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Preface 

Open-ended learning environments (OELEs) offer students opportunities to take part 

in authentic and complex problem solving and inquiry tasks by providing a learning 

context and a set of tools for exploring, hypothesizing, and building their own solutions 

to problems. Also referred to as exploratory environments, examples include 

hypermedia learning environments, modeling and simulation environments, 

microworlds, scientific inquiry environments, and educational games featuring open 

worlds. OELEs may be characterized by choices students have as they are involved in  

their learning and problem solving tasks; in OELEs, students are faced with a multitude 

of decisions about what, when, and how to learn. Naturally, these choices offer critical 

opportunities for students to exercise higher-order skills that include:  

 Cognitive processes for accessing, organizing, and interpreting information, 

constructing problem solutions, and assessing constructed solutions;  

 Metacognitive monitoring and self-regulatory processes for coordinating the use 

of cognitive processes and reflecting on the outcome of solution assessments; 

and  

 Emotional and motivational self-regulatory processes that include curiosity and 

persistence, especially in the face of difficulty.  

This presents significant challenges to novice learners because they may not have 

the proficiency for using the system’s tools, nor the experience and understanding 

necessary for explicitly monitoring and regulating their emotions and behaviours as 

they pursue learning goals. Not surprisingly, research has shown that novices often 

struggle to succeed in OELEs. Without adaptive scaffolds, these learners typically use 

tools incorrectly, adopt sub-optimal learning strategies for goal selection and planning, 

and fail to regulate key cognitive, motivational, and emotional processes. Adaptive 

scaffolds in OELEs refer to actions taken by the learning environment, based on the 

learner’s interactions, intended to support the learner in completing a task and 

understanding the topic. Broadly, providing adaptive scaffolds consists of two sub-

problems: (1) measuring and interpreting student behaviours to determine which 

adaptive scaffolds will be beneficial for their learning, and (2) providing adaptive 

scaffolds that effectively support student needs. 

Given the developing interest in this area, this workshop sought papers on: (1) 

theoretical frameworks for designing scaffolding; (2) implementations of adaptive 

scaffolds; (3) cognitive, metacognitive and self-regulation models for designing  

scaffolds; and (4) formative assessments that support students' learning, performance, 

and learning-related behaviors. 14 papers have been accepted for this workshop: 8 as 

long papers that have each been allocated 8 pages, and 6 as short papers that have each 

been allocated 4 pages in the workshop proceedings. 

A number of the accepted papers present games for learning science and math 

content as an open-ended learning environment where students have choice in 

constructing their own solutions to targeted problems. However, when the system 

detects non-optimal or incorrect behavior, it provides adaptive scaffolds to help the 
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students discover and correct their incorrect solutions. Some of the papers discuss 

scaffolds in the form of representation schemes and selective tasks assigned to the 

student that aid their learning processes. Other papers use machine learning and data 

mining techniques to analyze student activity data and determine their learning 

behaviors and approaches to solving problems. A few papers adopt self-explanation as 

the framework for providing adaptive scaffolds, while others use Open Learner 

Modeling (OLM) as a mechanism for promoting student reflection, planning, and 

decision-making. One of the papers uses scaffolding to help students improve their 

metacognitive judgments. Another paper studies the effect of scaffolding as students 

work on invention activities related to data analysis. Finally, we also have a paper that 

discusses taxonomy of adaptive scaffolds in computer-based learning environments. 

We hope this set of papers leads to interesting and important discussions, and all 

participants can take away something that benefits their own work and advances the 

state of the art in this very important field of research. 

In addition to the paper presentations and discussion, this workshop features other 

events:  

1. A combined 90 minute hands-on activity and demonstration session where 

participants create levels to target and assess specific competencies in the 

Newton's Playground game (see http://www.gameassesslearn.org/newton/; the 

system has a level editor built into the game environment).  

2. In the second half of the demonstration session, participants can demonstrate 

their creations. 

3. A panel, where we compare and contrast approaches to scaffolding in traditional 

ITS problem solving environments and OELEs. 

This workshop is the next in the series of Intelligent Support in Exploratory 

Environments (ISEE) Workshops that started in EC-TEL ’08 and has had 

representations in previous AIED, ITS and ICLS conferences. The last workshop was 

held at the Intelligent Tutoring Systems (ITS-2012) conference in Chania, Greece in 

June, 2012 (https://sites.google.com/a/lkl.ac.uk/isee/isee-its-12). Finally, we would like 

to acknowledge the contributions of all of the authors, without which this workshop 

would not have taken place. Many thanks to the program committee that helped review 

the submitted papers and provide valuable feedback to the authors. Last, but not the 

least, a special thanks to James Segedy, who helped put together the Workshop 

proceedings.  

