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ABSTRACT  
In this paper we study one feedback process which is adapted to 
ill-defined domains. Indeed, this process use others aspects than 
expected solutions to propose a feedback. The feedback process is 
based in a set of didactical aspects. In particular, the feedback 
targets the control element of knowledge, i.e. the knowledge that 
allows to validate one step in the problem solving process. The 
paper describes the feedback process and its implementation in 
the framework of one TEL system in orthopedic surgery. 
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1. INTRODUCTION 
In ill defined domain one of the challenges is to continue to 
develop new tutoring strategies and seek out ways to combine 
existing strategies [13]. This challenge still open in particular 
when the domain has multiple and controversial solutions or ill-
defined task structures [4]. In this framework our research 
question is how to design a tutoring feedback system which is not 
only based in defined solutions but in the known characteristics of 
knowledge and learning situations.  

We study one kind of feedback which is adapted and epistemic. It 
is adapted because it takes into account the individual differences 
in relation to incoming knowledge and skills among students [18]. 
It is epistemic because it is specific to the piece of knowledge at 
stake and its learning characteristics. Compute an epistemic 
feedback involves knowledge from the learner, the learning 
situation and the learning domain [11].  

We design a process to produce adapted epistemic feedbacks 
which includes one decisional model based in a set of didactical 
hypothesis. The process was implemented and tested in the case 
of orthopedic surgery.  

The research discussed in this paper is developed in the 
framework of the TELEOS1 platform [9] which is a 
Technological Enhanced Learning environment for orthopaedic 
surgery. This platform proposes a set of resources for the student 
(haptic simulator, online course, clinical case database) and a 
diagnosis system able to analyse the student productions and 
make a knowledge diagnosis based in identified controls. 

                                                                 
1 http://teleos .imag.fr  

Based in the model presented in this paper we add a feedback 
system in the TELEOS environment. This implementation 
proposes a formative feedback which is delayed, i.e. at the end of 
the exercise in the simulator. The model is presented in the 
section 4 and the TELEOS example is presented in the section 5. 

2. RELATED WORKS 
In some domains (like percutaneous screw fixations in 
orthopaedic surgery) the knowledge obtained by experience plays 
an important role for both the expert teacher and the novice 
learner during a problem-solving process. This kind of 
knowledge, often tacit, refers to !work-related, practical know-
how that typically is acquired informally as a result of on-the-job 
experience, as opposed to formal instruction." [22]. This kind of 
knowledge is pragmatic, obtained by experience. Moreover a 
skillful learner, even a domain expert, often makes several 
attempts before arriving at an acceptable solution: the person 
makes an error and then tries to correct the error several times. 
Also there are multiple solutions and because some parts of the 
knowledge are tacit the strategic to a good solution are unclear. 
This kind of problem is ill structured. Indeed, an ill-structured 
problem as one that is complex, with indefinite starting points, 
multiple and arguable solutions, or unclear strategies for finding 
solutions [19]. 

Several works address the problem to model ill defined 
knowledge and build feedback from these models ([13] and [20]). 
Based in this previous works, Fournier-Vigier et al. [5] pointed 
the design feedback difficulties in ill defined domains, in 
particular the difficulties to provide domain knowledge in ill 
structure problems. All studied paradigms (cognitive task 
analysis, constraint-based modeling, expert system, data mining 
algorithms) propose to describe task models using different 
techniques. The task models could be complete or partial. In all 
cases the model is used to offer assistance to the learner (ibid. 
234). Most of the feedback systems in these approaches try to 
guide the student to the intended solution, even if it is described 
partially and beside most of the feedback are goal oriented. 

We aim to study a model of feedback that is not only based in 
calculated solutions. We explore another feedback paradigm 
which is centered in the validation process more than the attended 
solution. In others words the feedback will be related to the 
characteristics of the controls brought into play during the 
problem solving process: it was brought into play in the right 
moment? It was valid or invalid? What is its nature ?  

We would like to investigate how to produce an adapted 
epistemic feedback that takes into account these knowledge 
characteristics and is able to handle the uncertainty coming from 



the diagnosis results. Indeed, like more and more intelligent 
tutoring systems, we chose to use Bayesian network for our 
diagnostic knowledge. 

From adaptive point of view, Shute & Zapata-Rivera [18] propose 
a four-process adaptive cycle connecting the learner to 
appropriate educational materials and resources. This four process 
cycle include (ibid. p 9) capture of the information about the 
learner, analyze the information in relation to the learner model, 
select the information for a particular learner and present specific 
content to the student. 

