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Preface 

The moocshop surveys the rapidly expanding ecosystem of Massive Open Online 

Courses (MOOCs). Since late 2011, when enrolment for Stanford’s AI class went viral, 

MOOCs have been a compelling and controversial topic for university faculty and 

administrators, as well as the media and blogosphere. Research, however, has played a 

relatively small role in the dialogue about MOOCs thus far, for two reasons. The first is 

the quickly moving landscape, with course scale and scope as the primary drivers for 

many stakeholders. The second is that there has yet to develop a centralized space 

where researchers, technologists, and course designers can share their findings or come 

to consensus on approaches for making sense of these emergent virtual learning 

environments.  

Enter the moocshop. Designed to foster cross-institutional and cross-platform 

dialogue, the moocshop aims to develop a shared foundation for an interdisciplinary 

field of inquiry moving forward. Towards this end, we invited researchers, 

technologists, and course designers from universities and industry to share their work 

on key topics, from analytics to pedagogy to privacy. Since the forms and functions of 

MOOCs are continuing to evolve, the moocshop welcomed submissions on a variety of 

modalities of open online learning. Among the accepted papers and abstract-only 

submissions, four broad categories emerged: 

 

 Position papers that proposed lenses for analyses or data infrastructure 

required to lower the barriers for research on MOOCs 

 Exploratory analyses towards designing tools to assess and provide feedback 

on learner knowledge and performance 

 Exploratory analyses and case studies characterizing learner engagement with 

MOOCs 

 Experiments intended to personalize the learner experience or affect the 

psychological state of the learner  

 

These papers and abstracts are an initial foray into what will be an ongoing 

dialogue, including discussions at the workshop and a synthesis paper to follow based 

on these discussions and the proceedings. We are pleased to launch the moocshop at 

the joint workshop day for AIED and EDM in order to draw on the expertise of both 

communities and ground the workshop discussions in principles and lessons learned 

from the long community heritage in educational technology research. Future 

instantiations of the moocshop will solicit contributions from a variety of different 

conferences in order to reflect the broad, interdisciplinary nature of the MOOC space. 
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Two Models of Learning: Cognition Vs. Socialization  

 
Shreeharsh Kelkar1 

 
1 Massachusetts Institute of Technology 

United States 

skelkar@mit.edu 

Abstract. In this paper, I bring out the contrasts between two different 

approaches to student learning: that of computational learning scientists and 

socio-cultural anthropologists, and suggest some implications and directions for 

learning research in MOOCs. Computational learning scientists see learning as 

a matter of imbibing particular knowledge propositions, and therefore 

understand teaching as a way of configuring these knowledge propositions in a 

way that takes into account the learner's capacities. Cultural anthropologists see 

learning as a process of acculturation or socialization--the process of becoming 

a member of a community. They see school itself as a social institution and the 

process of learning at school as a special case of socialization into a certain kind 

of learning style (Lave 1988); being socialized into this learning style depends 

on the kinds of social and cultural resources that a student has access to.  

 

Rather than see these approaches as either right or wrong, I see them as 

productive leading to particular kinds of research: thus, while a computational 

model of learning leads to research that looks at particular paths through the 

course material that accomplish the learning of a concept, an anthropological 

approach would look at student-student and student-teacher forum dialog to see 

how students use language, cultural resources and the affordances of the forum 

itself to make meaning. I argue that a socialization approach to learning might 

be more useful for humanities courses where assignments tend to be essays or 

dialogue. Finally, I bring up the old historical controversy in Artificial 

Intelligence: between the Physical Symbol Systems hypothesis and situated 

action. I argue that some of the computational approaches taken up by the 

proponents of situated action may be useful exemplars to implement a 

computational model of learning as socialization. 

Keywords: cultural anthropology, learning models, socialization 
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welcome to the moocspace: 

a proposed theory and taxonomy for                         

massive open online courses 

Emily Schneider1 

 
1 Lytics Lab, Stanford University, 

Stanford, CA 

elfs@cs.stanford.edu 

Abstract. This paper describes a theoretical framework and feature taxonomy 

for MOOCs, with the goal of developing a shared language for researchers and 

designers. The theoretical framework characterizes MOOC design goals in 

terms of stances towards knowledge, the learner, and assessment practices, 

taking as a starting point the affordances of the Web and digital learning 

environments. The taxonomy encompasses features, course structures, and 

audiences. It can be mapped onto the theoretical framework, used by 

researchers to identify similar courses for cross-course comparisons, and by 

instructional designers to guide design decisions in different dimensions. Both 

the theory and the taxonomy are intended in the spirit of proposal, to be refined 

based on feedback from MOOC researchers, designers, and technologists. 

Keywords: taxonomy, knowledge organization, MOOCs, online learning 

theory 

 

1   Introduction 

If learning is the process of transforming external information into internal 

knowledge, the Internet offers us a universe of possibilities. In this context, MOOCs 

are simply a well-structured, expert-driven option for openly accessible learning 

opportunities. As of mid-2013, the boundaries of the moocspace
1
 remain contested, 

with opinions (data-driven or no) generated daily in the blogosphere, the mainstream 

media, and an increasing number of academic publications. Meanwhile, decisions 

being made at a breakneck speed within academic institutions, governmental bodies, 

and private firms. What of the earlier forms of teaching and learning should we bring 

forward with us into networked, digital space, even as its interconnected and virtual 

                                                           
1 Other types of open online learning opportunities that lend themselves to be named with 

similar wordplay include the DIYspace (e.g. Instructables, Ravelry, MAKE Magazine), the 

Q-and-Aspace (e.g. Quora, StackOverflow), the OERspace (indexed by such services as 

OERCommons and MERLOT), the coursespace (freely available course syllabi and 

instructional materials that are not officially declared or organized as OER), and the 

gamespace (where to even begin?). Then there is Wikipedia, the blogosphere and newsites, 

curated news pages (both crowdsourced, e.g. Slashdot, and personalized, e.g. Pinterest), and 

the great morass of affinity groups and individual, information-rich webpages.  
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nature allow us to develop new forms? How can an interdisciplinary, distributed 

group of researchers, course designers, administrators, technologists, and 

commentators make sense of our collective endeavor?  

 Towards a shared language for the how and what we are creating with MOOCs, I 

offer two frameworks. Firstly, for orientation towards the goals we have when we 

design MOOCs, I propose a theoretical framework that characterizes our assumptions 

about knowledge, the learner, and assessments. The framework takes as a starting 

point the affordances of the Web and digital learning environments, rather than those 

of brick-and-mortar learning environments.  

 Secondly, for grounding in the concrete, I offer a taxonomy of MOOC features, 

structures, and audiences, designed to capture the broad scope of MOOCs in terms of 

lifelong learning opportunities. Each element of the taxonomy can be mapped onto 

the theoretical framework to make explicit the epistemological stances of designers. 

The taxonomy can be used by researchers as a way of identifying similar courses for 

cross-course comparisons, and by instructional designers as a set of guideposts for 

potential design decisions in different dimensions. Finally, in the closing section of 

the paper, I provide an example of mapping the theory onto features from the 

taxonomy and introduce an application of the taxonomy as the organizing ontology 

for a digital repository of research on MOOCs, also referred to as the moocspace. 

Each framework is meant as a proposal to be iterated upon by the community. 

2 A Proposed Theory (Orientation) 

MOOC criticism and design decisions have largely been focused on comparisons with 

brick-and-mortar classrooms: how do we translate the familiar into these novel digital 

settings? Can classroom talk be replicated? What about the adjustments to teaching 

made by good instructors in response to the needs of the class? It is imperative to 

reflect on what we value in in-person learning environments and work to maintain the 

nature of these interactions. But to properly leverage the networked, digital 

environment to create optimal learning opportunities for MOOC participants, we also 

need to compare the virtual to the virtual and explore opportunities to embody the 

core principles of cyberspace in a structured learning environment.  

Techno-utopian visions for the Web have three dominant themes: participatory 

culture, personalization, and collective intelligence. Participatory culture highlights 

the low cost of producing and sharing digital content, enabled by an increasing 

number of authoring, curatorial, and social networking tools [1]. In this account, 

personal expression, engagement, and a sense of community are available to any 

individual with interest and time—an ideal that MOOCs have begun to realize with 

well-facilitated discussion boards, and somewhat, with peer assessment. Some 

individual courses have also encouraged learners to post their own work in a portfolio 

style. But overall there are not many activities in this vein that have been formalized 

in the moocspace.  

Participatory culture’s elevation of the self is echoed in the personalized 

infrastructure of Web services from Google to Netflix, which increasingly seek to use 

recommendation engines to provide customized content to all users. The algorithmic 
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principles of this largely profit-driven personalization are extendable to learning 

environments, though desired outcomes for learning are more complex than the 

metrics used for business analytics--hence the need for learning analytics to develop 

robust and theory-driven learner models for adaptive environments. Visions of 

personalized digital learning include options for learners to engage with the same 

content at their own pace, or to be treated to differentiated instruction based on their 

preferences and goals [2]. In MOOCs this will require robust learner models based on 

interaction data and, likely, self-reported data as well. Analytics for this level of 

personalization in MOOCs have yet to be achieved but personalization is occurring 

even without adaptive algorithms, as distributed learners are primarily interfacing 

with content at their own machines, at their own pace. Finally, collective intelligence 

focuses on the vast informational network that is produced by and further enables the 

participatory, creative moments of the users of the Web [3]. Each individual learner in 

a MOOC enjoys a one-to-many style of communication that is enabled by discussion 

boards and other tools for peer-to-peer interaction. In the aggregate, this becomes 

many-to-many, a network of participants that can be tapped into or contributed to by 

any individual in order to share knowledge, give or get assistance with difficult 

problems, make sense of the expectations of faculty, or simply to experience and add 

to the social presence of the virtual experience. 

These themes are embodied in a range of epistemological stances towards two core 

dimensions of learning environments: the location of knowledge and conceptions of 

the learner. Assessment is the third core dimension of the learning environment [4]. 

The technology enables a wide number of assessment types but the stances towards 

assessment follow not from the affordances of the Web but from the standard 

distinction between formative and summative assessments. However, instead of using 

this jargon, I choose language that reflects the nature of the interaction enabled by 

each type of assessment, as the central mechanism of learning in online settings are 

interactions among learners, resources, and instructors [5] Finally, it is important to 

note that this framework treats the instructor as a designer and an expert participant, 

which also leaves room for the expert role to be played by others such as teaching 

assistants.  

 

Knowledge: Instructionist-participatory 

Where are opportunities to acquire or generate knowledge? Does knowledge 

live purely with the instructor and other expert participants or does it live in 

the broad universe of participants? Who has the authority to create and 

deliver content? Is the learning experience created solely by the course 

designers or is it co-created by learners?  

 

Learner: Personalized-Collectivist  
Are learners cognitively and culturally unique beings, or members of a 

network? Do the learning opportunities in the course focus on the individual 

learner or on the interactions of the group?  

 

Assessment: Evaluation-Feedback 
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What opportunities are provided for learners to make explicit their progress 

in knowledge construction? Are assessments designed to tell learners if 

they’re right or to give them guidance for improvement? 

 

The poles of each stance, as named above, are opposed to each other 

epistemologically, but one end is not necessarily preferable to the other. The choice 

between each stance is predicated on what is valued by the designer in a learning 

environment or learning experience, and what is known about effective instruction 

and learning activities from the learning sciences. Each feature of the course can be 

characterized along one or more of these dimensions (see Section 4.1). This means 

that multiple stances can exist in the same course. 

3   A Proposed Taxonomy (Grounding) 

The proposed taxonomy includes two levels of descriptive metadata. The first level 

characterizes course as a whole and is meant to evoke the broad set of opportunities 

available for sharing knowledge with MOOCs. The second level takes in turn each 

element of the interactive learning environment (ILE) and develops a list of possible 

features for the implementation of these elements, based on current and potential 

MOOC designs. The features on this level can also serve as a set of guidelines of 

options for course designers. In multiple iterations of the course, many of these fields 

will stay the same but others will change. Most fields will be limited to one tag but 

others could allow multiple (e.g. target audience in General Structure). 

The architecture and options for metadata on learning objects has been a subject in 

the field for quite some time, as repositories for learning objects and OER have 

become more common. While I am somewhat remiss to throw yet another taxonomy 

into the mix, I believe that it is important to represent the unique role of MOOCs in an 

evolving ecosystem of lifelong learning opportunities. Because the content and 

structure of a MOOC is not limited by traditional institutional exigencies of limited 

seats or approval of a departmental committee and accreditation agencies, it becomes 

a vessel for knowledge sharing, competency development, and peer connections 

across all domains, from computer science to music production and performance.
2
 As 

a technology it is agnostic to how it is used, which means that it can be designed in 

any way that our epistemological stances guide us to imagine. Education has goals 

ranging from knowledge development to civic participation and MOOCs can be 

explicitly designed to meet any of these goals.  

 

3.1 General MOOC Structure  

 

On the highest level, each MOOC needs to be characterized in terms of its subject 

matter, audience, and use. Table 1 presents the proposed categories and subcategories 

for the General MOOC Structure. With an eye towards future interoperability, where 

                                                           
2 That said, there is an ongoing conversation about integrating MOOCs back into the pre-

existing educational institutions, so the taxonomy must ne conversant with these efforts while 

also representing the vagaries of the moocspace as a separate ecosystem. 
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possible I use the terminology from the Learning Resources Metadata Initiative 

(LRMI) specification [7], or note in parentheses which LRMI field the moocspace 

categories could map onto.  

Table 1. Categories and Subcategories for General MOOC Structure 

• Name (LRMI) 

• Numeric ID (auto-generated) 

• Author (LRMI)  
 Faculty member 

• Publisher (LRMI) 
 Affiliated university or other 

institution  

• Platform 
• inLanguage (LRMI) 

 primary language of resource 

• Domain (about) 
 Computational /STEM – CS, 

math, science, computational 

social sciences, etc. 

 Humanist – humanities, non-

computational social sciences, 

etc. 

 Professional – business, 

medicine, law, etc. 

 Personal – health, thinking, 

speaking, writing, art, music, etc. 

• Level (typicalAgeRange or 

educationalRole) 
 Pre-collegiate; basic skills (i.e. gatekeeper 

courses, college/career-ready); 

undergraduate; graduate; professional 

development; life skills 

• Target audience (educationalRole) 
 Current students, current professionals, 

lifelong learners 

• Use  (educationalUse or 

educationalEvent) 
 Public course (date(s) offered), content for 

―wrapped‖ in-person course (location and 

date(s) offered) 

• Pace 
 Cohort-based vs. self-

paced  (learningResourceType or 

interactivityType) 

 Expected workload for full course (total 

hours, hours/week) (timeRequired) 

• Accreditation  
 Certificate available 

 Transfer credit 

 

 

3.2 Elements of the Interactive Learning Environment (ILE) 

 

The ILE is made up of a set of learning objects, socio-technical affordances, and 

instructional and community design decisions. These features are created by the 

course designers -- instructors and technologists – and interpreted by learners 

throughout their ongoing interaction with the learning objects in the course, as well as 

the other individuals who are participating in the course (as peers or instructors).3 The 

features of the ILE can be sorted into four distinct categories: instruction, content, 

assessment, and community. Table 2 lists out the possible features of the ILE, based 

on the current trends in MOOC design. As stated, this is a descriptive list - based on 

                                                           
3 The individual- and group-level learning experiences that take place in the ILE are enabled by 

the technological infrastructure of the MOOC platform and mediated by learner backgrounds 

(e.g. prior knowledge, self-regulation and study habits) and intentions for enrolling [8] as well 

as the context in which the MOOC is being used (e.g. in a ―flipped‖ classroom, with an 

informal study group, etc.). The relationship of these psychological and contextual factors to 

learning experiences and outcomes is a rich, multifaceted research area, which I put aside here 

to foreground the ILE and systematically describe the dimensions along which it varies.  
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the current generation of MOOCs – but will be expanded in the future, both to reflect 

new trends in MOOC design and to take a normative stance on potential design 

choices that are based in principles of the learning sciences or interface design. Some 

of the features are mutually exclusive (i.e. lecture types) but others could occur 

simultaneously in the same MOOC (i.e. homework structure). Most features will need 

to be identified by spending some time exploring the course, ideally while it is taking 

place. 