 

July 9, 2013 

Gautam Biswas, Roger Azevedo, Valerie Shute, and Susan Bull 

http://www.gameassesslearn.org/newton/
https://sites.google.com/a/lkl.ac.uk/isee/isee-its-12
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Abstract. Digital games have the potential to make unique and powerful con-

tributions to science education efforts. Much of that potential, however, remains 

unrealized, partly because powerful games for science learning need to syner-

gistically augment commercial game design conventions and principles with 

design principles specific to the goals and nature of science learning and re-

search on science learning. This paper builds on earlier frameworks outlining 

the affordances of commercial game design conventions for learning by propos-

ing three design principles to help students explicitly articulate the intuitive sci-

ence learning inherent in good game play in terms of formal science concepts 

and representations. We discuss these principles in the context of our recent and 

ongoing work in the SURGE projects. These projects investigate effective game 

mechanics to help students organize their tacit understandings about Newtonian 

mechanics into more formalized concepts. 

Keywords: Digital learning environments, prediction, explanation, scaffolding, 

science education

1 Introduction

Digital games provide a promising medium for science education (Clark, Nelson,

Sengupta, & D'Angelo, 2009; Honey & Hilton, 2010; NRC, 2009).  In 2006, the Fed-

eration of American Scientists issued a widely publicized report stating their belief 

that games offer a powerful new tool to support education and encouraging private 

and governmental support for expanded research into complex gaming environments 

for learning. In 2009, a special issue of Science (Hines, Jasny, & Mervis, 2009) high-

lighted digital games in their survey of the promises and challenges of educational 
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technology. Much of the initial debate over digital games for science education has 

focused on whether or not they support learning on science in general terms. This is 

obviously a simplistic question; well-designed games should produce better learning 

outcomes than games with unsound design. The NRC report on laboratory activities 

and simulations (Singer, Holton, & Schweingruber, 2005) supports this view, making 

clear that the design of physical and virtual learning activities, rather than simply the 

potential affordances of the medium, determines efficacy for learning. This paper 

outlines design principles focusing on helping students explicitly articulate the intui-

tive science learning inherent in good gameplay in terms of formal science concepts 

and representations.

2 SURGE I: Design and Rationale

SURGE was originally funded by an exploratory NSF DR-K12 grant between 

Vanderbilt University and Arizona State University (Clark & Nelson, 2008). The 

original design goal involved developing a game that would integrate formal physics 

representations and concepts with popular gameplay mechanics. We built SURGE I 

as a multi-platform game using the Unity3D game engine (unity3d.com). The SURGE 

I platform was intended to investigate design approaches for connecting students' 

“spontaneous concepts” (i.e., intuitions about kinematics and Newtonian mechanics) 

with formalized “instructed concepts.” The design approaches integrate (1) discipli-

nary representations of Newtonian mechanics and explicit connections to its central 

concepts with (2) popular commercial game mechanics from games such as Mario 

Galaxy and Switchball that include marble motion. As a result, SURGE I and SURGE 

II are conceptually-integrated games for learning (Clark & Martinez-Garza, in press), 

rather than conceptually-embedded games. The science to be learned is thus integrat-

ed directly into the mechanics of navigating through the game world, rather than be-

ing embedded as an activity to be visited at some location in the game environment. 

The latter structure is typically present in many virtual worlds designed for science 

learning. 

We focused heavily on popular game-play mechanics from appropriate game gen-

res in the design of SURGE I. Core ideas from commercial game design conventions 

included (a) supporting engagement and approachable entry (Koster, 2004; Squire, 

2011), (b) situating the player with a principled stance and perspective (McGonigal, 

2011), (c) providing context and identification for the player with a role and narrative 

(Pelletier, 2008; Aarseth, 2007; Gee, 2007;), (d) monitoring and providing actionable 

feedback for the player (Annetta et al., 2009;  Garris, Ahlers & Driskell, 2002; Kuo, 

2007; Munz, Schumm, Wiesebrock & Allgower, 2007), and (e) using pacing and 

gatekeeping to guide the player through cycles of performance (Squire, 2006). An 

extended review of these commercial game ideas would be outside the focus of this 

paper; they are discussed in full detail in the cited works and other excellent analyses 

of the affordances of commercial game design for learning (e.g., Annetta, 2010; Gee, 

2009; Klopfer, Osterweil, & Salen, 2009). 
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3 Baseline Student Performance in Original Surge I Design