In relation to the selection step of the feedback, few systems 
propose a computer model which describes the decision of a 
pedagogical feedback following an uncertain diagnosis. Mayo and 
Metrovic [14] introduce the idea of Pedagogical Action Selection 
(PAS) and identified three general approaches to produce them in 
intelligent tutoring systems that use Bayesian networks: 
alternative strategies, diagnostic strategies, and decision-theoretic 
pedagogical strategies (ibid., p 132). 

For us a didactical decision is to propose the best feedback and 
depending on the diagnosis results. This decision means a choice 
between different possible hypotheses based on didactical 
analysis. We use a decision-theoretic approach in order to model 
this process. The decision-theoretic strategy is used in some ITSs 
to select tutorial actions that maximize the expected utility. The 
systems CAPIT [14] and DT tutor [16] use this strategy.  

CAPIT is a system for learning capitalization and punctuation in 
English. To decide two kinds of next feedback (next problem 
selection, error message selection) this system uses the utility 
function, which is based on the number of errors that the student 
made [14]. DT tutor also uses a decisional model: !For each 
tutorial action alternative, the tutor computes (1) the probability 
of every possible outcome of that tutorial action, (2) the utility of 
each possible outcome in relation to the tutor's objectives, and 
then (3) the alternative's expected utility by weighing the utility of 
each possible outcome by the probability that it will occur. The 
tutor then selects the action with maximum expected utility with 
utility function" [16]. In DT tutor, many factors related to the 
student (their morale, behaviour, etc) have an influence on 
expected utility. To propose the next feedback, DT tutor chooses 
first the theme where the feedback is focused and second the type 
of feedback (help, hint, positive or negative feedback). DT tutor is 
implemented in two learning systems, calculus and elementary 
reading. 

A further difference between these previous works and our 
approach is that the decision feedback models proposed 
previously are not based on the nature of the control knowledge; 
in our case we would like to center the feedback on the 
knowledge control dimension (knowledge that allows the users to 
validate their actions during the process) and to take into account 
the knowledge control specificities (pragmatic, declarative and 
perceptive-gestural). Another difference is that, in our learning 
environment, there are no well defined solutions and thus it is not 
possible to define a priori, a list of actions as expected feedback. 
Because we have some characterised resources in our 
environment, the feedback is built in several steps; it has a target, 
an objective, a form and content. It is created with a decision-
making process based on several PAS (Pedagogical Action 
Selection). In each step of the process, the chosen strategy 
corresponds to the degree of dependency of the step in relation to 
the domain knowledge. 

Finally the factors considered in our system must be the 
parameters that can be established by researcher. Indeed, this is 
multidisciplinary research that evolves and the system must adapt 
to the evolution of didactic and medical analysis. Different 
feedback hypotheses must be able to be tested. 

3. THEORETICAL FRAMEWORK AND 
DIDACTICAL HYPOTHESIS 
According to research in cognitive psychology and didactics, the 
learner/situation interaction can be modelled as a problem-solving 
process that engages itself different processes, tightly linked and 
recurrent: identification of the situation, planning, action, control 
of actions# effects, regulation. The crucial role of control elements 
in this process has been pointed ([1],[17]), allowing the subject to 
decide whether an action is relevant or not, or to decide that a 
problem or sub-problem is solved.  

This framework has some important consequences on our work 
for our objectives related to the design of a feedback system:  

- It is necessary to choose characteristics of problems that will 
conduct to the right processes of learning according to 
professional objectives and to learner#s state of knowledge. 
This, in turn, leads to the necessity to diagnose learner#s 
knowledge, and interpret this diagnosis to be able to provoke 
targeted learning through learners# actions and controls on 
problems. Thus, one objective of the feedback system is to 
consider is not only the actions but also the controls brought 
into play by the learner during the problem solving activity.    

- It is necessary to distinguish and consider both, the result (a 
punctual state of the problem, intermediate or final) and the 
problem solving process. We thus adopt a continuous 
approach of diagnosis and learning process.  

Besides, we argue that is necessary to distinguish the controls 
characteristics. These categories are related to the way that 
knowledge can be validated, and therefore, built. In the case of 
orthopedic surgery we identify three categories: declarative, 
pragmatic and perceptive/gestural. The first category, declarative 
knowledge, corresponds to shared knowledge, constituting a 
common reference for professionals. It can be expressed, 
formally, and serves communication, discussion, exchanges. The 
second, pragmatic, is partly expressible, and is linked to 
individual experiences and situations. The third concern the 
perceptive and gestural (technical gesture like surgical gesture) 
part, hardly expressible and embedded in particular situations.    

