsedback at
the end of the activity. The result of the proceas be to solve
another problem on the simulator, to consult aipaer webpage
on the online course or to consult one specificicéil case in the
database.