 
Table 2. Features of ILE  

 

Instruction 

 Lecture  

 ―traditional‖: 1-3 hrs/wk, 20+ mins each 

 ―segmented‖: 1-3 hrs/wk, 5-20 mins 

each 

 ―minimal‖: <1 hr/wk 

 Readings  

 Simulations/inquiry environments/virtual labs 

 Instructor involvement – range from highly 

interactive to ―just press play‖ 

Content 

 Domain (in General Structure)  

 Modularized  

 Within the course 

 connected with other 

MOOCs/OER 

 Course pacing 

 Self-paced  

 Cohort-based  

Assessment 

 In-video quizzes  

  multiple choice vs. open-ended 

 Homework structure  

 Multiple-choice  

 Open-ended problems  

 Performance assessments  

 Writing assignments or 

programming assignments 

 Videos, slides, multimedia 

artefacts 

 Group projects  

 Practice problems (non-credit bearing)  

 Grading form–Quantitative, Qualitative  

 Grading structure (relevant to all credit-

bearing assessments) 

 Autograded  

 Peer assessment, self-assessment, both 

 Multiple submissions  

Community  

 Discussion board 

 Social Media - Facebook group, 

Google+ community, twitter 

hashtag, reddit, LinkedIn, etc.  

 Blogs / student journals (inside 

or outside of platform) 

 Video chat (G+ hangout, 

Skype)  

 Text chat  

 

 

4   The Taxonomy, Applied 

4.1 Example of course mapping 

 

Each course feature can be mapped onto one or more epistemological stances. The 

course overall can then be characterized by the overall epistemological tendencies of 

the course features. Table 3 provides an example. 
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Table 3. Mapping ―Crash Course in Creativity‖ to the Taxonomy 

 

General Name: Crash Course in 

Creativity 

Author: Tina Seeling 

Publisher: Stanford 

Platform: NovoEd 

Domain: personal-thinking 

Level: life skills 

Target audience: lifelong learners 

Use: public course (fall 2012) 

Pace: cohort-based - collectivist 

Certificate: yes 

ILE and Stances  

Instruction Lecture: minimal – 5-10 mins/wk to inspire group projects – 

participatory 

Readings: free, from her book - instructionist 

Content Not modularized - instructionist 

Assessment One individual creative projects – participatory, individualist 

Three group creative projects – participatory, collectivist 

Peer grading with qualitative comments–participatory, feedback, 

collectivist 

Community Discussion board – participatory, collectivist 

OVERALL Participatory, collectivist, feedback 

 

4.2 Stances to guide best practices and analytics.  
 

The stances are not normative but do help specify which traditions of instructional 

and interface design should be turned to for guidance in best practices for designing 

resources. For example: instructionist lecture videos should follow the principles of 

multimedia learning, including balancing and integrating visual and verbal 

representations, relying on segmented (and learner-paced) narratives, and providing 

signaling mechanisms for the upcoming structure and content of a lecture. [9] The 

underlying epistemologies can also provide guidance about the type of analytics that 

are appropriate to for characterizing success in the design of the MOOC. For example, 

group-level outcomes may be more compelling for a collectivist MOOC – what is the 

overall level of interaction between learners, what kind of social networks form, with 

group projects can we characterize group composition or dynamics that lead to higher 

grades? 

 

4.3 Centralizing distributed science: a short description of the moocspace 

 

The taxonomy is a high-level, qualitative categorization of MOOCs that will allow 

for meaningful comparison across shared metrics about the courses. The taxonomy 

will be most usefully implemented in the moocspace – a digitized repository of 

knowledge about the research and production of massive open online courses – so 

named because it is an abstraction and reflection of the larger moocspace. The 

MOOC, abstracted, will be the central object of the moocspace, attached to standard 

metrics about the course, as well as reports on any research that has been done with 

data from that MOOC.4 Variations in metrics could be related to aspect of the course 

                                                           
4 Developing a small, meaningful set of shared metrics for MOOCs is currently an open 

question. Higher education in the US is characterized by enrollment rates at the beginning of 
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design, which are formalized in the taxonomy. Beyond descriptive data, a transparent, 

well-organized research base will enable an incremental and cumulative set of 

evidence from both exploratory studies (e.g. building learner models based on 

observational data) and experiments on the multiplicity of instructional and interface 

design features. A well-documented experiment in a small number of MOOCs could 

be replicated elsewhere by other researchers, and the findings could be synthesized by 

a third group by comparing results across variations in course features. 

The moocspace could also be expanded to include the content of the MOOC itself, 

if licensing decisions are made that will allow MOOCs to become re-usable and re-

mixable pieces of OER. This implementation would involve paradata on the uses of 

MOOC materials and incorporate a community aspect where faculty who use the 

materials could talk about what worked or didn’t work in their courses. Finally, the 

MOOC object could also be attached to open datasets on MOOCs. The individuals 

who using such datasets may not be inside the academy, which underscores the need 

to build a structure for sharing newly developed knowledge back with the community. 

If the moocspace is to be implemented, we will need develop consensus on the 

features in the taxonomy, as well as a strategy for tagging existing courses 

(crowdsourced? local experts?) and for adding new features to the taxonomy.  

 

Acknowledgments. Much thanks to Kimberly Hayworth for her role in the initial 

brainstorming of MOOC features; thanks also to the Lytics Lab, Roy Pea, Zach 

Pardos, and the anonymous moocshop reviewers for feedback on earlier versions. 

4   References  

1. Jenkins, H. (2009) Confronting the challenges of participatory culture: Media education for 

the 21st century. Cambridge, MA: MIT Press. 

2. National Educational Technology Plan. (2010). Transforming American Education: 

Learning Powered by Technology. Washington, DC: US Department of Education, Office of 

Educational Technology. 

3. Lévy, P., & Bonomo, R. (1999). Collective intelligence: Mankind's emerging world in 

cyberspace. Perseus Publishing. 

4. Brown, A. L., & Cocking, R. R. (2000). How people learn. J. D. Bransford (Ed.). 

Washington, DC: National Academy Press. 

5. Anderson, T.  "Towards a theory of online learning." (2004) Theory and practice of online 

learning: 3-31. Athabasca University, retrieved from 

http://cde.athabascau.ca/online_book/ch2.html 

6. LRMI Specification Version 1.1 (Apr 28, 2013). www.lrmi.net/the-specification 

7. Grover, S., Franz, P., Schneider, E. and Pea, R. (2013) ―The MOOC as Distributed 

Intelligence: Dimensions of a Framework for the Design and Evaluation of MOOCs.‖ In 

Proceedings of the 10th International Conference on Computer Supported Collaborative 

Learning (Madison, WI, June 16-19). 

8. Mayer, R E., ed. (2005) The Cambridge handbook of multimedia learning. Cambridge 

University Press. 

                                                                                                                                           
the semester, and persistence rates and completion rates over time. In addition to enrollment 

and activity rates initially and over time, for open courses it may be more appropriate to 

examine levels of engagement, time-on-task, or participation on the discussion forum. 

9

http://cde.athabascau.ca/online_book/ch2.html
http://www.lrmi.net/the-specification


Roll Call: 

Taking a Census of MOOC Students  

Betsy Williams1, 

 
1 Stanford University, Graduate School of Education, 520 Galvez Mall, 

CERAS Building, 5th Floor, Stanford, CA, 94305, USA 

{betsyw@stanford.edu}  

Abstract. This paper argues for spending resources on taking a high quality 

census or representative survey of students on who enroll with all major MOOC 

platforms.  Expanded knowledge of current students would be useful for 

business and planning, instruction, and research.  Potential concerns of cost, 

privacy, stereotype threat, and maladaptive use of the information are discussed.   

Keywords: MOOC population, education, data collection, survey, demography 

1   Introduction 

Quantitative education researchers are accustomed to piecing together complex 

analyses from the rather lifeless data available from administrative records and test 

scores.  The fine-grained data collected by MOOCs—including detailed knowledge of 

students’ attendance and attention patterns, response on formative and summative 

assessments, and discussions with instructors and fellow students—offer an 

opportunity for much greater understanding of teaching and learning.   

Unfortunately, MOOCs are not making the most out of their big data because they 

are not collecting enough data on students’ backgrounds.  Borrowing Bayesian terms, 

platforms have few priors on students, even though these priors can have great 

predictive power if paired with existing knowledge, from fields like developmental 

psychology and higher education theory.   

The major platforms optimize sign up to make becoming part of the platform as 

quick as possible, leaving students mostly mysterious.  EdX requests a few valuable 

pieces of demographic data upon registration, asking for voluntary identification by 

gender, year of birth, level of education completed, and mailing address without a 

clear reason why.1  Coursera’s information gathering is more like social media or a 

dating site, encouraging students who visit the profile page to share their age, sex, and 

location.  As part of its “About Me” prompt, Coursera suggests that among other 

things users might share “what you hope to get out of your classes,” while EdX asks 

the question in an open-ended text box upon registration.  While these questions yield 

some of the data that is valuable for improving courses, the platforms, and education 

                                                           
1 No one reads terms of service [1]. 
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research, I argue that the platforms should collect more key data, clearly identified as 

information that will not be sold or used for targeted marketing or for student 

evaluation.   

The paper first describes the fields most useful for analysis based on priors, and 

then it explains the benefits to platform development, instructional quality, and 

research.  Potential drawbacks are discussed, including cost, privacy concerns, the 

risk of invoking stereotype threat, and the potential for undesirable changes to arise 

from this information. 

2   Prior Information about Students 

Given infinite data storage and infinite indulgence on the part of MOOC students, 

knowing every scrap of data about students might allow for inspired analyses and 

eerily predictive machine learning exercises.  However, a more humble conception of 

student data would ably fulfill our research needs. 

Core demographic information includes year of birth, gender, and race/ethnicity.2 

Asking users for their current city or place of residence should generate more accurate 

location results than IP address tracing or the information provided to appear on a 

semi-public profile.  Combined with place of origin and native language, these 

questions provide a sketch of a student’s likely history and culture.    

A MOOC-run survey would also provide the opportunity to ask questions less 

often available in administrative education data, although extremely useful for 

understanding who enrolls.  Although sensitive, questions about socioeconomic status 

and living situation would be tremendously helpful; for instance, is a student living 

with family, and to which generation does that student belong?   

Adult students’ lives are increasingly complex, and questions about work and 

education history should do their best to capture this.  If a student’s highest degree is a 

high school diploma (or equivalent), then have they ever enrolled in higher education?  

If so, in how many institutions?  How many years and months would they estimate 

this spanned?  Were they primarily taking full time or part time loads?  What was the 

name of their primary institution, and what was their most recent course of study 

pursued?  Those who have earned bachelor’s degrees or higher should face similar 

questions.  For all students, questions about previous or concurrent MOOC use would 

be very valuable.  Work history can get a similar treatment, identifying such things as 

area of employment, and full- and part-time scheduling. 

Although students themselves may not be entirely clear on the point yet, questions 

about educational and career goals, along with goals for the course, would be 

extremely useful.  This information is captured to some extent in existing questions or 

for particular research.  However, this may be incomplete or collected only in a 

piecemeal fashion.  For instance, a study on learner patterns surveys the students in 

                                                           
2 Race and ethnicity are social constructs whose meaning greatly varies by national context. For 

instance, being white in Norway has a different social meaning than being white in South 

Africa.  And Belgium is split by a key ethnic marker—Walloon versus Fleming—that does 

not matter in other countries.  Thus, choices for race/ethnicity should be based on the 

selected country of origin and/or country of residence. 
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one course, asking for intentions in the course, current employment status, years of 

work history, and highest degree attained [2].  

Valuable information from surveys need not all be based on recall or opinion.  

Meaningful priors about academic preparation in particular fields can be generated by 

computer adaptive test questions in key content domains, based on existing work in 

psychometrics.  Behavioral economics shows that survey questions can measure 

levels of risk aversion (asking for preferences between a gamble for $X and receiving 

$Y with certainty) and time discounting on money (asking about preferences for 

receiving $X now or $Y at a certain point in the future).3 

Finally, there’s a useful realm of information about how students use the platform.  

Within a class, how much time do they plan to devote, how do they plan to interact 

with peers, and will they use external supports, such as tutors, websites, and 

textbooks?  What modes of access to the course are available to them?  In particular, 

what electronic devices are available to them, is their use of the devices limited, and 

what kind of Internet access is available? 

3   Value for Planning and Strategy 

The background information on users discussed above provides extremely valuable 

data for the operations of the course platforms.  Let us stipulate that there are 

limitations on the data being used for targeted marketing purposes.  Even so, having 

aggregate background information on who is using which MOOCs is a huge advance. 

In a traditional business mindset, the primary questions would be who is willing 

and who is able to pay.  However, more advanced uses could help a course 

recommendation engine distinguish who is taking the course as a consumption good 

versus as investment in their future;  the follow-up courses the students are interested 

in may be vastly different.   

The survey may also suggest a greater than anticipated demand for classes taught 

at a certain level or on a certain topic.  Students’ locations, educations, and work 

histories might help the platform identify other institutions that may be good partners, 

either because they are very well-represented or under-represented. 

4   Value for Instructional Design 

A strong finding in educational research is that there is not a single correct way to 

teach or structure a course.  Instead, learners matter, and knowledge about the 

students and their characteristics is important for teaching well [3]. Knowing more 

about the students also allows instructors to effectively call on their existing 

knowledge and address likely misconceptions;  this is part of Pedagogical Content 

Knowledge [3] and a prominent contribution of Piagetian constructivism [4]. 

                                                           
3 For the most accurate answers, survey takers would actually receive the payout they say they 

prefer, subject to a gamble or delay as the case may be. 
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For example, knowing the age distribution and native languages of students can 

improve instruction.  Instructors may choose allusions, words, and examples better.   

An inherent challenge within the online classroom is that some feedback that is 

obvious in a physical context is not available.  One student falling asleep in a lecture 

hall is far more obvious and effective of a signal than a thousand who never rewind 

the recorded lectures.  While learning analytics is tackling this paucity of data in 

clever ways, we would also benefit greatly from leaning on priors.  Imagine two 

students who do not watch the second week lecture by the beginning of week three: 

one has a doctoral degree in the field, while the other is a high school graduate who 

has attended several different institutions of higher education and intends to take a 

course for professional development.  Applying theory to this prior knowledge, we 

might think the former finds the course matter unnecessary to review, while the latter 

may be struggling to stay motivated in the class. 

In short, better prior knowledge can be paired with data collected in courses to 

better identify how students are learning the course content and improve the course. 

5   Value for Education Research 

MOOC populations are so wildly self-selected, and the field so new, that external 

validity is extremely questionable.  At best, we might extend findings in a class to 

perhaps the same class the next time it is taught or use the results to develop 

hypotheses and learning theory.     

While there is great value in using research to improve a single course, ideally the 

lessons could be transferred more broadly, so that the effort of analysis pays greater 

dividends.  However, results cannot generalize until the population of the study is 

understood;  once more is known about incoming characteristics of MOOC students 

who were studied, researchers can seek other classes that resemble them in salient 

details.   

More concretely, MOOCs offer radical levels of access to education, and so they 

include many non-traditional and out-of-school learners.  These nontraditional 

learners can be elusive research subjects, and there is also great diversity among their 

numbers.  Having additional background data allows us to tag them and better 

understand their behavior.  If a course platform is successful with a particular college 

level course and is contemplating recommending it to a partner community college, it 

would be wise to understand how students of different backgrounds performed.  The 

inference is not direct, but it is far more useful than a recommendation based on 

coarser data. 

The MOOC is also a fantastic platform for learning about how everyone learns, not 

just how self-selected MOOC users learn.  The large number of students and the 

computerized means of instruction mean that MOOCs are very amenable to 

experimentation and careful observation.  In addition, the very design of MOOCs 

strips down the traditional classroom;  greater insight about learning and traditional 

instruction can come from adding back in some of these elements that are taken for 

granted in other classrooms. 
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Yet again, the great advantages of MOOCs as a place for learning research have 

the caveat that results are hard to generalize.  However, if researchers control for the 

observable background data of the students who opt into MOOCs, their results will be 

far more plausibly applicable to a wide array of classes. 