These are not the same that the classical division of knowledge 
between declarative and procedural. For example, part of 
procedural knowledge is validated in a declarative manner (is a 
reference for professionals and transmitted in a declarative way), 
part is validated in a pragmatic manner (by experience) and can 
also be validated in a perceptive-gestural manner (what is seen, 
felt). This second kind of activity is ill defined task, i.e. there are 
not clear strategies for finding solutions at each step of the 
problem solving process. 

3.1 Characterization of didactical hypothesis’ 
factors 
Based in previous framework our objective is to propose a 
feedback system able to take into account the didactical 
hypothesis. 

First of all and as explained above, each control element of 
knowledge is labelled according to its nature: declarative, 



pragmatic, or perceptual/gestural. Then, concerning knowledge 
related to the user#s action, it is labelled according to the moment 
it appears in the resolution process and according to its possible 
validity.  

This last element necessitates some clarification: knowledge 
elements are diagnosed by the environment, according to user#s 
set of actions and knowledge domain of validity, as being 
mobilized (brought into play) in a valid situation state (inside its 
validity domain), not mobilized or mobilized in an invalid 
situation state (outside its validity domain).  

 
Figure 1. Result of knowledge elements diagnosed 

The output can be considered like a tri-dimensional space (shown 
in Figure 1), where each knowledge element (ei), in our case 
controls, has a probability distribution according to their state 
(invalid, valid, or not-used). In the given example, the knowledge 
element e1 is brought into play in a valid manner with a 
probability of 73%. 

Based in this result we made choices concerning the best relevant 
type of feedback to be provided to the user, according to previous 
diagnosed elements. 

Thus, to produce epistemic feedback, the didactical analysis is 
based on the characteristics (state, order, type, etc.) of the control 
knowledge element and the classes of situations available. Also, 
to integrate the adapted dimension the feedback process has to 
take into account the student knowledge (the diagnosis result) and 
the characteristics of the learning environment (resources 
manipulated by the student and the characteristics of the 
problem). 

4. THE PROCESS TO PRODUCE AN 
ADAPTIVE EPISTEMIC FEEDBACK 
This process has four related steps. First, our decision model 
chooses the knowledge element(s), proposed by the diagnosis 
system, which will target the feedback. Second, it determines the 
feedback#s apprenticeship objective for the chosen target. Third, 
according to the target and the objective, it determines the 
relevant form of feedback from the existing forms in the learning 
environment. Finally, according to the form, the decision model 
formulates the feedback by defining its content. The process is 
conceived from objectives and didactical hypothesis, summed up 
in §3, which are represented like parameters in the system.  

In the next paragraphs, we describe each step in detail. 

4.1 Chose the target of the feedback  
This step can be shown as the selection of knowledge elements 
which are target by the feedback. The selection is influenced 
essentially by the knowledge diagnosis results and the controls# 
characteristics. In our case the knowledge elements are the 
controls which are brought into play during the problem solving 

activity. At each student action a list of controls were diagnosed. 
The results of one step can be seen like in the Figure 1. This 
diagnosis system is described in Chieu et al. [4]. 

We use influence diagrams to represent this step of decision. It is 
used to represent and to calculate the decision-making in several 
applications [6], [7]. In the influence diagrams there are decision 
nodes and utility nodes as well as chance nodes. 

We have chosen this approach because it allows making decisions 
under uncertainty. Indeed, the learner's state of knowledge, 
produced by the diagnosis, will be deduced from learner actions 
with a degree of uncertainty, so our model has to generate the best 
feedback according to this input. 

In our model (Figure 2) there are knowledge nodes (the oval 
nodes that represent the result of the diagnosis), an apprenticeship 
utility node (hexagonal node) and target decision node 
(rectangular node with the list of candidate elements or 
knowledge to be targeted). The inference in this diagram allows 
selecting a knowledge element as target. Indeed, the result of the 
inference gives the values of the utilities for each knowledge 
element, the highest one will be the targeted element for the 
feeback. 

  
Figure 2. The influence diagram for target decision 

To apply the inference in the diagram, we defined a function that 
models the preferences from an apprenticeship point of view, 
which is the utility function. The preferences will be described 
numerically under the notion of utility U, where U(a1)> U(a2) 
means the decision-maker prefer action a2 compared to the action 
a1. 

