Eliciting student explanations during tutorial dialogue for
the purpose of providing formative feedback
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ABSTRACT

In this paper we explore the question of whether additional
benefits can be derived from providing formative feedback
on students’ explanations given the difficulties of accurately
assessing them automatically. We provide a preliminary
evaluation of an approach in which students assist in in-
terpreting their own explanations and we lay out our plans
for evaluating the effectiveness of a natural-language intelli-
gent tutoring system’s feedback to that interpretation effort.
The preliminary evaluation suggests that students respond
well to the approach. While their interpretation assistance
may be similar to an automated explanation matcher, they
continue to provide explanations throughout their interac-
tions.
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1. INTRODUCTION

Numerous studies suggest that self-explanations can be more
beneficial to students than explanations from others (e.g.
[3]). In the context of an automated learning environment
this raises the question of whether additional benefit can be
derived from providing formative feedback on any explana-
tions the student enters when the automated understanding
of those explanations remains a major obstacle. Must we be
satisfied with the self-explanation effect or can and should
we do more?

Previous work has attempted to recognize natural language
explanations and then engage in a natural language dialogue
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with the student to refine and improve those explanations
(e.g. [11]). And more recent work has attempted to field
dialogue systems that incorporate more knowledge intensive
automated recognition of students’ elaborations during dia-
logue [4]. But so far, recognizing what the student meant is
still very limited. And even if we step away from attempts
at actual understanding, the performance for matching to
canonical sets of answers is still relatively low (e.g. [5, 12])
compared to what can be achieved with short answer re-
sponses (e.g. [13]). Perhaps even more troubling is how
sensitive students are to a system’s failure to understand
them [4]. Although a system can recover and move forward
in a coherent manner, the students notice the lack of under-
standing. One possibility for this sensitivity may be that the
errors are often quite different from those a human makes
(e.g. the system fails to recognize a response as correct but
a human clearly would).

Related work, which studied the impact of decisions about
dialogue tactics [2], seems to have avoided some of these is-
sues by substituting a human interpreter (wizard) for the
automated interpreter. Omne goal of this substitution was
to reduce the confounds of misunderstandings so that the
system could focus on evaluating decision policies regarding
whether to elicit or tell the explanations and justifications
for statements made either by the system or the student.
The human interpreter was presented with a list of canonical
answers and was asked to find the best match for the stu-
dent’s response or to select “none of the above”. There were
significant differences in learning based just on varying deci-
sion policies about whether to elicit or tell the same content.
This result suggests that being able to request explanations
and justifications and being able to reduce the confounds of
errors in matching to canonical answers has potential. But
is there a practical way to include a human interpreter in a
classroom setting? And how sensitive are students to prob-
lems that arise if their answer is close to correct but not a
good match for any of the canonical answers?



First we will introduce the Rimac' system and its experi-
mental setting and our approach for eliciting and assessing
students’ responses to requests for explanations/justifications.
Next we will describe the data we have collected and provide
a preliminary evaluation of the success of our approach for
eliciting explanations/justifications. Finally, we will lay out
our plans for exploring if there is value added to providing
feedback on students’ explanations.

2. THE RIMAC SYSTEM

Rimac is a natural-language intelligent tutoring system that
engages students in dialogues that address physics concepts
and principles, after they have solved quantitative physics
problems. Much research has been devoted to identifying
features of tutorial dialogue that can explain its effectiveness
(e.g., [1]), so that these features can be simulated in natural-
language tutoring systems. One hypothesis is that the highly
interactive nature of tutoring itself promotes learning. Sev-
eral studies indicate that our understanding of interactivity
needs refinement because it cannot be defined simply by the
amount of interaction nor the granularity of the interaction
but must also take into consideration how well the interac-
tion is carried out (e.g., [2]).

This need for refinement suggests that we should more close-
ly examine the linguistic mechanisms evident in tutorial dia-
logue. Towards this end, we first identified which of a subset
of co-constructed discourse relations correlate with learning
and operationalized our findings with a set of nine decision
rules which we implemented in Rimac [9]. To test for causal-
ity, we created two versions of Rimac: an experimental ver-
sion that deliberately executes the nine decision rules within
a Knowledge Construction Dialogue (KCD) framework, and
a control KCD system that does not intentionally execute
these rules. One of the rules in the experimental version of
Rimac that is of particular relevance for this paper is: If
the student gives no explanation for an answer to a complex
question then ask for one.

Rimac was built using the TuTalk tutorial dialogue toolkit
[6] but has been enhanced with additional dialogue features
such as reformulation of student input (e.g., [7]). The dia-
logues are tutor-initiative only and are primarily short an-
swer questions in order to keep the accuracy of automatic
recognition high. However, the system does request student
explanations at a few key points in the dialogues. It does
not attempt automatic recognition of these responses but
instead always follows-up with multiple choice answers for
the explanation question and a request that the student se-
lect the best match for the explanation she just provided.
In effect, we are asking the student to fulfill the role of a hu-
man interpreter for the system. We give the students brief
verbal instructions for what is expected of them and why as
we will explain in more detail below.