A key challenge within the online classroom is that feedback that may be obvious 

in a physical context, such as real-time indications of student engagement or 

confusion, is usually not available.  One student falling asleep in a lecture hall is far 

more obvious and effective of a signal than a thousand who never rewind the recorded 

lectures.  While learning analytics is tackling this paucity of data in clever ways, we 

would also benefit greatly from leaning on priors.  Imagine two students who do not 

watch the second week lecture by the beginning of week three: one has a doctoral 

degree in the field, while the other is a high school graduate who has attended several 

different institutions of higher education and intends to take a course for professional 

development.  Applying theory to this prior knowledge, we might think the former 

finds the course matter unnecessary to review, while the latter may be struggling to 

stay motivated in the class. 

In short, better prior knowledge can be paired with data collected in courses to 

better identify how students are learning the course content. 

6   Concerns and Limitations 

There are genuine concerns with collecting this much data.  Here, I discuss cost, 

privacy, stereotype threat, and maladaptive use.  I present these cursorily not to 

dismiss these points, but to begin what must be a larger discussion. 

6.1   Cost 

Course platforms are in a unique position It can be extremely costly to ask survey 

questions.  User attention is limited and a choice to ask an additional question may 

implicitly limit their engagement later during the session, or even drive them away 

from the service at the extreme.  Higher quality survey data can be generated by using 

internal resources to follow up with non-responders;  higher response rates can also be 

generated by incentives, such as monetary payment, entry in a lottery, or access to a 

premium site feature.  In addition, comprehensive surveys offered by a platform itself 

can be more easily embedded in the site, making the survey more available and more 

salient.   

Administering a vast survey at the site level also better captures students who 

might be over-sampled if asked class-by-class.  Cross-course analyses can be 

conducted more easily if the relatively permanent, detailed background information is 

available at the platform level, rather than asked for in individual courses. 

Stratified sampling methods could be used to reduce the burden on students and the 

cost burden on the platform.  For instance, core questions could be asked of the main 

sample of students, while additional long forms of the survey ask different questions 

of different students.  The aggregate picture can be pieced together with a smaller 
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burden on most students and a lower cost to the platform.  While this is less than 

ideal, it may be a necessary tradeoff in some cases.  

6.2   Privacy 

Privacy concerns are important and complex, and researchers are used to the question 

of balancing privacy concerns against the benefit of the research.  The more 

background data a platform collects, the more risk that personally identifiable 

information about subjects is available through composite reports or if the data are 

intercepted.  Access security and care in reporting results are thus crucial and should 

be considered ahead of time.   

Because of these concerns or others, some students may wish not to provide 

information, which could systematically bias the survey sample, making our 

inferences worse.  Some students who wish to opt out may be reassured if the reasons 

for the research and the protection of the data are made clear.  Others may be more 

comfortable with anonymized options for responding or techniques designed for 

collecting sensitive data. [5] 

 

6.3   Stereotype Threat and Maladaptive Use of Information 

Arguably, the Internet provides one of the few places in society where people are not 

forced to reveal information about their social position, which may be of value in 

itself.4  A powerful strand of research in social psychology suggests that invoking 

identities that are attached to negative stereotypes can hinder educational 

performance; people are especially vulnerable to this “stereotype threat” if they feel 

there is a power imbalance and that they are being defined by others’ judgments [8].  

This threat could both change answers provided and potentially harm the student.  

However, a sustained harm seems unlikely to result from the trigger of a few 

questions on a survey;  rather, the underlying negative social context or vulnerability 

might be in play.  It would be unfortunate if a detailed survey triggered stereotype 

threat, even temporarily, but making sure the questions are seen as low-stakes could 

help.  

There may also be a risk that instructors change their courses in unintended ways if 

they find out more about the students.  An instructor might make a college-level 

course less rigorous if he finds out high school students are enrolled, for instance.  

While this raises concerns, it is ultimately up to policy and instructors’ judgment. 

                                                           
4 Perhaps the Internet is the place where students “will not be judged by the color of their skin, 

but by the content of their character.” [6]  Less seriously, “On the Internet, nobody knows 

you’re a dog.” [7] 
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7   Conclusion 

Platform operations, instructional design, and educational research would all benefit 

from collecting more systematic background data about students.  Better knowledge 

about who takes MOOCs is crucial at this stage in their lifetime.  I propose not only a 

census of MOOC users on each platform, capturing a snapshot of users today, but an 

ongoing effort to capture these detailed demographic snapshots at least every three 

years. 
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1 Introduction

Our team has been conducting research related to mining information, building
models, and interpreting data from the inaugural course offered by edX, 6.002x:
Circuits and Electronics, since the Fall of 2012. This involves a set of steps,
undertaken in most data science studies, which entails positing a hypothesis,
assembling data and features (aka properties, covariates, explanatory variables,
decision variables), identifying response variables, building a statistical model
then validating, inspecting and interpreting the model. In our domain, and others
like it that require behavioral analyses of an online setting, a great majority of
the effort (in our case approximately 70%) is spent assembling the data and
formulating the features, while, rather ironically, the model building exercise
takes relatively less time. As we advance to analyzing cross-course data, it has
become apparent that our algorithms which deal with data assembly and feature
engineering lack cross-course generality. This is not a fault of our software design.
The lack of generality reflects the diverse, ad hoc data schemas we have adopted
for each course. These schemas partially result because some of the courses are
being offered for the first time and it is the first time behavioral data has been
collected. As well, they arise from initial investigations taking a local perspective
on each course rather than a global one extending across multiple courses.

In this position paper, we advocate harmonizing and unifying disparate “raw”
data formats by establishing an open-ended standard data description to be
adopted by the entire education science MOOC oriented community. The concept
requires a schema and an encompassing standard which avoid any assumption of
data sharing. It needs to support a means of sharing how the data is extracted,
conditioned and analyzed.

Sharing scripts which prepare data for models, rather than data itself, will
not only help mitigate privacy concerns but it will also provide a means of
facilitating intra and inter-platform collaboration. For example, two researchers,
one with data from a MOOC course on one platform and another with data from
another platform, should be able to decide upon a set of variables, share scripts
that can extract them, each independently derive results on their own data, and
then compare and iterate to reach conclusions that are cross-platform as well
as cross-course. In a practical sense, our goal is a standard facilitating insights
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Fig. 1. This flowchart represents the context of a standardized database schema. From
left to right: Curators of MOOC course format the raw transaction logs into the schema
and populate either private or public databases. This raw database is transformed
into a standard schema accepted by the community, (like the one proposed in this
paper) and is exposed to the analytics community, mostly researchers, who develop
and share scripts, based upon it. The scripts are capable of extracting study data from
any schema-based database, visualizing it, conditioning it into model variables and/or
otherwise examining it. The schema is unifying while the scripts are the vehicle for
cross-institution research collaboration and direct experimental comparison.

from data being shared without data being exchanged. It will also enable research
authors to release a method for recreating the variables they report using in their
published experiments.

Our contention is that the MOOC data mining community - from all branches
of educational research, should act immediately to engage in consensus driven
discussions toward a means of standardizing data schema and building technol-
ogy enablers for collaborating on data science via sharing scripts, results in a
practical, directly comparable and reproducible way. It is important to take ini-
tial steps now. We have the timely opportunity to avoid the data integration
chaos that has arisen in fields like health care where large legacy data, complex
government regulations and personal privacy concerns are starting to thwart
scientific progress and stymy access to data. In this contribution, we propose a
standardized, cross-course, cross-platform, database schema which we name as
“MOOCdb”. 1

We proceed by describing our concept and what it offers in more detail in
Section 2. Section 3 details our proposed the data schema systematically. Sec-
tion 4 shows, with a use case, how the schema is expressive, supportive and
reusable. Section 5 concludes and introduces our current work.

1 We would like to use the MOOCshop as a venue for introducing it and offering
it up for discussion and feedback. We also hope to enlist like minded researchers
willing to work on moving the concept forward in an organized fashion, with plenty
of community engagement.

2
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2 Our Concept and What it Offers

Our concept is described as follows, and as per Figure 1:

– It identifies two kinds of primary actors in the MOOC eco-system: cura-
tors and analysts. Curators collect raw behavioral data expressing MOOC
students’ interaction with online course material and then transfer it to a
database, often as course content providers or course platform providers.
Analysts reference the data to examine it for descriptive, inferential or pre-
dictive insights. The role of the analysts is to visualize, descriptively ana-
lyze, use machine learning or otherwise interpret some set of data within the
database. Analysts extract, condition (e.g. impute missing values, de-noise),
and create higher level variables for modeling and other purposes from the
data. To perform this analysis, they first transform the data into the stan-
dard schema and compose scripts or use publicly available scripts when it
suffices. They also contribute their scripts to the archive so others can use.

– It identifies two types of secondary actors: the crowd, and the data science
experts (database experts and privacy experts). When needs arise, the com-
munity can seek the help of the crowd in innovative ways. Experts contribute
to the community by providing state-of-the art technological tools and meth-
ods.

– A common standardized and shared schema into which the data is stored.
The schema is agreed upon by the community, generalizes across platforms
and preserves all the information needed for data science and analytics.

– A shared community-oriented repository of data extraction, feature engi-
neering, and analytics scripts.

– Over time the repository and the schema, both open ended, grow.

This concept offers the following:
The benefits of standardization: The data schema standardization implies
that the raw data from every course offering will be formatted the same way in its
database. It ranges from simple conventions like storing event timestamps in the
same format to common tables, fields in the tables, and relational links between
different tables. It implies compiling a scientific version of the database schema
that contains important events, fields, and dictionaries with highly structured
data is amenable for scientific discovery. Standardization supports cross-platform
collaborations, sharing query scripts, and the definition of variables which can
be derived in exactly the same way for irrespective of which MOOC database
they come from.
Concise data storage: Our proposed schema is “loss-less”, i.e. no information
is lost in translating raw data to it. However, the use of multiple related tables
provides more efficient storage.
Savings in effort: A schema speeds up database population by eliminating
the steps where a schema is designed. Investigating a dataset using one or more
existing scripts helps speed up research.
Sharing of data extraction scripts: Scripts for data extraction and descrip-
tive statistics extraction will be open source and can be shared by everyone.

3
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Some of these scripts could be very general and widely applicable, for exam-
ple: ”For every video component, provide the distribution of time spent by each
student watching it?” and some would be specific for a research question, for
example generation of data for Bayesian knowledge tracing on the problem re-
sponses. These scripts could be optimized by the community and updated from
time to time.

Crowd source potential: Machine learning frequently involves humans iden-
tifying explanatory variables that could drive a response. Enabling the crowd to
help propose variables could greatly scale the community’s progress in mining
MOOC data. We intentionally consider the data schema to be independent of
the data itself so that people at large, when shown the schema, optional proto-
typical synthetic data and a problem, can posit an explanatory variable, write a
script, test it with the prototypical data and submit it to an analyst. The analyst
can assess the information content in the variable with regards to the problem
at hand and rank and feed it back to the crowd, eventually incorporating highly
rated variables into learning.

A unified description for external experts: For experts from external
fields like“Very Large Databases/Big Data” or ”Data Privacy”, standardization
presents data science in education as unified. This allows theme to technically
assist us with techniques such as new database efficiencies or privacy protection
methods.

Sharing and reproducing the results: When they publish research, ana-
lysts share the scripts by depositing them into a public archive where they are
retrievable and cross-referenced to their donor and publication.

Our concept presents the following challenges:

Schema adequacy: A standardized schema must capture all the information
contained in the raw data. To date, we have only verified our proposed schema
serves the course we investigated. We expect the schema to significantly change
as more courses and offerings are explored. It will be challenging to keep the
schema open ended but not verbose. While a committee could periodically re-
visit the schema, a more robust approach would be to let it evolve through open
access to extension definitions then selection of good extensions via adoption
frequency. This would embrace the diversity and current experimental nature of
MOOC science and avoid standard-based limitations. One example of a context
similar to the growth of MOOCs is the growth of the internet. HTML and Web3.0
did not rein in the startling growth or diversity of world wide web components.
Instead, HTML (and its successors and variants) played a key role in delivering
content in a standardized way for any browser. The semantic web provides a
flexible, community driven, means of standards adoption rather than completely
dictating static, monolithic standards. We think there are many lessons to learn
from the W3C initiative. To whit, while we provide ideas for standards below,
we propose that, more importantly, there is a general means of defining stan-
dards that allow interoperability, which should arise from the examples we are
proposing.

4
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Platform Support: The community needs a website defining the standard data
template and a platform assisting researchers in sharing scripts. It requires tests
for validating scripts, metrics to evaluate new scripts and an repository of scripts
with efficient means of indexing and retrieval.
Motivating the crowd: How can we encourage large scale script composi-
tion and sharing so the crowd will supply explanatory variables? How can we
provide useful feedback when the crowd is not given the data? KAGGLE pro-
vides a framework from which we can draw inspiration, but it fundamentally
differs from what we are proposing here. KAGGLE provides a problem defini-
tion, a dataset that goes along with it, whereas we are proposing that we share
the schema, propose a problem, give an example of a set of indicators and the
scripts that enabled their extraction, and encourage users to posit indicators and
submit scripts. Such an endeavor requires us to: define metrics for evaluation of
indicators/features given the problem, provide synthetic data (under the data
schema) to allow the crowd to test and debug their feature engineering scripts,
and possibly visualizations of the features or aggregates over their features (when
possible), and most importantly a dedicated compute resource that will perform
machine learning and evaluate the information content in the indicators.

3 Schema description

We surveyed a typical set of courses from Coursera and edX. We noticed three
different modes in which students engage with the material. Students observe
the material by accessing all types of resources. In the second mode they submit
material for evaluation and feedback. This includes problem check-ins for lecture
exercises, homework and exams. The third mode is in which they collaborate
with each other. This includes posting on forums and editing the wiki. It could
in future include more collaborative frameworks like group projects. Based on
these three we divide the database schema into three different tables. We name
these three modes as observing, submitting and collaborating. We now present
the data schema for each mode capturing all the information in the raw data.

3.1 The observing mode
In this mode, students simply browse and observe a variety of resources available
on the website. These include the wiki, forums, lecture videos, book, tutorials.
Each unique resource is usually identifiable by a URL. We propose that data
pertaining to the observing mode can be formatted in a 5-tuple table: u id (user
id), r id (resource id), timestamp, type id, duration. Each row corresponds to
one click event pertaining to student. Two tables that form the dictionaries
accompany this event table. The first one maps each unique url to r id and the
second one maps type id to resource type, i.e., book, wiki. Splitting the tables into
event and dictionary tables allows us to reduce the sizes of the tables significantly.
Figure 4 shows the schema and the links.

3.2 The submitting mode
Similar to the table pertaining to the observing mode of the student, we now
present a structured representation of the problem components of the course.

5
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Fig. 2. Data schema for the observing mode

A typical MOOC consists of assignments, exams, quizzes, exercises in between
lectures, labs (for engineering and computer science). Unlike campus based ed-
ucation, students are allowed to submit answers and check them multiple times.
Questions can be multiple choice or a student can submit an analytical answer
or even a program or an essay. Assessments are done by computer or by peers
to evaluate the submissions [1]. We propose the following components:

Submissions table: In this table each submission made by a student is recorded.
The 5 tuple recorded is u id, p id, timestamp, the answer, and the attempt
number.

Fig. 3. Data schema for the submitting mode.

Assessments table: To allow for multiple assessments this table is created
separately from the submissions table. In this table each assessment for each
submission is stored as a separate row. This separate table allows us to
reduce the size since we do not repeat the u id and p id for each assessment.

Problems table: This table stores the information about the problems. We
id the smallest problem in the entire course. The second field provides the
name for the problem. The problem is identified if it is a sub problem within
another problem by having a parent id. Parent id is a reflective field in
that its entries are one of the problem id itself. Problem type id stores the
information about whether it is a homework, exercise, midterm or final.
The table also stores the problem release date and the problem submission
deadline date as two fields. Another table stores the id for problem types.