In our case the apprenticeship utility function, Uapp(c, E), allows 
us to calculate the a priori utility to focus feedback on an element 
knowledge of a candidate (c) by taking into account the set of 
knowledge elements (E). Then, the inference in the influence 
diagram calculates the estimated utility for each candidate 
according to the diagnosis results. In other words, the utility 
function initializes the calculation in the influence diagram and 
then the inference algorithm deduces the decisions. 

As we can see, in the previous figure the diagram is very simple; 
our contribution is basically in the definition of the apprenticeship 
utility function that takes into account the didactical hypothesis, 
which we explain in the next paragraphs 

4.1.1 Apprenticeship utility function 
This utility function allows initializing a priori utilities according 
to the factors that influence the target decision. We identified 
some factors as the element state and the element characteristic:  

1. Element State is the diagnosis result. It represents the 
manner of using the knowledge element in the problem-
solving process: Used-valid, Used-invalid,   not-used.  

2. Element Type, it is linked to the validation criteria for 
each identified knowledge, like explained after, in our 



current Teleos example it can be !declarative", 
!pragmatic" or !perceptive-gestural";  

3. Element Order represents the step of problem-solving in 
which this element intervenes. An element can 
intervene in several problem-solving steps, for example 
the control knowledge related to the profile X-ray can 
intervene in several steps of the activity; 

4. Element Context indicates the context of problem-
solving in which this element intervenes. It can be 
$general# or $particular#. For example, in the case of 
surgical domain, some steps and knowledge control 
elements could be especially for the scoliosis 
intervention. 

From all of these factors we define in the equation (1) Uapp(c, E) 
the utility to choose a candidate element, c, as feedback target in 
taking into account the set of  knowledge elements, E, as the sum 
of all the utilities related to each factor. 

)()()(),(),( cUcUcUEcUEcU contextorderTypestateapp �˜���˜���˜���˜� �G�J�E�D  (1) 

In our didactical hypotheses, these factors do not have the same 
weight in influencing the choice of the target. Thus, we attribute 
to each factor a priority variable (�D, �E, �J, and �G), which represents 
its weight in the utility calculation.  

We define in the equation (2) the utility of choosing a candidate c 
as a target according to its state Ustate(c, E), as the sum of utilities 
for each pair of candidates c and element ej in E; n is the number 
of knowledge elements of the set E. 
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In addition, we define the state utility in the table for each pair 
Ustate(c, ej). The values are defined according to didactical 
hypotheses and the domain of knowledge.  

For example, the didactical hypothesis !it is more important to 
focus the feedback on an element that is used in an invalid way 
than to focus it on an element that it didn’t use” is represented by 
a value where Ustate(c = !used_valid", e ) �• Ustate(c = !not-
used", e ). In other words, we propose one utility state table that 
allows selecting between two elements situated in the diagnosis 
results space (shown in Figure 1) according to the chosen 
didactical hypothesis. 

The definition of the type utility Utype(c) from didactical 
hypothesis can be !it is more important to focus the feedback on a 
declarative element than to focus it on a pragmatic one". We 
express this by giving to declarative elements the higher value of 
utility. In this example, the Utype(c) = 3 if c is declarative and 2 if 
it is pragmatic. In the present implemented version, the system 
doesn#t take into account the perceptive-gestural knowledge 
because the didactical analysis is ongoing, but it is modelled to 
integrate it in an easy and modular manner. 
We define the utility order: Uorder(c), from the didactical 
hypothesis !it is more important to focus the feedback on an 
element appearing in a primary stage of the solving than to focus 
it on an element appearing in later stages". Thus, it is possible that 
an element appears in several stages. We define the utility order 
in equation (3); m is the number of steps where this element 
appears and O(c) is its order. The first time of the control i is 
identified Oi(c) = 1. 
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We define the nature utility Unature(c) from the didactical 
hypothesis as follows: !it is more important to focus the feedback 
on an element appearing in the solving of a general problem than 
to focus it on an element appearing in a particular context". Like 
the Utility type function case, we express this by giving a higher 
value of utility to the nature target chosen (in this case if c is 
general Ucontext(c)= 2). 

According to these considerations, we have defined an algorithm 
that calculates the apprenticeship utility function and initializes 
the utility table from a set of knowledge elements with their 
characteristics. In this algorithm we create, first of all, the 
coefficients# matrix « coeff » in relation to the number of 
knowledge elements (k), and then we calculate the state utility 
table for each candidate. It is calculated based in  formula 4, 
where k is the number of the column, j is the possible state of the 
knowledge element (used-valid, invalid or not-used) and Hypo is 
one of the didactic vectors A,B or C related to the state of the 
targeted candidate in  column k
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This algorithm needs to be to running only once, after settle the 
didactical hypothesis. The inference in the influence diagram then 
uses probabilities resulting from the diagnosis and then calculates 
utility values to infer the estimated utility for each element. 
Finally, the target for the feedback is the element that has the 
maximal estimated utility value (Figure 3) calculated. It is 
possible to have some elements with the same maximal utility. 