Figure 1 is an excerpt of an interaction between one of the
students in our evaluation set and Rimac. This excerpt
shows the system requesting an explanation at line 3. The

'Rimac is the name of a river whose source is in the An-
des. Its name is a Quechua word meaning “talking;” hence
the nickname for Rimac: “talking river.” We thus consid-
ered Rimac to be well suited to a dialogue system that we
intended to embed in the Andes tutoring system.

1. T: We talked about the acceleration on the way up and
on the way down, but what about at the very top of
the jump? What was the direction of the acceleration
at the top?

S: zero
T: Why do you think there wasn‘t any acceleration?

. S: it had a zero velocity

oUos W

. T: Thanks! So what below is the best match for what
you just entered? [menu choices: ‘Since the kangaroo is
not moving, there isn‘t any acceleration | The kangaroo
is changing direction, so it doesn‘t have an acceleration
| I guessed | None of the above‘]

6. S: Since the kangaroo is not moving, there isn‘t any
acceleration

7. T: There actually was acceleration at the top of the
jump, even though the kangaroo wasn‘t moving.

8. T: The kangaroo wasn‘t moving for just a very brief
moment and it was like that because its velocity was
switching from upward to downward. To switch from
an upward velocity to a downward velocity, the kanga-
roo‘s velocity must reach a point where it is 0 m/s.

9. T: Since acceleration represents the change in velocity
and the velocity was changing in this situation, the
kangaroo‘s acceleration must be non-zero.

Figure 1: Excerpt of actual student interaction
that requests student’s assistance with interpreta-
tion along with the resulting formative feedback

student provides her response and then the system asks the
student to select the best match for her response at line 5.
The system then follows-up in lines 7-9 with formative feed-
back that is appropriate for what the student selected as the
best match for her response.

3. THE EXPERIMENTAL DESIGN

Students in five Pittsburgh area high schools interacted with
one of the two versions of Rimac during two course units
(kinematics and dynamics). They used the system for one
to two class periods per unit. In this paper, we examine the
dialogues from the kinematics unit only.

A day or two prior to using the system, students first took
a pre-test, and then completed a homework assignment in
which they solved four quantitative physics problems. In a
subsequent class, they used the Rimac system and finally
during the next class meeting took a post-test.

Just before students began using Rimac, we introduced them
to the system and read the following to them regarding re-
quests for explanations:

“Sometimes it will ask you to explain your
response. This is regardless of whether it thinks
you were right or wrong.



When it asks you to explain, please be sure to
type in what you were thinking that lead you to
your answer. You may have to think a bit about
it. If you realize that you guessed or used your
intuition, that’s fine; just type that.

It will then follow-up with a multiple choice
question and ask you to pick what is the best
match for what you just wrote. It is important
that you pick the best match for the explanation
you just wrote and not what looks like the best
explanation. Rimac needs to know what your
thought process was so it can do a better job
of helping you understand the physics concepts
involved in solving the problem.

It asks you to do this matching for explana-
tion questions because it cannot understand ex-
planations accurately enough. However, for all
the other answers you type in it is fairly accu-
rate.”

As the student and system begin the review of an assigned
homework problem, Rimac first instructs her to view a brief
video that describes how to solve the homework problem and
then they engage in a reflective dialogue about that problem.
See [10] for a more detailed description of the pilot study and
planned analyses for testing the nine interactivity decision
rules. Note that in this paper we are focusing on just one of
these nine rules.

4. EVALUATING THE APPROACH FOR

ELICITING EXPLANATIONS

We visited the high schools at two different points during
their physics courses, once when the students were ready to
learn the material covered in Rimac’s kinematics problems
and later when they were ready for Rimac’s dynamics prob-
lems. The students who used the experimental version of Ri-
mac, in which the interactivity rules are implemented, had
the opportunity to discuss three kinematics problems and
three dynamics problems. In this preliminary evaluation of
our elicitation approach, due to time constraints, we have
examined the explanation request data for the three kine-
matics problems only and for just a subset of the students
who used this version of the system (93 of 193 students).

From this subset of the data, we extracted and reviewed the
dialogue data for 16 of the 18 system turns where students
were asked to interpret their own responses. Two of the 18
turns were requests to provide equations as justifications so
we excluded those for this analysis. Although there are 93
students in this data sample, not all questions are asked of
all students. The questions that are asked depend on the
student’s responses during the dialogue. In this sampling of
students there were 251 instances of requests for explana-
tions/justifications to examine. We reviewed each response
and categorized the student’s initial typed response as either
relevant to the question asked, an acknowledgement that she
had guessed or didn’t know, or irrelevant to the physics do-
main. We listed this analysis per problem in order to see if
there is any indication that the problem, the order in which
the problems were discussed or the types of questions asked
might influence the students’ behaviors.