6
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3.3 The Collaborating mode

Student interact and collaborate among themselves throughout the course dura-
tion through forums and wiki. In forums a student either initiates a new thread
or responds to an existing thread. Additionally students can up vote, and down
vote the answers from other students. In wiki students edit, add, delete and
initiate a new topic. To capture this data we form the following tables with the
following fields:

Fig. 4. Data schema for collaborating mode

Collaborations table: In this table each attempt made by a student to col-
laborate is given an id. The 5 fields in this table are u id, collaboration type
(whether wiki or forum), timestamp, the pointer to the text inserted by this
user, and the parent id. The last field is a reflective field as well.

Collaboration type table: In this table the collaboration type id is identified
with a name as to whether it is a wiki or a forum.

4 The edX 6.002x case study

edX offered its first course 6.002x: Circuits and Electronics in the Fall of 2012.
6.002x had 154,763 registrants. Of these, 69,221 people looked at the first prob-
lem set, and 26,349 earned at least one point on it. 13,569 people looked at
the midterm while it was still open, 10,547 people got at least one point on
the midterm, and 9,318 people got a passing score on the midterm. 10,262 peo-
ple looked at the final exam while it was still open, 8,240 people got at least
one point on the final exam, and 5,800 people got a passing score on the final
exam. Finally, after completing 14 weeks of study, 7,157 people earned the first
certificate awarded by MITx, showing that they successfully completed 6.002x.

The data corresponding to the behavior of the students was stored in multiple
different formats and was provided to us. These original data pertaining to the
observing mode was stored in files and when we transcribed in the database
with fields corresponding to the names in the “name-value” it was about the
size of around 70 GB. We imported the data into a database with the schema
we described in the previous subsections. The import scripts we had to build fell
into two main categories:

7
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– reference generators, which build tables listing every user, resource and prob-
lem that were mentioned in the original data.

– table populators, which populate different tables by finding the right infor-
mation and converting it if needed.

The sizes and the format of the resulting tables is as follows: submissions: 341
MB (6,313,050 rows); events: 6,120 MB (132,286,335 rows); problems: 0.08 MB;
resources: 0.4 MB; resource types: 0.001 MB; users: 3MB. We therefore reduced
the original data size by a factor of 10 while keeping most of the information. This
allows us to retrieve easily and quickly information on the students’ activities.
For example, if we need to know what is the average number of pages in the book
a student read, it would be around 10 times faster. Also, the relative small size of
the tables in this format allows us to do all the work in memory on any relatively
recent desktop computer. For more details about the analytics we performed as
well as the entire database schema we refer the reader to [2] 2

5 Conclusions and future work

In this paper, we proposed a standardized data schema and believe that this
would be a powerful enabler for ours and others researchers involved in MOOC
data science research. Currently, we after building databases based on this schema
we are developing a number of analytic scripts that extract multiple attributes
for a course. We intend to release them in the near future. We believe it is timely
to envision an open data schema for MOOC data science research.

Finally, we propose that as a community we should come up with a shared
standard set of features that could be extracted across courses and across plat-
forms. The schema facilities sharing and re-use of scripts. We call this the ”fea-
ture foundry”. In the short term we propose that this list is an open, living
handbook available in a shared mode to allow addition and modification. It can
be implemented as a google doc modified by the MOOC community. At the
moocshop we would like to start synthesizing a more comprehensive set of fea-
tures and developing the handbook. Feature engineering is a complex, human
intuition driven endeavor and building this handbook and evolving this over
years will be particularly helpful.
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Syntactic and Functional Variability of a Million
Code Submissions in a Machine Learning MOOC

Jonathan Huang, Chris Piech, Andy Nguyen, and Leonidas Guibas
Stanford University

Abstract. In the first offering of Stanford’s Machine Learning Massive
Open-Access Online Course (MOOC) there were over a million program-
ming submissions to 42 assignments — a dense sampling of the range of
possible solutions. In this paper we map out the syntax and functional
similarity of the submissions in order to explore the variation in solu-
tions. While there was a massive number of submissions, there is a much
smaller set of unique approaches. This redundancy in student solutions
can be leveraged to “force multiply” teacher feedback.

Fig. 1. The landscape of solutions for “gradient descent for linear regression” repre-
senting over 40,000 student code submissions with edges drawn between syntactically
similar submissions and colors corresponding to performance on a battery of unit tests
(red submissions passed all unit tests).

1 Introduction
Teachers have historically been faced with a difficult decision on how much per-
sonalized feedback to provide students on open-ended homework submissions
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such as mathematical proofs, computer programs or essays. On one hand, feed-
back is a cornerstone of the educational experience which enables students to
learn from their mistakes. On the other hand, giving comments to each student
can be an overwhelming time commitment [4]. In contemporary MOOCs, char-
acterized by enrollments of tens of thousands of students, the cost of providing
informative feedback makes individual comments unfeasible.

Interestingly, a potential solution to the high cost of giving feedback in mas-
sive classes is highlighted by the volume of student work. For certain assignment
types, most feedback work is redundant given sufficiently many students. For
example, in an introductory programming exercise many homework submissions
are similar to each other and while there may be a massive number of submis-
sions, there is a much smaller variance in the content of those submissions. It
is even possible that with enough students, the entire space of reasonable solu-
tions is covered by a subset of student work. We believe that if we can organize
the space of solutions for an assignment along underlying patterns we should be
able to “force multiply” the feedback work provided by a teacher so that they
can provide comments for many thousands of students with minimal effort.

Towards the goal of force multiplying teacher feedback, we explore variations
in homework solutions for Stanford’s Machine Learning MOOC that was taught
in Fall of 2011 by Andrew Ng (ML Class), one of the first MOOCs taught. Our
dataset consists of over a million student coding submissions, making it one of the
largest of its kind to have been studied. By virtue of its size and the fact that it
constitutes a fairly dense sampling of the possible space of solutions to homework
problems, this dataset affords us a unique opportunity to study the variance of
student solutions. In our research, we first separate the problem of providing
feedback into two dimensions: giving output based feedback (comments on the
functional result of a student’s program) and syntax based feedback (comments
on the stylistic structure of the student’s program). We then explore the utility
and limitations of a “vanilla” approach where a teacher provides feedback only
on the k most common submissions. Finally we outline the potential for an
algorithm which propagates feedback on the entire network of syntax and output
similarities. Though we focus on the ML Class, we designed our methods to be
agnostic to both programming language, and course content.

Our research builds on a rich history of work into finding similarity between
programming assignments. In previous studies researchers have used program
similarity metrics to identify plagiarism [1], provide suggestions to students’
faced with low level programming problems [2] and finding trajectories of student
solutions [3]. Though the similarity techniques that we use are rooted in previous
work, the application of similarity to map out a full, massive class is novel.

2 ML Class by the numbers

When the ML Class opened in October 2011 over 120,000 students registered. Of
those students 25,839 submitted at least one assignment, and 10,405 submitted
solutions to all 8 homework assignments (each assignment had multiple parts
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Fig. 2. (a) Number of submitting users for each problem; (b) Number of submissions
per user for each problem; (c) Histogram over the 42 problems of average submission
line counts.

which combined for a total of 42 coding based problems) in which students were
asked to program a short matlab/octave function. These homeworks covered top-
ics such as regression, neural networks, support vector machines, among other
topics. Submissions were assessed via a battery of unit tests where the student
programs were run with standard input and assessed on whether they produced
the correct output. The course website provided immediate confirmation as to
whether a submission was correct or not and users were able to optionally re-
submit after a short time window.

Figure 2(a) plots the number of users who submitted code for each of the 42
coding problems. Similarly, Figure 2(b) plots the average number of submissions
per student on each problem and reflects to some degree its difficulty.

In total there were 1,008,764 code submissions with typical submissions being
quite short — on average a submission was 16.44 lines long (after removing
comments and other unnecessary whitespace). Figure 2(c) plots a histogram of
the average line count for each of the 42 assignments. There were three longer
problems — all relating to the backpropagation algorithm for neural networks.

3 Functional variability of code submissions

First, we examine the collection of unit test outputs for each submitted assign-
ment (which we use as a proxy for functional variability). In the ML Class, the
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Fig. 3. (a) Histogram over the 42 problems of the number of distinct unit test outputs;
(b) Number of submissions to each of the 50 most common unit test outputs for the
“gradient descent for linear regression” problem; (c) Fraction of distinct unit test out-
puts with k or fewer submissions. For example, about 95% of unit test outputs owned
fewer than 10 submissions.

unit test outputs for each program are a set of real numbers, and we consider two
programs to be functionally equal if their unit test output vectors are equal.1

Not surprisingly in a class with tens of thousands of participants, the range
of the outputs over all of the homework submissions can be quite high even in
the simplest programming assignment. Figure 3(a) histograms the 42 assigned
problems with respect to the number of distinct unit test outputs submitted
by all students. On the low end, we observe that the 32,876 submissions to the
simple problem of constructing a 5 × 5 identity matrix resulted in 218 distinct
unit test output vectors. In some sense, the students came up with 217 wrong
ways to approach the identity matrix problem. The median number of distinct
outputs over all 42 problems was 423, but at the high end, we observe that the
39,421 submissions to a regularized logistic regression problem produced 2,992
distinct unit test outputs!

But were there truly nearly 3,000 distinct wrong ways to approach regularized
logistic regression? Or were there only a handful of “typical” ways to be wrong
and a large number of submissions which were each wrong in their own unique
way? In the following, we say that a unit test output vector v owns a submission

1 The analysis in Section 4 captures variability of programs at a more nuanced level
of detail
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Fig. 4. (a) Number of students covered by the 50 most common unit test outputs
for several representative problems; (b) Histogram over the 42 problems of number of
students covered by the top 50 unit test outputs for each problem. Observe that for
most problems, 50 unit test outcomes is sufficient for covering over 90% of students.

if that submission produced v when run against the given unit tests. We are
interested in common or “popular” outputs vectors which own many submissions.

Figure 3(b) visualizes the popularity of the 50 unit class output vectors which
owned the most submissions for the gradient descent for linear regression prob-
lem. As with all problems, the correct answer was the most popular, and in the
case of linear regression, there were 28,605 submissions which passed all unit
tests. Furthermore, there were only 15 additional unit test vectors which were
the result of 100 submissions or more, giving some support to the idea that we
can “cover” a majority of submissions simply by providing feedback based on a
handful of the most popular unit test output vectors. On the other hand, if we
provide feedback for only a few tens of the most popular unit test outputs, we
are still orphaning in some cases thousands of submissions. Figure 3(c) plots the
fraction of output vectors for the linear regression problem again which own less
than k submissions (varying k on a logarithmic scale). The plot shows, for exam-
ple, that approximately 95% of unit test output vectors (over 1, 000 in this case)
owned 10 or fewer submissions. It would have been highly difficult to provide
feedback for this 95% using the vanilla output-based feedback strategy.

To better quantify the efficacy of output-based feedback, we explore the no-
tion of coverage — we want to know how many students in a MOOC we can
“cover” (or provide output-based feedback for) given a fixed amount of work for
the teaching staff. To study this, consider a problem P for which unit test output
vectors S = {s1, . . . , sk} have been manually annotated by an instructor. This
could be as simple as “good job!”, to “make sure that your for-loop covers special
case X”. We say that a student is covered by S if every submitted solution by
that student for problem P produces unit test outputs which lie in S. Figure 4(a)
plots the number of students which are covered by the 50 most common unit
test output vectors for several representative problems. By and large, we find
that annotating the top 50 output vectors yields coverage of 90% of students
or more in almost all problems (see Figure 4(b) for histogrammed output cov-
erage over the 42 problems). However, we note that in a few cases, the top 50
output vectors might only cover slightly over 80% of students, and that even at
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90% coverage, typically between 1000-2000 students are not covered, showing
limitations of this “vanilla” approach to output-based feedback.

Thus, while output-based feedback provides us with a useful start, the vanilla
approach has some limitations. More importantly however, output based feed-
back can often be too much of an oversimplification. For example, output-based
feedback does not capture the fact that multiple output vectors can result from
similar misconceptions and conversely that different misconceptions can result
in the same unit test outputs. Success of output-based feedback depends greatly
on a well designed battery of unit tests. Moreover, coding style which is a crit-
ical component of programming cannot be captured at all by unit test based
approaches to providing feedback. In the next sections, we discuss a deeper anal-
ysis which delves further into program structure and is capable of distinguishing
the more stylistic elements of a submission.

4 Syntactic variability of code submissions

In addition to providing feedback on the functional output of a student’s pro-
gram, we also investigate our ability to give feedback on programming style. The
syntax of code submission in its raw form is a string of characters. While this
representation is compact, it does not emphasize the meaning of the code. To
more accurately capture the structure of a programming assignment, we compare
the corresponding Abstract Syntax Tree (AST) representation.

This task is far more difficult due to the open ended nature of programming
assignments which allows for a large space of programs. There were over half a
million unique ASTs in our dataset. Figure 5(b) shows that homework assign-
ments had substantially higher syntactic variability than functional variability.
Even if a human labeled the thirty most common syntax trees for the Gradient
Descent part of the Linear Regression homework, the teacher annotations would
cover under 16% of the students. However, syntactic similarity goes beyond bi-
nary labels of “same” or “different”. Instead, by calculating the tree edit distance
between two ASTs we can measure the degree to which two code submissions
are similar. Though it is computationally expensive to calculate the similarity
between all pairs of solutions in a massive class, the task is feasible given the dy-
namic programming edit distance algorithm presented by Shasha et al [5] . While
the algorithm is quartic in the worst case, it is quadratic in practice for student
submission. By exploiting the [5] algorithm and using a computing cluster, we
are able to match submissions at MOOC scales.

By examining the network of solutions within a cutoff edit distance of 5,
we observe a smaller, more manageable number of common solutions. Figure 1
visualizes this network or landscape of solutions for the linear regression (with
gradient descent) problem, with node representing a distinct AST and node sizes
scaling logarithmically with respect to the number of submissions owned by that
AST. By organizing the space of solutions via this network, we are able to see
clusters of submissions that are syntactically similar, and feedback for one AST
could potentially be propagated to other ASTs within the same cluster.
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Fig. 5. (a) Histogram of the number of distinct abstract syntax trees (ASTs) submitted
to each problem.; (b) Number of students covered by the 30 most common ASTs for
several representative problems; (c) (Log) distribution over distances between pairs
of submissions for pairs who agree on unit test outputs, and pairs who disagree. For
very small edit distances (<10 edits), we see that the corresponding submissions are
typically also functionally similar (i.e., agree on unit test outputs).

Figure 1 also encodes the unit test outputs for each node using colors to dis-
tinguish between distinct unit test outcomes.2 Note that visually, submissions
belonging to the same cluster typically also behave similarly in a functional sense,
but not always. We quantify this interaction between functional and syntactic
similarity in Figure 5(c) which visualizes (log) distributions over edit distances
between pairs of submissions who agree on unit test outcomes and pairs of sub-
missions who disagree on unit test outcomes. Figure 5(c) shows that when two
ASTs are within approximately 10 edits from each other, there is a high proba-
bility that they are also functionally similar. Beyond this point, the two distri-
butions are not significantly different, bearing witness to the fact that programs
that behave similarly can be implemented in significantly different ways.

5 Discussion and ongoing work

The feedback algorithm outlined in this paper lightly touches on the potential
for finding patterns that can be utilized to force multiply teacher feedback. One

2 Edge colors are set to be the average color of the two endpoints.

31



clear path forward is to propagate feedback, not just for entire programs, but
also for program parts. If two programs are different yet share a substantial
portion in common we should be able to leverage that partial similarity.

Though we focused our research on creating an algorithm to semi-automate
teacher feedback in a MOOC environment, learning the underlying organization
of assignment solutions for an entire class has benefits that go beyond those ini-
tial objectives. Knowing the space of solutions and how students are distributed
over that space is valuable to teaching staff who could benefit from a more nu-
anced understanding of the state of their class. Moreover, though this study is
framed in the context of MOOCs, the ability to find patterns in student submis-
sions should be applicable to any class with a large enough corpus of student
solutions, for example, brick and mortar classes which give the same homeworks
over multiple offerings, or Advanced Placement exams where thousands of stu-
dents answer the same problem.
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Abstract: Data collected by learning environments and online courses contains 

many potentially useful features, but traditionally many of these are ignored when 

modeling students. One feature that could use further examination is item difficulty. 