 
Figure 3. Inference Diagram decision result 

As we presented before, we have chosen to represent all didactical 
hypotheses as parameters in the utility function. This choice 
makes our model flexible to add or modify didactical hypotheses. 
For example, for the factor !Type of Knowledge" if the didactical 
hypothesis is !it is more important to focus the feedback on an 
pragmatic element than to focus it on a declarative one", then it is 
sufficient to give the parameter that represents the utility for an 
pragmatic element a value higher than the utility for a declarative 
element Utype(c=pragmatic)> Utype(c=declarative). 

4.2 Choose the objective of the feedback 
After choosing the target, the decision model determines its 
feedback objective in order to give, from the learning point of 
view, a semantic to the feedback intention. In our model we 
distinguish several feedbacks. Indeed, if the target knowledge is 
diagnosed (with a higher probability) as $brought into play in an 



invalid manner# (BPI) the feedback is not the same than if this 
target knowledge is diagnosed as $not brought into play# (NBP).  

We have defined a procedure that determines the feedback 
objective by applying an analysis on the target element state. The 
principle of this procedure is that it segments the diagnosis space 
into several zones, and it attributes an objective to each zone. 
Then, the feedback objective corresponds to the zone in which the 
target element is situated.  This step permits to pass from an 
uncertain state of knowledge to fixed objectives of learning. The 
number of segmented zones and the objective for each zone is 
customizable in our model.  

 
Figure 4. Example of segmentation of the knowledge elements 

space to determine the feedback objective  

In this example, if the knowledge element is in zone 1 (!if P(NBP 
) – P(BPI) > 0.25 and P(NBP) – P(BPV) > 0.25")  then the 
feedback objective is  to !verify" if the targeted knowledge is 
understood by the learner. The possibilities proposed for the 
feedback objective are: verify, reinforce and destabilize. The 
meaning of verify feedback is to propose a type of feedback to 
improve the diagnosis related to a set of knowledge targeted 
elements (for example, proposing another problem where specific 
targeted knowledge has to be mobilized). The idea of the 
reinforce feedback is to support the user in relation to the targeted 
knowledge elements (for example a positive feedback, a closer 
clinical case that was studied or solve another problem where the 
targeted knowledge could be used). Finally, destabilize feedback 
has the objective to show that the targeted knowledge is used in 
an invalid manner in these kinds of problems (by explaining the 
right way in the course, proposing a counter example from the 
clinical case database or proposing another problem where if the 
knowledge is used, the result could be wrong) 

4.3 Determine the feedback form  
In this step, the decision model chooses the most relevant form of 
feedback linked to the type of the target knowledge element and 
the feedback objective (reinforce, verify, destabilize).  

Here the idea is to associate one kind of feedback form to the 
feedback objective and the type of the targeted knowledge 
element. In this step we need to consider the resources proposed 
to the student. Indeed more and more TEL system proposes 
several resources to the student. For example if the environment 
has a wiki with concepts we can associate it to a form of feedback 
when the targeted knowledge element is declarative and the 
feedback objective is to reinforce.  

This association is a simple table where we can match the 
resources with a pair  <type of knowledge, feedback objective>.  

4.4 Determine the feedback content  
The content is essentially related to the form of feedback. Here 
the objective is to determine the content of the feedback in 
relation to the feedback form. For example if the feedback form is 

a wiki with concepts the content has to be related with the 
targeted knowledge element. 

This step is not generic, it depends on the kind of feedback forms 
that the TEL system has. For this reason this step will be more 
detailed in the next section where we explain the case study 
where we implemented the feedback process. 

5. THE TELEOS SYSTEM EXAMPLE 
The analyzed procedure is about surgical orthopaedic 
percutaneous (without incision) operation. It is developed in [21]. 
It could be summarized as follows: The surgeon first inserts a pin 
in the bone through the skin. S/he makes the pin progress in the 
bone, taking several X-rays to validate the pin#s course at 
different steps of its progression. The X-rays allow him or her to 
!reconstruct" a complete vision of the position of the pin, in 
relation to the bone. If s/he recognizes any problems in those 
views, s/he restarts the operation process, taking another pin and 
correcting its entry point and/or direction. Until now we have 
analyzed the sacroiliac screw operation and the vertebroplasty. 
The description procedure does not have to be complete and well-
defined but the goal is to extract from the diversity of each 
particular situation, the significant controls elements, from a 
learning point of view, of the surgical procedure.  