1. T: Why do you think that acceleration is upward?
2. S: nevermind

3. T: Which of the following is the best match for what
you just entered? [menu choices: ‘Because the kanga-
roo changed direction | Acceleration is always in the
opposite direction as velocity | I guessed | None of the
above']

4. S: Acceleration is always in the opposite direction as
velocity

Figure 2: Example of an actual student reaction
when asked to explain an incorrect answer

Problem 1 | Problem 2 | Problem 3

relevant content | 88% (123) | 68% (50) | 72% (28)
guessed /idk 5% (9) 15% (11) 23% (9)
irrelevant content 3% (7) 16% (12) 5% (2)

Table 1: A categorization of students’ responses to
requests for explanations

Table 1 shows that students rarely refused to respond (3-5%)
for problems 1 and 3. Refusal to answer increased notice-
ably for problem 2 (16%) so it does appear that the ques-
tions asked for this problem may have impacted students’
willingness to respond.

While most student replies that we counted as refusals to
answer were simply replies of “because”, we noted in prob-
lem 2 some instances of “ok” and “never mind” as in the
excerpt shown in Figure 2. Note that in this case the sys-
tem is asking the student to explain her incorrect answer.
After saying “nevermind” the student may be selecting what
she was thinking or something that looked like a true state-
ment. Of the 16 system turns evaluated, 8 were in response
to wrong answers. However, problem 2 accounted for 6 of
those requests and problem 3 for the rest. The increased re-
fusal to answer for problem 2 may be because there are more
requests to explain incorrect responses. When students self-
explain and recognize they have made an error, it appears
they sometimes try to figure out how to retract their answer
or evade the expected follow-up. However, if the student
does not realize her error, it does seem that the formative
feedback could be beneficial. For example, consider the dia-
logue excerpt shown in Figure 3 where the student is asked
to explain a wrong answer in line 6 and the formative feed-
back is provided in lines 8-13.

Next we evaluated how well the students performed in their
role as human interpreter. We reviewed each response by
following the training given to human interpreters for the
experiments described in [2] which used the Cordillera sys-
tem (i.e. how would I match this response to the choices
provided). One of the reviewers of the students’ responses
(the main author) was also one of the human interpreters
(wizard) for the first two versions of the Cordillera system.
So it could be instructive to informally compare and contrast
the interpretation tasks for the two systems and populations
from the perspective of a wizard.



1. T: If the stone is thrown with a larger horizontal initial
velocity, what happens to the time spent in the air (i.e.
will it be the same or larger?)

S: larger
T: Hmm...So why did you think this?

A

S: more time

o

T: Thanks for explaining your reasoning.

6. T: So which of the reasons below best matches your
explanation above for why you think the stone will stay
longer in the air? [menu choices: ‘I used my intuition
but I am not sure how to explain it in physics terms |
Throwing it harder means the stone will not fall right
away but will continue horizontally for a longer time
before beginning to fall | Throwing it harder makes the
stone spin and float on the air better | I've seen this
happen before | Because it is going farther, it will take
longer to get there | Another reason’]

7. S: Because it is going farther, it will take longer to get
there

8. T: That doesn‘t sound right to me. What equation
would you use to reason that out? [menu choices:
‘dp = va¥t|dy = Vext+0.5%a, ¥ 2|0 f2 = vi2+2xa,*dy ]

9. S:dy = vy kt+0.5%ay *t2
10. T: Almost. What is the value of a,?
11. S: 0 m/s?
12. T: Right, so then the equation becomes d, = v * t.

13. T: The horizontal component of the motion is constant
velocity (not accelerating), so dy = vy * t applies. In
this case, because the velocity is bigger, the displace-
ment will be bigger, but the time will not be.

Figure 3: Excerpt of actual student interaction
where system requests explanation of wrong re-
sponse

The Cordillera students were all undergraduates and their
explanations were longer and required more effort to inter-
pret and match. However, there was usually one clear candi-
date for the match and when matching to a correct response
the criteria were that the necessary and sufficient details
were present or could be easily inferred and no additional
details signalled an error in thinking. The choices were au-
thored to provide the minimum that would be needed to
qualify as a complete answer. While wizards did not have to
be physics experts, they did need to understand the physics
concepts being discussed.