In their KT-IDEM model, Pardos and Heffernan proposed the use of question 

templates to differentiate guess and slip rates in knowledge tracing based on the 

difficulty of the template- here, we examine extensions and variations of that model. 

We propose two new models that differentiate based on template- one in which the 

learn rate is differentiated and another in which learn, guess, and slip parameters all 

depend on template. We compare these two new models to knowledge tracing and 

KT-IDEM. We also propose a generalization of IDEM in which, rather than 

individual templates, we differentiate between multiple choice and short answer 

questions and compare this model to traditional knowledge tracing and IDEM. We 

test these models using data from ASSISTments, an open online learning 

environment used in many middle and high school classrooms throughout the United 

States. 

Keywords: Knowledge tracing, student modeling, item difficulty, Bayesian 

networks, educational data mining 

1. Introduction 

Traditionally, knowledge tracing (KT), does not take into account much of the data 

collected by tutoring system. Some work has been done on leveraging hint and attempt 

counts in KT [8], [9], and in individualizing based on student [6], but one area that merits 

more exploration is the use of item difficulty to more accurately model students. Pardos 

and Heffernan proposed a model to do just that [5], but explored only one such possible 

model. We created two variations on this model and a generalization of it in order to 

determine which of these models is the best predictor of student knowledge. Our goal is to 

discover how item difficulty really affects students’ knowledge and performance. 

2. Models 

2.1 Knowledge Tracing 

In classic knowledge tracing [1], the goal is to predict whether a student will answer the 

next question correctly based upon the current estimate of their knowledge. In the 

Bayesian network, the responses are the observed nodes, and the student’s knowledge at 

each time-step are the latent nodes. Using Expectation Maximization (EM) or another 
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algorithm, we learn values for the probability of initial knowledge, P(L0); the probability 

of learning the skill from one time step to the next, P(T); the probability of guessing 

correctly when the skill is in the unlearned state, P(G); and the probability of slipping, or 

answering incorrectly when the skill is in the learned state, P(S) (Figure 1). 

 

Fig. 1- Standard Knowledge Tracing 

2.2 KT-IDEM 

In 2011, Pardos and Heffernan proposed the Knowledge Tracing- Item Difficulty Effect 

Model (KT-IDEM), which adds difficulty to the traditional KT model by adding an item 

difficulty node affecting the question node. This model learns a separate guess and slip 

rate for each item, and therefore has N*2+2 parameters, where N is the number of unique 

items, in comparison to KT’s four [5]. Figure 2 illustrates the KT-IDEM model. 

 

Fig. 2- Knowledge Tracing- Item Difficulty Effect Model 

2.3 Extensions to IDEM 

We believe that question difficulty not only affects performance, but will also have an 

effect on learning. By answering questions of different difficulties and receiving feedback 

on whether or not the answer is correct, students could learn differing amounts. We 

therefore propose two new variations on KT-IDEM. The first individualizes learn rates by 

item difficulty, but keeps guess and slip consistent. The second individualizes learn, guess, 

and slip rates based on item difficulty. In a ten item dataset, KT would have four 
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parameters, KT-IDEM would have 22, the first of our models, Item Difficulty Effect on 

Learning (IDEL), would have 12, and the second, Item Difficulty Effect All (IDEA), 

would have 32. It is possible that certain datasets will be over-parameterized in some of 

these models if there are not enough data points per item, but as Pardos and Heffernan 

pointed out in their original KT-IDEM paper, “there has been a trend of evidence that 

suggests models that have equal or even more parameters than data points can still be 

effective” [5]. These models are illustrated below (Figures 3 and 4). 

 

Fig. 3- Item Difficulty Effect on Learning 

 

Fig. 4- Item Difficulty Effect All 

2.4 MC 

The final model we implemented is a generalization of KT-IDEM, which adds a multiple 

choice node to KT at each time step, indicating whether the particular question is multiple 

choice or not, rather than an item difficulty node. We now learn two different guess and 

slip rates, one each for multiple choice questions and for non-multiple choice questions. 

As is standard in KT and all other models explored in this paper, we assume that students 

do not forget. The multiple choice model (MCKT) is illustrated in Figure 5. 
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Fig. 5- Multiple Choice Model 

We expected that the guess rate for multiple choice questions would be higher than the 

guess rate for non-multiple choice questions, since there are a finite number of options 

presented as opposed to an open response where it is possible to enter almost anything. 

We also expected that the slip rate would be lower for multiple choice questions, as 

recognizing the correct answer is generally easier than recalling it [3]. 

3. Dataset 

3.1 The ASSISTments Tutoring System 

The data used in this work is from ASSISTments, a freely available online mathematics 

tutoring system for grades 4 to 10 [2]. This system is used in classrooms across the 

country, and while it is not currently in itself a course, it is certainly an open, large-scale 

online learning tool. 

In ASSISTments, multiple items can be built using the same template, where the only 

difference is the actual numbers in the problem. We consider problems generated from the 

same template to be the same item when working with the models that consider item 

difficulty. 

We used six skills from the dataset, all of which came from skill builder data. In 

ASSISTments, skill builders are sessions where a student practices a certain skill until 

s/he gets three questions correct in a row, at which point it is considered to be learned. 

Within each skill, there are different sequences of templates that a student could 

encounter. In order to be sure that all students in our dataset were seeing the same 

templates, we used one sequence from each skill, except for Ordering Integers, from 

which we sampled two sequences separately. Table 1 shows information about the 

sequences we used in our experiments. 
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Skill Name Percent 

correct 

Number of 

Templates 

Percent Multiple 

Choice 

Pythagorean Theorem 34 8 70 

Ordering Integers (1) 88 3 34 

Ordering Integers (2) 84 3 65 

Square Root 89 2 38 

Ordering Positive Decimals 74 3 100 

Percent 33 13 67 

Pattern Finding 48 5 45 

 

4. Methods 

Using Kevin Murphy’s Bayes Net Toolbox for Matlab [4], we built each of our proposed 

models. We performed a 5-fold cross-validation on each of the seven sequences from the 

ASSISTments dataset using all five models, where four folds were used for training and 

the fifth for testing. The data was partitioned into folds randomly such that each student 

within a skill was in only one fold and the same folds were used for every model to 

guarantee a fair comparison. To avoid over-fitting the models to any student who practiced 

a skill a large number of times, only the first five opportunities of the skill for each student 

were used. We used expectation maximization to learn the parameters for each of our 

models. 

5. Results 

In order to compare models, we calculated mean absolute error (MAE), root mean square 

error (RMSE), and area under the curve (AUC) of each model’s predictions compared to 

the actual data. We performed a paired t-test of each of these measures using the runs from 

each fold and found that RMSE was the most consistently reliable measure, so we use that 

to determine which model is best. Table 2 shows an example of all metrics, obtained from 

the skill “Percent,” which has 13 templates. From this data, it appears that KT has the 

worst MAE and AUC of all the models, but KT-IDEL has a worse RMSE. 

 

 

Table 1- Sequences used to test the models 

37



Table 2- Results for “Percent” 

 Knowledge 

Tracing 

KT-IDEM KT-IDEL KT-IDEA MCKT 

MAE 0.433231 0.350409 0.433039 0.352525 0.352107 

AUC 0.531074 0.762205 0.56607 0.706951 0.754057 

RMSE 0.472552 0.449915 0.481702 0.441461 0.462738 

 

Comparing the template-based models to KT, we found that for this skill, the MAE was 

reliably better for KT-IDEM than KT or KT-IDEL and the AUC of KT-IDEM was reliably 

better than KT and both other template models. On the other hand, KT-IDEA had a 

reliably better RMSE than KT-IDEM for this skill. 

Taking the data from all seven sequences, we unfortunately did not find a conclusive 

answer to the question of which template-based model performs best. For the skill 

“Pattern Finding,” we found that KT-IDEM did best in all three measures, whereas for the 

first sequence of “Ordering Integers,” KT-IDEL outperformed the other two template-

based models, but was not significantly different from KT. (A few additional results tables 

can be found in the appendix of this paper.) 

Our next question, was whether the multiple choice model would perform better than KT 

or KT-IDEM. While theoretically, the multiple choice model should be the same as KT 

when all problems are of one type, when we ran the models over a sequence that was all 

multiple choice, the models learned different parameters. This is probably because the 

multiple choice nodes must always have two values in their CPT tables. We therefore 

exclude this sequence from analysis of the multiple choice model. On the other hand, we 

did test a sequence that was all one template, and all template models behaved the same, 

since the number of values in the template nodes’ CPT tables is the same as the number of 

templates. Out of the six remaining sequences in which we can compare MCKT, each 

with three metrics, for a total of 18 comparisons, we found that MCKT was reliably better 

than KT six times, and reliably better than KT-IDEM four times. Out of these, only two 

instances showed MCKT better than both of the other models. Out of the remaining nine 

comparisons, four showed that MCKT was better than the others, but not reliably so, in 

one case KT-IDEM outperforms MCKT, which is marginally better than KT, and in six 

cases the both of the other models performed better than MCKT. Since MCKT is at least 

marginally better than KT a majority of the time, and significantly better in 6 out of 18 

cases, it looks like it could be a promising model, although more research is needed. 
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6. Contributions and Future Work 

In this work, we proposed three new models; IDEL, IDEA, and MCKT. We compared 

these models to traditional KT and to KT-IDEM and found that different models worked 

best for different sequences. Our findings are not in agreement with [5], which states that 

IDEM works better than KT in ASSISTments skill builder data, and our observations also 

seem to indicate that other item difficulty models could work better than KT-IDEM. The 

interesting contribution here is that this means question difficulty does, in fact, appear to 

affect learning, possibly more than performance on the current item. 

We used only six sequences (and had to exclude one from analysis), all from the same 

system, in this preliminary look at these models and would like to, in the future, try using 

more sequences and data from other tutors to see be sure that findings hold true in other 

scenarios and are not useful only in ASSISTments. Although, even if the latter is the case, 

having a better student modeling technique for this system would be very useful in 

developing ways to make it better. 

One clear next step is to implement the same extensions made to the IDEM model to the 

multiple choice model in order to determine how the different types of questions- multiple 

choice and short answer- effect student knowledge and performance. 
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Appendix 

Table 3- Results for “Pythagorean Theorem” 

 KT KT-IDEM KT-IDEL KT-IDEA MCKT 

MAE 0.480245 0.448852 0.478075 0.431558 0.472431 

AUC 0.610767 0.630755 0.661355 0.671785 0.587751 

RMSE 0.491635 0.517432 0.487239 0.511354 0.530694 
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Table 4- Results for “Ordering Positive Decimals” (MCKT excluded) 

 KT KT-IDEM KT-IDEL KT-IDEA 

MAE 0.352754 0.434477 0.362968 0.451735 

AUC 0.58984 0.549476 0.61913 0.577328 

RMSE 0.422419 0.474215 0.418596 0.492843 

 

Table 5- Results for “Ordering Positive Integers (1)” 

 KT KT-IDEM KT-IDEL KT-IDEA MCKT 

MAE 0.223823 0.268527 0.223668 0.270949 0.2948 

AUC 0.545965 0.351229 0.560837 0.36537 0.38731 

RMSE 0.333427 0.365692 0.335122 0.394251 0.3903 
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Abstract. One of the major components of MOOCs is the weekly assignment. 
Most of the assignments are multiple choice, short answer or programming 
assignments and can be graded automatically by the system. Since assignments 
that include argumentation or scientific writing are difficult to grade 
automatically, MOOCs often use a crowd-sourced evaluation of the writing 
assignments in the form of peer grading. Studies show that this peer-grading 
scheme faces some reliability issues due to widespread variation in the course 
participants’ motivation and preparation. In this paper we present a process of 
computer-supported argumentation diagramming and essay writing that 
facilitates the peer grading of the writing assignments. The process has not been 
implemented in a MOOC context but all the supporting tools are web-based and 
can be easily applied to MOOC settings.  

Keywords: Computer Supported Argumentation, Argument Diagramming, 
Peer Review and Grading 

1   Introduction 

MOOCs in general and Coursera, in particular, started with courses in the area of 
Computer Science. These courses offered a variety of homework including multiple 
choice, short answer, and programming assignments that can be graded automatically 
by the system. However, recently, many MOOCs have started offering courses in 
social sciences, humanities, and law subjects whose assignments naturally involve 
more writing and argumentation. Automatic grading of those kinds of assignments is 
more challenging given the current state of natural language processing technologies. 
Coursera and most of the other current systems use a peer-grading mechanism in 
order to address this issue. However, because of the open access nature of the 
MOOCs, a massive number of people with different educational backgrounds and 
language skills from all around the world participate in these courses and this 
heterogeneity in prior preparation negatively affects the validity and reliability of 
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peer-grades. Researchers have investigated this issue (Duneier, 2012) and some steps 
have been taken to address it. Coursera, for example, flags students who give 
inaccurate grades and assigns their assessments less weight, but this method does not 
directly address the diversity of knowledge and writing skills among the students. In 
this paper, we recommend an approach to this issue that combines computer-
supported argument diagramming and writing with scaffolded peer-review and 
grading. With support of the National Science Foundation,2 our ArgumentPeer 
process combines two web-based tools (SWoRD and LASAD) that have been used in 
several university settings and courses, and applies them to support argumentation 
and writing assignments in science and law. The process enables the instructional 
team to carefully define and monitor the writing assignment and revision procedure 
and involves several machine learning and natural language processing components. 

2   Background 

Writing and argumentation are fundamental skills that support learning in many 
topics. Being able to understand the relationships among abstract ideas, to apply them 
in solving concrete problems, and to articulate the implications of different findings 
for studies and theories are essential for students in all areas of science, engineering, 
and social studies. However, inculcating these skills, or compensating for the lack of 
them, is especially difficult in MOOC setting where students have such diverse 
preparations and motivations.  

Our approach to tackle this problem involves breaking down the process of 
writing into multiple measurable steps and guiding the student through the steps with 
careful support and feedback. The first step of the process, computer-supported 
argument planning, engages the students with a graphical representation for 
constructing arguments and provides them with feedback and intelligent support. We 
use LASAD3 as our argument-diagramming tool (cf. Scheuer et al., 2010). LASAD is 
a web-based argumentation support system to help students learn argumentation in 
different domains. It supports flexible argument diagramming by enabling instructors 
to define a pre-structured palette of argumentation elements (Argument Ontology) 
along with a set of help system rules in order to give instant feedback to students 
while working on their diagrams.  

The massive number of students in MOOC settings makes it impossible for the 
instructional team to provide reflective feedback on each individual student’s 
argument. We handle this issue with computer-supported peer-review and grading 
using SWoRD4 (Cho & Schunn, 2007). In general, peer review is consistent with 
learning theories that promote active learning. Furthermore, the peer-review of 
writing has some learning benefits for the reviewer, especially when the students 
provide constructive feedback (Wooley, Was, Schunn, & Dalton, 2008), and put 
effort into the process (Cho & Schunn, 2010). Moreover, studies have shown that 
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feedback from a group of peers can be at least as useful as that of teachers (Cho & 
Schunn, 2007), especially when good rubrics and incentives for reviewing are 
included. Most relevant here, studies have shown that even students with lower levels 
of knowledge in the topic can provide feedback that is useful to the ones with higher 
levels (Patchan & Schunn, 2010; Patchan, 2011). 

3   The Process 

The ArgumentPeer process includes two main phases: 1) Argument Planning, and 2) 
Argument Writing. Fig. 1 shows an overview of the process and its underlying 
components and steps.  