The analysis, made in [21], allows us to identify crucial aspects of 
the surgical procedure. We identified primarily that the pin#s 
positioning is the most important part of the procedure, the 
definitive screw being placed along this pin. Secondly, we notice 
the crucial role of X-ray controls. As the surgeon cannot directly 
visualize the operating area, he has to interpret his gesture through 
these controls. This necessitates two levels of interpretation. On 
the first level, the surgeon has to ensure that the X-ray is valid 
(i.e. being oriented in order to represent what it is intended to 
represent); on the second level, the surgeon can look at the 
validity of the pin#s position according to anatomical criteria on 
the X-ray. 

Table 1. Examples of knowledge controls for sacroiliac screw 

Control
Type

Control elements of knowledge Domains of 
validity

declarative The pin#s trajectory must be completely 
intra-osseous 

all 

declarative If the pin is well positioned then the pin 
appears as a point on the profile X-ray  

PB, PC, PE 

Pragmatic If the pin would become extra osseous 
by being pushed in S1, 1cm after the 
median line, then it can be stopped at the 
median line 

PC, PD 

Pragmatic If  the pin would become extra osseous, 
then it can be stopped just 1cm after 
having reached S1 

PA,PD,PF 

Perceptive-
gestural 

If the pin was in the sacroiliac and the 
resistance force decrease then the pin 
would become extra osseous 

All 

Thus, we identified the control knowledge elements, which are 
related to surgeons# actions during the intervention, they allow 
surgeons to validate their actions; some examples are shown in 
Table 1. The controls have a domain if validity, i.e. they are valid 
for a set of problems. The control type is also identified: it could 
be declarative, pragmatic, or perceptive gestural. 



5.1 TELEOS SYSTEM 
We have developed a modular architecture. Each module is built 
in relation to the knowledge learning constraints [10]. The learner 
interacts with the following modules: Semantic Web Courses, 
Simulator, and Clinical Cases. We introduce briefly these three 
modules in the next section. The decision-making model uses 
these modules and the result of the diagnosis to build the 
feedback. The diagnosis model will not be described in this paper. 
The result will show in the Figure 1. 

5.1.1 Simulator for orthopaedic surgery 
The last implementation version is explained in a previous paper 
[12]. Two surgeries were implemented in this last version: the 
vertebroplasty and the sacroiliac screw.  

 
 
 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Haptic interface (a). Graphical interface during the 
pin trajectory (b). Graphical interface when the trajectory is 

validated by the user (c). 

Regardless of the simulated operation, the TEL system gives to 
the learner the opportunity to train himself and practise a surgical 
operation thanks to several functionalities: Choosing the type of 
patient and the type of operation; visualizing in 3D the tool and 
the patient model; Adjusting the position and the incidence of the 
fluoroscopic image intensifier; Drawing the cutaneous marking  
on the body of the patient model; Producing and visualizing 
radiographies; Manipulating the surgical tool through a mouse or 
through haptic interface; Verifying the trajectory in a 3D bone 
model when it has been validated (Figure 5). In this paper we are 
focused on the pelvis operation. 

In the previous figure we can see on the right of the graphical 
interfaces (b and c), two 2D images representing the last two 
radiographies produced by the user. In the top left hand corner, 
there is the 3D model of the patient, and the surgical tool, the user 
is able to see the 3D bone model only when the trajectory is 
validated.  

5.1.2 Clinical cases database 
The role of the Clinical Case agent is to illustrate the 
consequences of a proposed trajectory. It is a database where we 
can find pertinent information related to different phases (before, 
during and after the operation). 

 
Figure 6. Clinical Case with data from one operation 

For example, one clinical case may have some x-rays before the 
operation (Figure 6, right side), some films of the gesture during 
the operation and some x-rays and data describing the post-
operatory information (the position of the bone, the state of the 
bone, etc+ left side Figure 6). This Clinical Case Database could 
be useful to show, for example, trajectories that have 
consequences in the post-operatory period (there may be a 
problem with the fracture reduction because the trajectory with 
the pin is too short, for Instance).  