In contrast, the Rimac students were all in high school and
their explanations were relatively short. We did not expect
students to do well with a set of minimal match choices since
we assume you need to understand the physics concepts to
determine whether an answer actually matches. So instead
the Rimac dialogue authors provided responses for matching

Context: Problem solved for homework “A red colored
stone is thrown horizontally at a velocity of 5.0 m/s from the
roof of a 35.0 m building and later hits the ground below.
What is the red stone’s horizontal displacement? Ignore the
effects of air friction.”

Question: Why did we need to find the time first?
Choices:

1. time is the same in both directions
2.d=vt

3. we don’t have enough information to solve for displace-
ment in the horizontal direction

4. we can find the displacement if we know how long it is
moving at the given velocity

5. another reason

Figure 4: An example of where some choices offered
to students for matching are related to the same
underlying explanation (as in choices 1,3 and 4)

that were intended to be closer to what a student might say
and were based on input from teachers and responses col-
lected during pilot testing. As a result some of the choices
offered to students for matching varied only in the detail
provided or how it was expressed. But these similar choices
present the same formative feedback when selected. For ex-
ample, in Figure 4, choice 2 is close to a good explanation
but requires more detail to be complete while choices 1,3
and 4 are all related to the same underlying explanation.
If the student selects 1,3 or 4 as a match then the under-
lying explanation is presented as an acknowledgement and
may be interpreted by the student as a reformulation. If the
student selects choice 2 then the system provides scaffolding
that elicits the missing details.

So during our review of students’ response matching, we
selected all that we considered to be potential matches and
not just the best match. The rationale was that if a student
selected one of a similar set of responses that had details
that were missing in her response, a wizard cannot know
whether the student’s self-explanation included these details
and she chose not to express them or whether she thought
more detail was necessary and was trying to avoid formative
feedback.

After reviewing the student responses we counted the num-
ber of times we disagreed with their match choices. Again
we present the results per problem. Table 2 shows that stu-
dents’ performance may be similar to that of an automated
explanation matcher. The larger disagreement for problem
2 could be due to students possibly trying to evade further
feedback when they were asked to explain an incorrect an-
swer or could be related to the questions or answer choices
offered. If deserves a closer look in future work to see if a
reason can be identified.

However, overall the students seem less perturbed by the
results of their matching behaviors. They still continued
to respond to the requests for explanations as shown by the



Problem 1 | Problem2 | Problem 3

agree | 78% (108) | 59% (43) | 74% (29)

disagree | 22% (31) | 41% (30) | 25% (10)
Table 2: Reviewer agreement with students’

matches of their responses

small increase in irrelevant content in Table 1, which remains
low with an increase from 3 to 5% when moving from the first
to last problem. The increase from problem 1 to problem 3
in “guessed/idk” could be due to fatigue, the explanations
requested or more specifically asking for more explanations
for incorrect answers in problems 2 and 3. Although the
number of “guessed/idk” decreased from problem 2 (11) to
problem 3 (9), recall that some students completed problems
in two class sessions and some in one. This was because of
differences in the length of classes across schools.

To give an idea of an upper bound for agreement, we do not
expect 100% agreement between the reviewer and a trained
human interpreter (wizard). When offline reviewers exam-
ined the selection choices made by the real-time human in-
terpreters for the Cordillera system for just the most difficult
student responses (i.e. those that fell into the “none of the
above” category), the reviewer disagreed with 1% of the as-
signments to this category [8]. However, the lower bound
that is allowable for matching when students are acting as
the interpreter is still an open question. It will depend on
whether formative feedback on the explanation related to
their match choice is beneficial.

By the time of the workshop, we expect to have completed
the above analyses for all students for the kinematics prob-
lems.

S. PLANS FOR EVALUATING THE FORM-
ATIVE FEEDBACK GIVEN ON EXPLA-
NATIONS

Recall that in the instructions we read to students we asked
that they match the response they gave rather than pick-
ing what looks like the best response. We offer motivation
to do this by pointing out that the system needs to know
their thought processes so that it can provide better help
for them. We are assuming that the formative feedback of
a good match will be better than the “none of the above”
feedback. However, this remains to be seen.

But because our experiment was not testing this specific hy-
pothesis, we cannot answer this question directly (e.g. com-
pare to a condition in which the formative feedback is always
the “none of the above” feedback). However, we can test for
correlations between various match qualities (i.e. trained
reviewer agreed or disagreed with student) and learning of
the concepts addressed by the requested explanation. This
would suggest how important it is for students to receive
more adapted formative feedback. In addition, we can test
for gains on concepts covered in an explanation when the
student’s explanation is incorrect and relative to the qual-
ity of the match the student provided. This could suggest
whether the feedback that followed was beneficial.

This preliminary analysis of the effects of formative feed-
back is forthcoming. We are currently scoring the pre and
post-tests, which (when completed) will allow us to measure
learning of particular concepts.
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