 

 
Fig. 1: ArgumentPeer Process 

3.1 Phase I: Argument Diagramming 

This phase includes studying the assigned resources and creating the argument 
diagram. As an example, students in a legal writing course used LASAD in order to 
prepare textual brief on appeal to the U.S. Supreme Court in the case of United States 
v. Alvarez (Lynch et al., 2012). The system had been introduced to them in a 45-
minutes lecture session (that could easily be made a video) and students were directed 
toward a recommended stepwise format for written legal argumentation as set forth in 
a noted authority (Neumann 2005). Figure 2 shows an example diagram in this study. 
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Fig. 2: Example Argument Diagram in Legal Writing Course 

The instructional team tailored the argument ontology to support the recommended 
argumentation format; the nodes were basically legal “claim” and “conclusion” nodes 
that are connected together via “supporting” and “opposing” links providing reasons 
for and against. The development of a suitable ontology is a critical aspect in the 
design of an argumentation system and might involve iterative refinement based on 
observed problems and weaknesses (Buckingham et al., 2002). Specifically, 
ontologies affect the style of argumentation (Suthers, et al., 2001) and the level of 
details expected for students to provide. LASAD provides an authoring tool that 
enables the instructional team to carefully design the argumentation ontology. 

After creating the argument diagrams, the students submit their diagrams to the 
SWoRD system for revision. As noted, SWoRD lets instructors provide a detailed 
rubric with which peers should assess the diagram. Moreover, it has a natural 
language processing (NLP) component that pushes reviewers to provide useful 
feedback that is not ambiguous or vague (more details in section 3.3). After receiving 
the reviews, the author will revise his/her argument diagram and get ready to write the 
first draft of the writing assignment in phase 2. To support this transition to a written 
argument, a system component creates a textual outline based on a depth-first 
traversal of the argumentation diagram and informed by the argument ontology. In 
this way, students are encouraged to create a well-annotated argumentation diagram 
because the diagram text is easily transferred directly to the written draft. 

3.2 Phase II: Writing 

In this phase, students write their first drafts using the outlines generated from the 
argument diagrams and submit them to SWoRD. After that, the system automatically 
assigns the draft to n reviewers based on the instructors’ policy. The instructor can 
also assign the individual or groups of peers for the revision using various methods. 
For example, in the Legal Writing course, the instructor divided the students into two 
groups, one, writing for the majority and the other writing for the dissenting judge in 
the 9th Circuit U.S. Court of Appeals and assigned the peers in a way such that there is 
at least one peer from the other group among the reviewers.  
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In the next step, the instructor carefully designs the paper reviewing criteria 
(rubric) for the peers and then starts the reviewing process. The key feature of 
SWoRD is the ease with which instructors can define rubrics to guide peer reviewers 
in rating and commenting upon authors’ work. The instructor-provided rubrics, which 
may include both general domain writing and content-specific criteria (Goldin & 
Ashley, 2012), should help to focus peer feedback and compensate for the wide 
diversity of peer-reviewers’ preparation and motivation. 

Reviewers, then, download the paper and evaluate them based on the defined 
rubric and submit their reviews and ratings to SWoRD. Again, the NLP component of 
the system, checks the reviews for usefulness and then the system deliverers the 
reviews back to the author. SWoRD automatically determines the accuracy of each 
reviewer’s numerical ratings using a measure of consistency applied across all of the 
writing dimensions (Cho & Schunn, 2007). Finally, the author submits the second 
draft to the system and the final draft can either be grader by peers or the instructional 
team, although of course in a MOOC context peers would grade it again. 

3.3 AI Guides Student Authors and Reviewers in Both Phases 

As mentioned, the LASAD Authoring tool and its flexible ontology structure enable 
instructors to specify the level of detail on which they want the students to focus. 
Instructors can also use the Feedback Authoring tool to define help system rules that 
guide the students through the argumentation diagramming process. The instant 
feedback component of LASAD is an expert system that uses logical rules to analyze 
students’ developing argument diagrams and to provide feedback on making more 
complete and correct diagrams. The hints can be as simple as telling the student to fill 
in a text field for an element, or as complex as telling the student to include opposing, 
as well as supporting, citations for a finding. Using this in-depth intervention, 
instructors can focus students on their intended pedagogical goals. For example, in the 
legal writing course, a help system rule asks students to include at least one opposing 
“citation” in their diagrams to anticipate possible important counterarguments that a 
court would expect an advocate to have addressed in his or her brief.  

The NLP component of SWoRD helps the students improve their reviews by 
detecting the presence or absence of key feedback features like the location of the 
problem and the presence of an explicit solution. This feature has been implemented 
for review comments on both argumentation diagrams and the written drafts. The 
details of the computational linguistic algorithm that detects the feedback issues are 
described in (Xiong et al., 2012; Nguyen & Litman, in press). The interface provides 
reviewers with advice like: “Say where this issue happened.” “Make sure that for 
every comment below, you explain where in the paper it applies.” In addition, it 
provides examples of the kind of good feedback likely to result in an effective 
revision: “For example, on page [x] paragraph [y], …. Suggest how to fix this 
problem.” “For example, when you talk about [x], you can go into more detail using 
quotes from the reading resource [y].” The system tries to be as helpful as possible, 
but in order to prevent frustration, it allows the reviewers to ignore the suggestions 
and submit the review as is. However, SWoRD considers these reviewers as less 
accurate and gives lower weight to their ratings. 
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4 Assessment and Grading 

After submitting the final draft, the papers are assigned automatically or by the 
instructors to the same or another group of peers (or members of the instructional 
team in non-MOOC contexts) for grading. The same rubric can be used for the second 
round of review but it is also possible to define new criteria particularly for grading 
purposes.  

According to (Cho, Schunn, & Wilson, 2006; Patchan, Charney, & Schunn, 
2009) the aggregate ratings of at least 4 peers on a piece of writing in this setting are 
more highly reliable and just as valid as a single instructor’s ratings. However, some 
studies (e.g., Chang et al., 2011) note that there can be systematic differences 
between peer and instructor assessment in a web-based portfolio setting. We believe 
that by breaking down the argument planning and writing process into multiple 
guided steps, each subject to review according to instructor-designed peer-review 
criteria, we move toward a more reliable peer-grading scheme that can be especially 
useful in a MOOC context. 

5 Discussion 

Grading writing assignments requires considerable effort, especially when the class 
size increases. Peer-review and grading is one way to deal with this problem but many 
instructors are hesitant to use it in their classrooms. The main concern is whether the 
students are actually capable of grading the papers accurately and responsively. 
Studies have shown that peer rating alone can be reliable and valid in a large-scale 
classroom under appropriate circumstances and well-chosen review criteria (Cho, 
Schunn, & Wilson, 2006; Patchan, Charney, & Schunn, 2009). The ArgumentPeer 
project not only enables the instructor to design the rubric but also makes it salient for 
the reviewer to see the deep structure of the argumentation by viewing the 
argumentation diagram. This positive synergy between diagramming and peer-review 
makes it easier for the reviewer to see the argument structure in the diagram and its 
reflection in the writing. 

Regarding scalability and the possibility of being used in a MOOC setting, both 
SWoRD and LASAD are web-based projects developed using Java 2 Platform, 
Enterprise Edition (J2EE) architecture. LASAD uses automated load balancing in 
order to support a large number of students. The rich graphical interface of LASAD 
along with flexible structure of the ontologies helps students gain an understanding of 
the topic of argumentation (Loll, et al., 2010). Moreover, the collaborative nature of 
LASAD can be used in order to facilitate engagement, particularly in MOOC settings 
that face the problem of student retention. 

SWoRD, which is the main platform for peer-review and grading, has also been 
successfully used in classrooms with a large number of students (Cho, Schunn, & 
Wilson, 2006). The basic review structure in SWoRD is quite similar to the journal 
publication process, which makes it a familiar process among academics. In addition, 
publicizing students’ papers to their peers can make students put more effort into 
writing by increasing audience awareness (Cohen & Riel, 1989).  
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6 Conclusion 

In this paper, we presented a process of argument diagramming and reciprocal peer-
review in order to facilitate the grading of writing assignments. The ArgumentPeer 
process and its preexisting components, SWoRD and LASAD, have been applied 
across different university settings in different courses with large numbers of students. 
We have decomposed writing assignments into separate steps of planning an 
argument and then writing it, support students in each step with instructor- and AI-
guided peer reviewing and grading. The results of our past studies show that high 
reliability and validity in the peer grading can be achieved with multiple reviewers per 
paper. The web-based nature of the components of the ArgumentPeer process makes 
it relatively easy to apply in MOOC settings. We believe that its fine-grained support 
for authoring and reviewing could help achieve higher levels of reliability and validity 
in MOOCs despite their massive numbers of highly diverse participants. 
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Abstract. MOOCs and other platforms for online education are having a 
tremendous impact on the learning of tens of thousands of students. They offer 
a chance to build a set of educational resources from the ground up, at a time 
when scientists know far more about learning and teaching than at the advent of 
the current education system. This paper presents practical implications of 
research from cognitive science, showing empirically supported and actionable 
strategies any designer or instructor can use to improve students’ learning. 
These all take the form of augmenting online videos and exercises with 
questions and prompts for students to consider explanations: before, during, and 
after learning. This class of instructional strategies provides students with 
direction while allowing them to take charge of their learning, is technically 
easy to implement, and is applicable to a wide variety of video and exercise 
content, that ranges across multiple topics.  

Keywords: learning, learning, cognitive science, MOOCs, educational 
software, online learning, problem based learning, explanation, self-
explanation, retrieval practice, interleaving, mixing, spacing 

1   Introduction 

High quality pedagogy is an essential goal for MOOCs. There are few barriers to 
students moving between courses, and the expectations are also that online learning 
platforms will take advantage of their greater freedom to innovate than many 
education reform movements in traditional schools.  

One way to complement the practical experience of quality instructors is to 
synthesize and apply insights from scientific research. The nature of such work is 
produce insights that people’s direct experience is unlikely to uncover. This paper 
considers how research from cognitive science can improve learning in MOOCs. The 
following consider educational implications of cognitive science more generally. [1] 
is an Institute of Education Sciences practice guide that is short, available online, 
constructed by an expert panel, and peer-reviewed. Books include [2], which is 
targeted at university instructors, [3] is for a general audience and K-12 teachers, and 
[4] focuses on multimedia learning for both K-16 education and corporate training.  

This paper follows the approach taken in the reviews above in selecting practical 
principles from a broad review and synthesis of literature in cognitive science. This 
includes publications of basic research and  controlled laboratory experiments, as well 
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as studies with educational materials and K-12 and university students from K-12 and 
university students – which are directly relevant to lessons in current MOOCs.  

The principles are selected to target key challenges in online learning, like ensuring 
learners remain engaged and active even without a physical community, promoting 
deep understanding rather than superficial memory, and supporting students in being 
strategic and independent learners, even without much direct feedback. 

The principles specifically focus on how to appropriately prompt students to 
answer questions and provide explanations, before, during, and after watching 
instructional videos or engaging in exercises. It is a common intuition that students 
learn when they are given comprehensive knowledge: MOOCs deliver high-quality 
online videos with cogent explanations, and include practice exercises like that in 
Figure 1, accompanied by clear answers and solutions. However, there is substantial 
evidence that students can learn far more by trying to answer questions themselves 
(than by receiving the answers), or by being pushed to construct explanations (rather 
than provided with them), which will be discussed in the following sections.  

2   Context of application: example video and exercise 

Each principle for adding question prompts is targeted at the grain size of an online 
module – a short, self-contained batch of information like a video or exercise.  

The principles are abstract in that they can improve learning from a range of online 
videos and exercises, but to provide concrete and actionable insight they are 
illustrated through application to specific examples of a video and exercise.  

The example video is a three minute Udacity.com video from an introductory 
statistics course (http://tiny.cc/examplevideo): It explains what the normal distribution 
is, and how the area under its curve corresponds to the probability of observing 
certain sampled observations from a population. 

 

 
Fig. 1. Example math exercise from Khan Academy: http://tiny.cc/exampleexercise 

The example exercise is shown in Figure 1, an algebra word problem from Khan 
Academy’s collection of mathematics exercises at 
www.khanacademy.org/exercisedashboard. These share a common format. Only the 
problem statement is shown at first (blue & red text in Figure 1). Students can submit 
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an answer for feedback or request a hint at any point. They only move onto the next 
problem when they are correct, but each hint request reveals the next step in a worked 
example solution – which ultimately gives the answer as its final step. 

3   Adding questions before, during, and after videos & exercises  

Questions or prompts to generate explanations can be added in at least three ways 
to online modules: pre-module (immediately preceding or in the very beginning of a 
video/exercise, preceding the presentation of content), intra-module (popping up in a 
video or emphasized as an activity by the instructor, embedded into the steps of an 
exercise), or post-module (following the student’s engagement with a video/exercise).  

3.1   Pre-Module: Framing Questions 

Even before learners are presented with information in a video or exercise, 
prompting them to consider framing questions can make them more motivated to 
learn, as well as help them connect a module’s content to their existing knowledge, 
and understand how they can apply it to future problems.  

In contrast to delivering a traditional sequence of subject-focused videos & 
exercises (which touch on a succession of topics students may struggle to relate), 
problem-based learning [5] frames videos & exercises as the knowledge needed to 
solve particular problems and answer previously articulated questions. For example, a 
problem-based learning version of an introductory statistics course [6] would precede 
lessons with a keen emphasis on what problems the lesson would teach students how 
to solve, rather than a typical focus on the specific facts and concepts in each lesson. 

Examples of pre-module framing questions are shown in Table 1.  

Table 1. Examples of Framing Questions that could precede videos and exercises. 

Udacity video on the normal distribution Khan Academy algebra math exercise 
Before a video, a page with a Framing 

Question can be presented: “Explain what you 
already know about normal distributions.” 
“What is a normal distribution useful for?” 

Instructors can also introduce a fixed time 
delay (e.g. 10 seconds), a required text response, 
or a strong emphasis on a Framing Question at 

the start of a video. 

If you are only told about the 
relationships between two people’s ages, 
what kind of math is useful for figuring 

out actual ages? 
The guiding question to keep in mind for 
this exercise is: “How can you convert 

word problems into algebra expressions?” 

 
The motivational benefit is in greater excitement to learn in order to solve a 

problem, rather than learn to memorize and be tested. The cognitive benefit arises in 
part by getting learners to activate their existing knowledge, so they connect new 
information to well-established ideas. Prompts to explain a fact can be largely 
unsuccessful, but still increase how much is learned once a lesson is presented [7]. [8] 
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showed that students were mostly unsuccessful when asked to solve a problem related 
to calculating variability, but that having tried to solve this problem changed what 
they learned from a subsequent lesson. Compared to other students who received 
alternative instruction without this framing question or problem, these students were 
better able to apply what they learned in subsequent lessons to new situations.  

Developing Framing Questions. To generate framing questions for a particular 
resource, an instructor can ask:  

• “What questions should students be able to answer after watching this video, 
that they can’t right now?” 

• “What problems do I think they should be able to solve afterwards, that they 
would have struggled with before?” 

3.2 Intra–Module: Reflection Questions 

Typically, instruction is seen as providing learners with answers or giving them 
explanations. But extensive work in cognitive science, education, and intelligent 
tutoring has shown that giving learners the right prompts to self-generate explanations 
can be more effective than giving students explanations [9] [10]. This provides 
empirical insight into how and when “teaching is the best way to learn”. Without 
changing the content of online videos and exercises, MOOCs can improve learning by 
appropriately embedding questions and prompts for learners to provide explanations.  

Videos in MOOCs already have the functionality to pop-up short multiple choice 
exercises, which could be used to present questions that are more conceptual and that 
allow open-ended responses. Solutions to exercises can be split up into multiple lines, 
and have questions and prompts with text boxes to type answers embedded inline. 
Examples are shown in Table 2.  

Table 2. Examples of how Reflection Questions could be embedded in videos and exercises. 

Udacity video on normal 
distribution Khan Academy algebra math exercise 

Explain what the video has 
talked about so far. (@1:35)  

 
What are you thinking 

about right now? Just say it 
out loud. (@ 2:15)  

 
Do you see why this step makes sense or is justified? 

 
What step do you think is coming next? 