5.1.3 Online Courses 
We have an online course (at http://www-sante.ujf-grenoble.fr) that 
explains the declarative knowledge (anatomy, surgical procedure, 
tools, etc.) about sacroiliac percutaneous screw placement. It is 
based on online courses and academic documentation, and is 
improved by interaction between the didactical expert and the 
surgeons.  

For this part we use ontology with a set of rules based in OWL 
language. We have developed a semantic web module, with more 
than eighteen web pages, which have metadata based on ontology. 
This module proposes not only syntactic links, but also semantic 
ones; it allows the redirection to precise and relevant chapters of 
the online course. The implementation of this module is explained 
in previous work [8].  

5.2 ADAPTIVE AND EPISTEMIC 
FEEDBACK PROCESS 
Like introduce in the paper the implemented feedback process is a 
delayed feedback, i.e. the TELEOS system propose a feedback at 
the end of the activity. The result of the process can be to solve 
another problem on the simulator, to consult a particular webpage 
on the online course or to consult one specific clinical case in the 
database. 

 
Figure 7. Kinds of feedback in TELEOS system. 

Because the two first steps described previously are generic, we 
don#t explain them in detail here. In the step three we propose a 
simple table interface where the didactical or pedagogical user 
can propose the match between the resource (simulator, clinical 



case and web course) and the pair type of knowledge (declarative, 
pragmatic, perceptivo-gestural) and feedback objective 
((reinforce, verify, destabilize).  We can choose one or several 
forms for the same pair <type, objective>. For example, the 
pedagogical user was proposed the clinical case and the simulator 
to destabilize the pragmatic knowledge. 

For the step 4 we need to consider the specific form of the 
feedbacks. In our case we have three forms of feedback (online 
web course, simulator, and clinical database) and to find the 
inquired form we do not apply the same process. One example of 
possible feedback is shown in the next figure: 

In the case of the form $consult part of web courses#, the content 
represents the links to the appropriate pages. It is made by 
sending keywords related to the target element to a semantic web 
model [8]. This feedback receives the knowledge elements to be 
considered, which are analyzed by the java program, using the 
ontology, and finally it produces a web page with a set of links to 
the online course, which are related to the targeted knowledge. 
The Java Engine code uses the open source tool Jena which offers 
libraries to work with OWL files. In the case of the sacro-illiac 
surgical operation, our system is based on two ontologies, one 
related to the pelvis anatomy, which is built on Standford 
university anatomy ontology [2], and the other one is related to 
the screw placement procedures, which we built and validated 
with our experts. 

For example if we give the knowledge element $Outlet radio 
control#, which is in relation with  anatomical ontology, the java 
engine finds the classes related to these knowledge elements and 
produces a set of links which come from the online course. 

The calculation of the content for the forms $clinical cases# and 
$simulator# is made according to the target and to the feedback 
objective. For the form $consult a clinical case#, it represents the 
relevant case like a query in a database.  

Finally, for the form $solve another problem with the simulator#, 
it represents the relevant problem to solve. The design can be 
made by applying inference algorithms in the Bayesian Network 
(that represents the knowledge domain) or by a decisional 
theoretical approach to select a closer problem [15]. In the present 
version we find the problem that has the most common didactical 
variables (kind of fracture, the hardness of the spongy bone) with 
the solved problem. 

5.3 Evaluation and discussion 
The evaluation of the didactical decision process was achieved in 
several steps. Because the utility function is additive, we 
evaluated first the dominance between different modelled factors 
and second we made a sensitive analysis to study the adaptability 
of the model.  Moreover, we made an evaluation to study the 
behaviour of the system in relation to the expert#s propositions. 
Here we present this last evaluation. The others evaluations show 
that, firstly, small changes in the assigned probabilities lead to 
different decisions of feedback target. It means that if there is one 
small change then the result of the calculus of the target feedback 
could be radically different. Secondly, the sensitivity level can be 
adjusted according to the weight given to the element state factor. 

The aim of the comparison with expert proposition is to verify 
and refine the model in relation to the human didactical 
feedbacks. Here the input is the simulated diagnosis of learner's 
state of knowledge (e1 [BPI 0.7, BPV 0.17, NBP 0.13], e 92 [BPI 
0.65, BPV 0.23, NBP 0.12], etc) and the output is the feedback 

proposed (Consult the parts of the course $entry point related to 
skin marks#, propose a problem, with a disjunction, to solve in the 
simulator, etc.). These scenarios are run by an expert in didactics 
and by our didactical decision system, afterwards they are 
compared. 

Because in our model the didactical hypotheses are customizable, 
the parameters have to be calibrated by an expert (in didactics for 
example) before using it. To make the adjustment of these 
parameters easier, we developed some interfaces and we also 
proposed a questionnaire that contains multiple-choice questions, 
(associate to didactical hypothesis) and we associate with each 
choice a possible value of the parameter. Therefore, the answers 
to this questionnaire allow initializing the calculation in the 
model.  

One example of scenario given to the experts is !after radio 
outlet, a student does not takes Inlet radio and modifies its 
trajectory in the wrong direction (the pin was placed a little low 
on the outlet, it starts and moves the point of entry down). The 
declarative control e93 (coupling outlet / inlet) comes NBP 30%, 
the declarative control e19 (risk of passing through the hole of the 
sacrum because too low on outlet) is BPV 50% and the pragmatic 
control e18 (link outlet position / position of patient) is 75% BPI". 
One expert proposition was: !propose the web page linked to the 
inlet/outlet coupling and propose an exercise related to the 2D and 
3D association". 

In relation to the configuration of the system, the answer of the 
questionnaire shows us a dependent relationship between the state 
of the knowledge elements and its characteristics while in our 
model these factors are independent (it is an additive function). 
For example, the question about what is more important to target 
a !not-valid knowledge" or a !not used knowledge", the expert 
answer depends on the type of the knowledge (declarative, 
pragmatic, etc.).  

In addition, regarding the output proposed by the expert, the 
results show that the system is able to produce relevant feedbacks 
for each scenario. Furthermore, some feedbacks are not exactly 
the same as the expert feedbacks. We identify two reasons for 
these differences. Firstly, the present model selects as target one 
(or some) element(s) that has(have) the maximal value of 
estimated utilities but in the expert propositions, the feedbacks 
can be related to some elements with positive values of estimated 
utilities and related as well to the elements with the maximal 
value. Secondly, the present model is not able to propose a 
sequential set of feedbacks (for instance, the expert proposes that 
feedback 1 follows feedback 2). In fact, the present model is able 
to take the historical dimension with the evolution of the 
probabilities, but it does not yet treat the historical dimension 
related to the previous feedback 

6. DISCUSSION
This system had to support an explicit representation of 
pedagogical and didactical hypotheses and, from a computer 
architecture point of view; the system had to be separated from 
the other modules. These choices are related to the idea of 
proposing a normative system, able to evaluate separately and 
also to allow the investigation of some didactical hypothesis to 
generate the feedback. 

The decision model thus integrates didactical hypotheses in order 
to represent the decision-maker's preferences. These didactical 
hypotheses are customizable; this choice makes our model 
dynamic and partially generic. Also, this kind of model intends to 



allow multidisciplinary work in order to investigate pedagogical 
feedback. 

From the epistemic dimension of the feedback point of view, the 
system cannot be completely generic but the design allows 
identifying the generic steps from the knowledge analysis 
dependant steps. 

In relation to the adaptive dimension of the feedback, the system 
is able to adapt the feedback to some epistemic considerations 
about the user and the available resources. Indeed, this adaptive 
dimension takes into account only the knowledge factors. It 
doesn#t take into account other factors like the morale or 
attention. Also, as pointed out by Woolf ([23] p. 133), it is 
necessary to integrate different teachers# strategies: A single 
teaching strategy was implemented within each tutor with the 
thought that this strategy was effective for all students. However, 
students learn at different rates and in different ways, and 
knowing which teaching strategy (…) is useful for which student 
would be helpful. This section suggests the need for multiple 
teaching strategies within a single tutor so that an appropriate 
strategy might be selected for a given student”.  

The reliability of our model depends on the accuracy of diagnosis 
results and the best set of parameters. Here it is also necessary to 
refine the model using real data in order to improve its structure, 
the conditional probability and the decision factors by using a 
method of automatic learning from data.  

Moreover, the evaluation indicates that it seems necessary to 
consider not only the history of the student activity but also the 
dynamic aspect linked to the decisions.  Indeed, in the classical 
approach the decision is in relation to the predictive aspect of the 
student model ([16], [2]) i.e. it calculates the consequences of the 
feedback on the predictive student model. However, it appears 
that the dynamic aspects concern not only the student factors but 
also the resources or the decision itself. 

The data collection seems to be the perspective#s keystone in 
order to improve the present model but also to go forward in this 
kind of research. However, the data to be collected it is not only 
the classical data in the domain of learning systems, i.e. the data 
from the student, but also the data linked to the feedback decision. 
This kind of collection will be more centred on the analysis of the 
decision process for the feedback production. 
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