 
There is substantial evidence that learners’ understanding is improved by prompts 

to explain out loud the meaning of what they are learning or say out loud what they 
are thinking [9] – although studies typically ensure learners are not confused by the 
sudden appearance of these prompts. Asking learners to explain why particular facts 
are true or answers are correct has been shown to help them understand key principles 
and generalizations [11]. [12] shows that anticipating next steps in a solution and 
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making predictions about what will be discussed next leads to a better understanding 
of how and where to use what they are learning about, and provides implicit feedback 
as the video continues or solution is revealed. 

Developing Reflection Questions. In addition to examining the methods of the 
studies cited above, the Institute of Education Sciences practice guide [1] provides a 
reference of effective question stems: E.g., why, why-not, how, what-if, how does X 
compare to Y, what is the evidence for X?  
    An instructor can use a list of these stems to generate and insert question or 
explanation prompts throughout an instructional video or an exercise’s solution. 

3.3 Post–Module Memory Practice Questions 

Questions that target information from a past video or exercise are common in 
MOOCs, but often do not realize their potential for Memory Practice. One reason is 
that they are often designed to assess learning without attention towards improving it. 
[13] shows that simply asking students to recall what they read in a science passage 
(an open ended prompt that is not common in testing, but encourages Memory 
Practice) greatly improved memory a week later – outperforming students who read 
the passage three more times, or made elaborate concept maps. Post-module prompts 
for this paper’s current examples might include “Write down the main points from 
that video.” or “Explain the method you used to solve these exercises.” 

In fact, MOOCs often do include post-module questions designed to help students 
revisit content – such as review questions or practice exercises. However, these may 
not successfully produce Memory Practice if they occur so soon after a module that a 
learner can answer using rote memory. [14] provides an extensive review of how to 
ensure post-module questions are beneficial, so that Memory Practice helps learners 
generate the meaningful cues and connections to other concepts that are needed to 
remember over the long-term.  

For example, simply spacing practice exercises improves long-term retention 
(although benefits are deceptively absent in the short-term), and learning is even 
further improved by interleaving or mixing problems and concepts that students 
frequently confuse [15]. For example, a typical practice sequence might be 12 
problems of type A, then 12 of type B, and 12 of type C. But it can be better for deep, 
lasting learning to practice [6 A, 4 B, 2 C], [4 A, 6 B, 2 C], and [2 A, 4 B, 6 C]. Often, 
however, students and instructors may assume that the more challenging learning in 
the mixed condition means that it is a poorer strategy and abandon it – even though it 
produces larger and lasting benefits without any increase in the number of problems 
[15]. Ironically, the same studies that empirically show the advantages of Memory 
Practice also find that students expect typical study strategies to help more [13] [14]. 
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Conclusion 

This paper considered how to improve learning in MOOCs by adding question & 
explanation prompts before, during, and after online videos and exercises. This is not 
to say that MOOCs never incorporate questions into instruction as advised – this is 
unlikely given the diversity of online instruction. Scientific principles for learning can 
be used to design novel instruction or to support benchmarking – to identify which of 
the vast set of instructional strategies are supported by cognitive science. Moreover, 
consulting and working with cognitive scientists (to embed practical experiments and 
design measures of learning) allows MOOCs to maximize learning by tailoring 
general learning principles to specific courses and lessons. Collaborations like these 
between instructions and scientists can provide the best outcomes for students. 
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Abstract. A key challenge in online learning is keeping students motivated. We 

report an experiment that added motivational messages to students solving 

mathematics problems on the KhanAcademy.org platform. By simply adding 

sentences above the text of a math problem, students attempted (successfully) a 

greater number of problems, were more likely to acquire exercise proficiencies, 

and even solved a larger proportion of attempted problems correctly. The key 

feature for producing these measurably improved outcomes was in using 

messages that emphasized that intelligence is malleable – e.g., “Remember, the 

more you practice the smarter you become!”. Control conditions that provided 

neutral science facts or even positive messages – e.g., “This might be a tough 

problem, but we know you can do it.” – were not as effective. There are many 

pedagogical strategies that instructors of online courses might hypothesize will 

increase motivation; these findings underscore the value in empirically testing 

such predictions, using the unique data that is now available in MOOCs.  

Keywords: motivation, MOOCs, learning, mindset 
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Abstract. Khan Academy is a personalized learning resource that enables 

students to watch educational videos and answer questions across a variety of 

levels of mathematics and other subjects. With over one billion problems 

solved, Khan Academy has a massive dataset from which to draw evidence and 

make inferences about student learning behaviors. Our goal is to use this 

unprecedented quantity of data to learn what content each student will benefit 

the most from seeing, and to present it to them. Towards this goal, we have run 

more than one hundred massive controlled experiments, evaluating hypotheses 

about learning.  

 

We focus here on personalizing the learning experience by using student 

responses to assessment items to adaptively suggest new content. We discuss 

the metrics by which we measure student improvement and the tradeoffs that 

occur when increased exercise difficulty reduces student engagement. We 

further discuss personalizing content such as exercise or video suggestions, and 

measuring student responses to such interventions. Leveraging massive data to 

personalize learning is one of the greatest promises of online education, and this 

work represents first steps towards fulfilling that promise for millions of users 

worldwide. 

Keywords: personalized learning, data mining, machine learning, massive data, 

Khan Academy 
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Abstract. In Massive Open Online Courses (MOOCs), online videos serve as 

the equivalent of lectures found in their traditional on-campus courses. Across a 

number of courses offered by edX in the Fall of 2012, the number of unique 

videos watched shows bimodal student engagement similar to ``attendance'' of 

large-lecture on-campus courses; only half the participants are watching the 

majority of course videos. The overall scale of MOOC populations still allows 

for meaningful measurements of video activity, while also providing a 

tremendous opportunity to experiment with methods of improving engagement 

of those participants showing low video use. We present preliminary analyses 

of the nature of video engagement through both the fraction of videos viewed 

over the course and the detection of convergent activity (``hot spots'') in the 

collective pause and play interactions within each video. We discuss our results 

in the context of improving video content, as well as a new video annotation 

tool being integrated into assessment items. 

Keywords: MOOC, Video, Online, Analytics 
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Abstract. Massive Open Online Courses (MOOCs) have been widely lauded 

by the press since its fairly recent inception. Besides its wide popularity among 

learners worldwide, the majority of MOOCs still present challenges with steep 

dropout rates in spite of their promising enrollment numbers. While enjoying 

various benefits MOOCs brings along, learners apparently face new challenges. 

This paper intends to explore possible reasons behind this phenomenon from a 

social cognitive perspective by analyzing and comparing the same subject 

content taught in both the traditional face-to-face setting and on a MOOC-based 

platform.  

 

Based on past research and theories including both the larger distance learning 

fields as well as recent MOOC-specific ones, three areas, namely, the lack of 

self-efficacy, self-regulation, and self-motivators are identified to help present 

an exploratory framework in interpreting findings of this study. Although far 

from all encompassing, this exploratory framework attempts to enhance our 

understanding of distinct challenges MOOC learners as well as MOOC 

designers face. 

Keywords: MOOCs, Distance Learning, Student Retention Rate, Sustainability 

of Learning. 
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Abstract. Unlike classroom education, immediate feedback from the student is 
less accessible in Massive Open Online Courses (MOOC). A new type of sen-
sor for detecting students’ mental states is a single-channel EEG headset simple 
enough to use in MOOC. Using its signal from adults watching MOOC video 
clips in a pilot study, we trained and tested classifiers to detect when the student 
is confused while watching the course material. We found weak but above-
chance performance for using EEG to distinguish when a student is confused or 
not. The classifier performed comparably to the human observers who moni-
tored student body language and rated the students’ confusion levels. This pilot 
study shows promise for MOOC-deployable EEG devices being able to capture 
tutor relevant information. 

Keywords: MOOC, EEG, confuse, feedback, machine learning 

1 Introduction 

In recent years, there is an increasing trend towards the use of Massive Open Online 
Courses (MOOC), and it is likely to continue [1]. MOOC can serve millions of stu-
dents at the same time, but it has its own shortcomings. In [2], Thompson studied 
post-secondary students who had negative attitudes toward correspondence-based 
distance education programs. The results indicate that lack of immediate feedback and 
interaction are two problems with long-distance education. Current MOOC can offer 
interactive forums and feedback quizzes to help improve the communication between 
students and professors, but the impact of the absence of a classroom is still being 
hotly debated. As also discussed in [3], indicates the lack of feedback is one of the 
main problems for student-teacher long distance communication.  

There are many gaps between online education and in-class education  [4] and we 
will focus on one of them: detecting students’ confusion level. Unlike in-class educa-
tion, where a teacher can judge if the students understand the materials by verbal in-
quiries or noticing their body language (e.g., furrowed brow, head scratching, etc.), 
immediate feedback from the student is less accessible in long distance education. We 
address this limitation by using electroencephalography (EEG) input from a commer-
cially available device as evidence of students’ mental states.  
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The EEG signal is a voltage signal that can be measured on the surface of the 
scalp, arising from large areas of coordinated neural activity manifested as synchroni-
zation (groups of neurons firing at the same rate) [5]. This neural activity varies as a 
function of development, mental state, and cognitive activity, and the EEG signal can 
measurably detect such variation. Rhythmic fluctuations in the EEG signal occur 
within several particular frequency bands, and the relative level of activity within 
each frequency band has been associated with brain states such as focused attentional 
processing, engagement, and frustration [6-8], which in turn are important for and 
predictive of learning [9]. 

The recent availability of simple, low-cost, portable EEG monitoring devices now 
makes it feasible to take this technology from the lab into schools. The NeuroSky 
“MindSet,” for example, is an audio headset equipped with a single-channel EEG 
sensor [10]. It measures the voltage between an electrode that rests on the forehead 
and electrodes in contact with the ear. Unlike the multi-channel electrode nets worn in 
labs, the sensor requires no gel or saline for recording and therefore requires much 
less expertise to position. Even with the limitations of recording from only a single 
sensor and working with untrained users, a previous study [11] found that the Mind-
Set distinguished two fairly similar mental states (neutral and attentive) with 86% 
accuracy. MindSet has been used to detect reading difficulty [12] and human emo-
tional responses [13] in the domain of intelligent tutoring systems. 

A single-channel EEG device headset currently costs around $99-149 USD, which 
would be a cost deterant to the free service of MOOC. We suggest that MOOC pro-
viders (e.g., Coursera, edX) supply EEG devices to a select group of students. In re-
turn, MOOC providers would get feedback on students’ EEG brain activity or confu-
sion levels while students watch the course materials. These objective EEG brain 
activities can be aggregated and augment subjective rating of course materials to pro-
vide a simulation of real world classroom responses, such as when a teacher is given 
feedback from an entire class. Then teachers can improve video clips based on these 
impressions. Moreover, even though an EEG headset is a luxury device at the mo-
ment, the increasing popularity of consumer-friendly EEG devices may one day make 
it a house-hold accessory like audio headsets, keyboards and mice. Thus, we are 
hopeful of seeing our proposed solution come to fruition as the market for MOOC 
grows and the importance of course quality and student feedback increases.  

To assess the feasibility of collecting useful information about cognitive processing 
and mental states using a portable EEG monitoring device, we conducted a pilot study 
with college students watching MOOC video clips. We wanted to know if EEG data 
can help distinguish among mental states relevant to confusion. If we can do so by 
better than chance, then these data may contain relevant information that can be de-
coded more accurately in the future. Thus, we address two questions:   

1. Can EEG detect confusion? 
2. Can EEG detect confusion better than human observers? 

The rest of this paper is organized as follows. Section 2 describes the experiment 
design. Section 3 and 4 answers the two research questions, respectively. Finally, 
Section 5 concludes and suggests future work.  

60



2 Experiment Design 

In a pilot study, we collected EEG signal data from college students while they 
watched MOOC video clips. We extracted online education videos that are assumed 
not to be confusing for college students, such as videos of introduction of basic alge-
bra or geometry. We also prepare videos that are assumed to confuse a normal college 
student if a student is not familiar with the video topics like Quantum Mechanics, and 
Stem Cell Research1. We prepared 20 videos, 10 in each category. Each video was 
about 2 minutes long. We chopped the two-minute clip in the middle of a topic to 
make the videos more confusing.  

We collected data from 10 students. One student was removed because of missing 
data due to technical difficulties. An experiment with a student consisted of 10 ses-
sions. We randomly picked five videos of each category and randomized the presenta-
tion sequence so that the student could not guess the predefined confusion level. In 
each session, the student was first instructed to relax their mind for 30 seconds. Then, 
a video clip was shown to the student where he/she was instructed to try to learn as 
much as possible from the video. After each session, the student rated his/her confu-
sion level on a scale of 1-7, where 1 corresponded to the least confusing and 7 corre-
sponded to the most confusing. Additionally, there were three student observers 
watching the body-language of the student. Each observer rated the confusion level of 
the student in each session on a scale of 1-7. The conventional scale of 1-7 was used. 
Four observers were asked to observe 1-8 students each, so that there was not an ef-
fect of observers just studying one student. 

The students wore a wireless single-channel MindSet that measured activity over 
the frontal lobe. The MindSet measures the voltage between an electrode resting on 
the forehead and two electrodes (one ground and one reference) each in contact with 
an ear. More precisely, the position on the forehead is Fp1 (somewhere between left 
eye brow and the hairline), as defined by the International 10-20 system [14]. We 
used NeuroSky’s API to collect the EEG data. 

3 Can EEG detect confusion? 

We trained Gaussian Naïve Bayes classifiers to estimate, based on EEG data, the 
probability that a given session was confusing rather than not confusing. We chose 
this method (rather than, say, logistic regression) because it is generally best for prob-
lems with sparse (and noisy) training data [15]. 

To characterize the overall values of the EEG signals while the students watch the 
2 minute video, we computed their means over the interval. To characterize the tem-
poral profile of the EEG signal, we computed several features, some of them typically 
used to measure the shape of statistical distributions rather than of time series: mini-
mum, maximum, variance, skewness, and kurtosis. However, due to the small number 
of data points (100 data points for 10 subjects, each watching 10 videos), inclusion of 

                                                           
1 http://open.163.com/ 
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those features tends to overfit the training data and results in poor classifier perfor-
mance. As a result, we used the means as the classifier features for the main analysis. 
Table 1 shows the classifier features. 

Table 1. Classifier features 

Features Description Sampling rate Statistic 
Attention Proprietary measure of mental focus 1 Hz Mean 
Meditation Proprietary measure of calmness 1 Hz Mean 
Raw Raw EEG signal 512 Hz Mean 
Delta 1-3 Hz of power spectrum 8 Hz Mean 
Theta 4-7 Hz of power spectrum 8 Hz Mean 
Alpha1 Lower 8-11 Hz of power spectrum 8 Hz Mean 
Alpha 2 Higher 8-11 Hz of power spectrum 8 Hz Mean 
Beta1 Lower 12-29 Hz of power spectrum 8 Hz Mean 
Beta 2 Higher 12-29 Hz of power spectrum 8 Hz Mean 
Gamma1 Lower 30-100 Hz of power spectrum 8 Hz Mean 
Gamma2 Higher 30-100 Hz of power spectrum 8 Hz Mean 

 
To avoid overfitting, we used cross validation to evaluate classifier performance. 

We trained student-specific classifiers on a single student’s data from all but one 
stimulus block (e.g., one video), tested on the held-out block (e.g., all other videos), 
performed this procedure for each block, and averaged the results to cross-validate 
accuracy within reader. We trained student-independent classifiers on the data from 
all but one student, tested on the held-out student, performed this procedure for each 
student, and averaged the resulting accuracies to cross-validate across students. 

We use two ways to label the mental states we wish to predict. One way is the pre-
defined confusion level according to the experiment design. Another way is the user-
defined confusion level according to each user’s subjective rating. 

Detect pre-defined confusion level. We trained and tested classifiers for pre-
defined confusion. Student-specific classifiers achieve a classification accuracy of 
67% and a kappa statistic of 0.34, whereas student-independent classifiers achieve a 
classification accuracy of 57% and a kappa statistic of 0.15. Both classifier perfor-
mances were statistically significant better than a chance level of 0.5 (p < 0.05). Fig. 
1a) plots the classifier accuracy for each student. Fig. 1a) shows that both student-
specific classifiers and student-independent classifiers performed significantly above 
chance in 6 out of 9 students. 

Detect user-defined confusion level. We also trained and tested classifiers for 
student-defined confusion. Since students have different sense of confusing, we 
mapped the seven scale self-rated confusion level into a binary label, with roughly 
equal number of cases in the two classes. A middle split is accomplished by mapping 
scores less than or equal to the median to “not confusing” and the scores greater than 
the median are mapped to “confusing”. Furthermore, we used random undersampling 
of the larger class(es) to balance the classes in the training data. We performed the 
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sampling 10 times to limit the influence of particularly good or bad runs and obtain a 
stable measure of classifier performance. 

Student-specific classifiers achieve a classification accuracy of 57% and a kappa 
statistic of 0.13, whereas student-independent classifiers achieve a classification accu-
racy of 51% and a kappa statistic of -0.04. The student-specific classifier performance 
was statistically significant and better than a chance level of 0.5 (p < 0.05), but not the 
student-independent classifier. Fig. 1b) plots the accuracy for each student. Fig. 1b) 
shows that the student-specific classifier performed significantly above chance for 5 
out of 9 students and student-independent classifier performed significantly above 
chance for 2 out of 9 students.  

 
Fig. 1. Detect a) predefined, and b) user-defined confusion level 
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4 Can EEG detect confusion better than human observers? 

To determine if EEG can detect confusion better than human observers of body lan-
guage, we compared the scores from the observers, the classifier, and the students, 
with the label of videos. For each student, we used the average scores of the observers 
as the ‘observer rating’. We used the classifier trained in Section 3 to predict prede-
fined confusion level and linearly mapped the classifier’s estimate of class probability 
(0-100%) to a scale of 1-7 and labeled it as the ‘classifier rating’. 

Fig. 2 shows the scatter plot of a) student vs. observer rating, and b) student vs. 
classifier rating. The classifier rating had a low, but positive correlation (0.17) with 
the students’ rating, while the observer rating had a low, but positive correlation of 
(0.17) with the students’ rating. This shows that the classifier performed comparably 
to the human observers who monitored student body language and rated the students’ 
confusion levels. 

 

Fig. 2. Scatter plot of a) classifier vs. student rating, and b) observer vs. student rating  

5 Conclusions and Future Work 

In this paper, we described a pilot study, where we collected students’ EEG brain 
activity while they watched MOOC video clips. We trained and tested classifiers to 
detect when a student was confused. We found weak but above-chance performance 
for using EEG to distinguish whether a student is confused. The classifier performed 
comparably to the human observers who monitored student body language and rated 
the students’ confusion levels. 
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Since the experiment was based on a class project run by a group of graduate stu-
dents, there were many limitations to the experiment. We now discuss the major limi-
tations and how we plan to address them in future work. 

One of the most critical limitations is the definition of experimental construct. 
Specifically, our pre-defined “confusing” videos could be confounded. For example, a 
student may not find a video clip on Stem Cell to be confusing when the instructor 
clearly explains the topic. Also, the predefined confusion level may be confounded 
with increased mental effort / concentration. To explore this issue, we examined the 
relationship between the predefined confusion level and the subjective user-defined 
confusion level. The students’ subjective evaluation of the confusion level and our 
predefined label has a modest correlation of 0.30. Next, we performed a feature selec-
tion experiment among all combinations of 11 features; we used cross validation 
through all the experiments and sorted the combinations according to accuracy. Then 
we found that the user-specific model Theta signal played an important role in all the 
leading combinations. Theta signal corresponds to errors, correct responses and feed-
back, suggesting the experimental construct is indeed related to confusion. 

Another limitation is due to the lack of psychological professionalism. For exam-
ple, the observers in our experiment were not formally trained. As a result, the current 
scheme allowed each observer to interpret a student’s confusion level based on his/her 
own interpretation. A precise labeling scheme would yield more details that could be 
compared among raters and, thereby, improve our rating procedure. 

Another limitation is the scale of our experiment as we only performed the exper-
iments with 10 students, and each student only watched 10 two-minute video clips. 
The limited amount of data points prevents us from drawing any strong conclusions 
about the study. We hope to scale up the experiment and collect more data. 

Finally, this pilot study shows positive, but weak classifier performance in detect-
ing confusion. The weak classifier performance may have many false-alarms and 
thereby frustrate a student. In addition, a student may not be willing to share their 
brain activity data due to privacy concerns. We are hopeful that the classifier accuracy 
can be improved once we conduct a more rigorous experiment, by increasing the 
study size, and improve the classifier with better feature selection and by applying 
denoising techniques to improve signal-to-noise ratio. Lastly, the classifiers are sup-
posed to help students, so the students should be able to choose not to use EEG if they 
think the device is hindering. 
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Abstract. Open online courses attract a diverse global audience of
learners, many of whom might not be self-directed autodidacts with the
necessary web competencies to reap the full benefits of such courses.
Most of these learners would benefit from increased guidance on how to
use MOOCs to enhance their learning. One potential area for guidance is
in group collaboration where learners form teams to collaboratively work
on assignments. Despite the global scope of these courses, a large propor-
tion of learners live within relatively close proximity of each other, such
that in-person collaboration is a feasible option. However, geographically
distributed groups of learners are more likely to bring diverse viewpoints
to the discussion than learners who live close to each other. Research
suggests that the diversity of viewpoints in a group positively affects the
quality of collaboration and outcomes. This paper reviews the literature
on the feasibility of assigning local groups for collaboration and proposes
concrete research directions.

1 Introduction

An increasing number of educators use online, asynchronous computer-mediated
communication tools to create massive open online courses (MOOCs). These
virtual classrooms attract a global audience of learners (Fig. 1) who join these
courses for various reasons, including earning a certificate for completing the
course or personal enrichment. The global and massive scale of these courses
make them a melting pot for diverse ideas and perspectives: the learner popula-
tion varies considerably in demographics, cultural background, language skills,
personality, motivation, and prior knowledge.

Potentially the most important scholarly question in the midst of the rapid
proliferation of open online courses is how learning can be enhanced with MOOCs.
No simple answer can suffice, but it is clear that understanding the learner pop-
ulation is critical for developing strategies to foster learning. Borrowing a term
from Lévi-Strauss [1], the online learner can be understood as a bricoleur–a
handy-man or jack-of-all-trades–who cobbles together ways to learn from the
plethora of online learning resources. The danger with this notion of the learner
is that it is probably over-optimistic, given that many learners are not autodi-
dacts or not “MOOC-ready” in other ways, e.g. not technologically adept. Hence,
to ensure equal opportunities to learn, we need to provide guidance to learners
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to become skilled bricoleurs and continuously support them in their bricolage
learning endeavor.

2 Collaborative Learning

Small group collaboration in and around MOOCs is a particularly fertile ground
for increased guidance. The literature on computer-supported collaborative learn-
ing can provide theoretically and empirically grounded advice on how to support
group collaboration. In addition, the rapid development of the online learning
space is providing opportunities for empirical research, unprecedented in scale,
to test existing recommendations and investigate novel approaches to guiding
group collaboration in a variety of contexts.

Many contemporary MOOCs involve group projects as part of the course,
providing learners with the opportunity to collaborate with a diverse set of people
and to engage in a process of knowledge building. Group characteristics affect a
group’s performance, satisfaction, and processes of collaborative learning.

Group formation can follow one of two philosophies: laissez-faire (self-formed)
or interventionist (assigned randomly or based on certain criteria). Both ap-
proaches raise questions of how groups are selected and the kind of guidance
that should be provided from the MOOC interface or other sources.

How should one form groups and guide them to encourage effective and fruit-
ful collaboration? The remainder of the paper addresses this question. Section
3 motivates the distinction between geographically distributed and in-person
groups, and presents evidence for the feasibility of assigning local groups. Sec-
tion 4 reviews relevant literature on small group collaboration that can inform
group assignment and guidance strategies. Section 5 proposes concrete research
directions to empirically investigate strategies for group assignment and guid-
ance, and proposes a collaboration model that combines geographical diversity
and in-person collaboration. Section 6 presents concluding remarks.

3 Geographically Distributed or In-person?

Geographically distributed groups in MOOCs rely on computer-mediated com-
munication (CMC) to work collaboratively on their project. These learners use
video conferencing, and synchronous as well as asynchronous textual interfaces,
such as email, instant messaging, and word processing applications with real-
time collaboration. In contrast, geographic proximity can permit face-to-face
(FtF) interaction. Of the two models, FtF collaboration has been associated
with a significantly better learning experience in terms of the quality of group
discussion and interactions compared to collaboration via asynchronous CMC
[2]. This is not surprising given that FtF communication is a considerably more
expressive medium than CMC.1 However, no significant differences in learning
measured by pre-post tests and self-report were found [2, 3].

1 Interactions in immersive virtual reality are potentially more expressive than face-
to-face, but the technology is not yet publicly accessible.
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Fig. 1. Geographical location of active (interacted with learning materials) learners
averaged over 21 MOOCs with colors representing geographical density of learners in
the region. In green, yellow, and red regions, the learner population is sufficiently dense
to support in-person collaboration.
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In-person groups tend to be self-formed groups of friends, as geographic prox-
imity is positively related to friendship. Such self-formed groups are subject to
people’s natural tendency to engage with people who are similar to themselves
(homophily) [4]. The combination of homophily and the correlation between ge-
ography and demographic and other characteristics tends to make these groups
even more homogeneous relative to, for instance, randomly-assigned groups. This
can be a problem because collaborative learning in heterogeneous groups can be
more effective than in homogeneous ones, as the wealth of alternative perspec-
tives sparks innovative ideas [5, 6]. The research on the relationship between
group members’ friendship and outcomes remains split on whether collaborating
with friends is beneficial [7].

The kind of guidance provided to learners partially depends on whether col-
laboration is in-person or computer-mediated. However, there has been no con-
clusive evidence that assigning groups to facilitate in-person collaboration in
MOOCs is possible at a large scale. While a single MOOC attracts hundreds
of thousands of learners, the feasibility of in-person collaboration relies on how
many learners live close enough to fellow learners. To investigate the feasibility
of in-person collaboration, geographical location data from 21 MOOCs on vari-
ous topics was aggregated to produce two figures. Conclusions drawn from these
data are very likely to be generalizable across MOOCs offered around the same
time (late 2011 to early 2013) on MOOC platforms built around weekly video
lectures and assignments.

Figure 1 illustrates the density of the active learner population on a world
map.2 Green, yellow, and red regions indicate geographical locations with suffi-
ciently many learners to support in-person collaboration.3

Figure 2 illustrates the geographical density of active learners by the number
of learners in the same region. At least three (five) learners live in 52% (37%) of
the regions (dotted line). Moreover, due to the high learner density in a few big
cities, 92% (85%) of learners live in regions with at least four (nine) other learners
taking the same course (solid line). These data suggest that the distribution
of learners in most parts of the world would support group assignments that
facilitate in-person collaboration.

4 Relevant Literature

Scott Page’s [8] work on group collaboration indicates that the diversity of view-
points within a group is more important than the excellence of its individual
members. It is reasonable to assume that people’s diversity of viewpoints in-
creases with the geographical distance between them, which would suggest that

2 Active learners, a small subset of the enrolled learners, are defined to have used the
learning materials at least once.

3 Geographical location was determined based on users’ IP address. A region is defined
by all equivalent latitude/longitude coordinates rounded to zero decimal places. This
definition of a region is not ideal, because the area within regions varies depending
on geographical location, but it provides a rough estimate.
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Fig. 2. Geographical topology of active learners (interacted with learning materials)
averaged over 21 MOOCs. For 1 to 25 learners (N), the solid line illustrates the pro-
portion of learners in regions with at least N learners and the dotted line illustrates
the proportion of regions with at least N learners.
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groups should be assigned with greater geographical diversity. However, there
is potentially enough cultural diversity present in most major cities to assign
groups with diverse viewpoints, while maintaining the geographical proximity to
facilitate in-person collaboration.

Related to Page’s research, Woolley and colleagues [9] report evidence for
a collective intelligence in groups that has little association with the average
or maximum individual intelligence of group members, but is highly correlated
with the proportion of females in the group and the distribution of conversa-
tional turn-taking. While the gender distribution can be addressed by specific
assignment of groups, the conversational dynamics within the group can only
be influenced indirectly, for instance, by guiding group interactions technologi-
cally or with written guidelines on turn-taking. Online video conferencing tools
could include timers for each participant, similar to chess clocks, to encourage
balanced participation and turn-taking.

Barron’s [10] findings provide further evidence that emphasizes the impor-
tance of nuanced process indicators in collaborative learning. She found indica-
tors such as listening to proposals in group collaboration to be predictive of col-
laboration success, while less process-oriented measures such as group members
prior achievements and how well they generated correct ideas were not correlated
with positive problem-solving outcomes. Research on collaborative learning sug-
gests that it is most effective when group members engage in rich interactions,
like discussing conceptual explanations rather than providing specific answers.
Thus, rich interactions can be encouraged by guiding the collaborative process
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[11], for example, by providing note-taking templates that encourage certain
behaviors, such as discussing conceptual explanations.

The collaboration process and how it should be guided depends on the com-
munication medium used for collaboration. The expressiveness of the commu-
nication medium is a likely moderator of the richness of interactions [12], with
FtF enabling more expressive interactions than CMC. However, advances in
the learning sciences on collaborative learning with video [13] suggest that aug-
mented CMC (augmented with tools to foster mutual awareness) can yield higher
collaboration quality and learning gains than unaugmented CMC. Guidance to
learners on the use of such tools, such as when and how to use them effectively,
is necessary to maximize their potential benefit to learners. For instance, groups
with geographically diverse members should receive guidance on several online
collaboration tools, including the types of tasks that each is most suitable for
and examples of how to use them effectively.

5 Research Directions

MOOCs provide researchers with a powerful platform for conducting experi-
ments to address questions around collaborative learning in this novel context.
The massive scale of these courses combined with randomized controlled field
experiments can provide insights into the features of the learning environment
and the kinds of guidance that can significantly enhance learning.

The effectiveness of geographically distributed compared to in-person col-
laboration with different models of guidance could be investigated by assigning
half the project groups to maximize group members’ geographic distance from
each other and the other half to groups close enough to facilitate in-person
collaboration. Groups could be randomly assigned to receive different guidance
on collaboration strategies and technologies. Outcome measures should capture
group performance (project grades and perceived learning), collaboration qual-
ity (e.g. Meier et al.’s [14] rating scheme), members’ experience, and whether
in-person collaboration took place for locally assigned groups. Moreover, a mea-
sure of perceived social and cultural group diversity could provide insights into
the association between geographic distance and subjective group diversity, po-
tentially an important mediator of the above outcome measures.

Beyond the question of how groups are actually assigned, the psychologi-
cal implications of what learners are told about how their group members were
chosen might influence their perception of the group and collaboration experi-
ence (framing effect). For example, telling learners that their collaborators were
carefully chosen based on their personality and previous experience to promote
productive collaboration and original ideas sets positive expectations compared
to telling them that groups are randomly chosen.

An implementation that reaps the benefits of geographically distributed and
in-person collaboration could be to facilitate collaboration in two steps: locally
assigned groups could first collaborate in-person before connecting with a few
other groups from around the world to form a larger, more distributed group
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that discusses the preliminary ideas and continues the collaboration online. This
model of collaboration could be tested and adjusted through iterative improve-
ment to optimize the collaboration experience.

6 Conclusion

Providing online learners with guidance, especially those who are not self-directed
autodidacts, is necessary to ensure equal opportunity to learn. Group collabo-
ration, where peers collectively solve a task or discuss an issue, is a potentially
fruitful setting for increased guidance. Learning from and with peers to comple-
ment learning from the instructor is becoming increasingly important in online
learning due to rapidly growing student-to-teacher ratios. It is therefore critical
that collaborative learning is enhanced by providing learners with appropriate
guidance.

What kind of guidance to provide will partly depend on the type of learner
interaction. This paper argues that there is an important distinction between
groups that have the potential for face-to-face communication and those who do
not, especially as education moves out of brick-and-mortar institutions where
students are all geographically accessible.
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