Students playing versions of SURGE I demonstrated high engagement and signifi-

cant learning gains on items based on the highly-regarded Force Concept Inventory 

(FCI), which is a widely known benchmark assessment for conceptual understanding 

of Newtonian dynamics at the undergraduate level (Hestenes & Halloun, 1995; 

Hestenes, Wells, & Swackhamer, 1992). A study with 208 seventh and eighth grade 

students in Taiwan and 72 seventh grade students in the United States (Clark, Nelson, 

Chang, D'Angelo, Slack, & Martinez-Garza, 2011), for example, showed significant 

pre-post gains, t(250) = 2.0792, p (one-tailed)= 0.019, with modest effect sizes. In 

Taiwan, 62% of the students liked or really liked playing SURGE, 32% thought it was 

okay, and only 6% did not like it. In the United States, 76% of the students liked or 

really liked playing SURGE, 21% thought it was okay, and only 3% did not like it. 

These percentages were similar across gender and previous game-playing experience. 

These findings mirrored our findings in multiple studies conducted with different 

populations including: (a) 155 U.S. undergraduate physics students (D'Angelo, 2010), 

(b) 69 U.S. Title I sixth grade students, (c) 72 U.S. undergraduate educational psy-

chology students (Slack et al. 2010), and (d) 124 U.S. undergraduate educational psy-

chology students (Slack 2011). Those studies showed similarly significant pre-post 

gains (one-tailed p = .001, p = .02, p = .006, and p = .01, respectively). 

The downside, however, was that these gains and increasing mastery focused on 

intuitive understanding (which is what the FCI largely measures) rather than explicit 

understanding. Essentially, players could more accurately predict the results of vari-

ous actions, impulses, and interactions (which improves performance in the game and 

on FCI questions), but players were not being supported in explicitly articulating their 

mental models and the connections from choices made in game play to formal disci-

plinary representations and concepts. 

Thus these results demonstrated that the players were developing intuitive rather 

than formal understandings while playing a game built mainly on commercial design 

principles. This makes sense because the goal of commercial games involves helping 

players develop robust intuitive understanding that helps them enjoy increasing levels 

of mastery as they play the game, which naturally increases their engagement and 

desire to play more. If players are left confused and unable to learn to play the game, 

or if the learning process is overwhelming or poorly structured, players will disen-

gage, making it very unlikely that they will recommend the game to others or pur-

chase future versions of the game. Repeated designs of this type would naturally drive 

a game company into bankruptcy. Thus, strong evolutionary pressures in the gaming 

industry favor design conventions that support intuitive understanding. There is no 

immediate market need, however, for commercial games to support explicit articula-

tion or connection to formal ideas. The intuitive understandings developed at the heart 

of commercial games generally are not intended to correspond with important under-

standings outside of those games. 

The use and purposes of the knowledge obtained from gameplay in commercial 

digital games diverge in some important respects from the goals for science educa-

tion. Commercial game design conventions thus need to be augmented to meet the 
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educational goals for science education. For learners to achieve the goals of science 

education, they must be supported in explicitly integrating the intuitive understanding 

they develop through popular game-play mechanics with formal disciplinary concepts 

and representations. This is a critical challenge for the design of games for science 

learning. How do we promote the integration of intuitive and formal learning without 

sacrificing the engaging intuitive learning encouraged by successful commercial 

gameplay?

Research in psychology, science education, and the learning sciences suggests a 

number of ways to support explicit articulation and integration, but the design princi-

ples developed through that research focus on contexts and mediums with different 

characteristics, affordances, and constraints than those of digital games. As result, in 

order to be synergistic rather than disruptive, these design principles from psycholo-

gy, science education, and the learning sciences require adaptation and reinterpreta-

tion for the digital game medium. Two areas of research are of specific interest in our 

own work for leveraging explicit articulation in synergy with commercial game de-

sign conventions. These areas of research focus on enhancing (1) prediction within 

navigation interfaces, (2) self-explanation within game dialog.

4 SURGE II Design Approach: Prediction within Navigation 

Interfaces to Scaffold Model Articulation

Our SURGE II research explores the potential of leveraging the research on predic-

tion and explanation from psychology and science education to engage students in 

reflecting more consciously and deliberately about the underlying physics models 

(e.g., Mazur, 1996; Grant, Johnson & Sanders, 1990; Scott, Asoko & Driver, 1991). 

Prediction and explanation can promote metacognition, learning, and reflection (e.g., 

Champagne, Klopfer & Gunstone, 1982) and conceptual change (Tao & Gunstone, 

1999; Kearney, 2004; Kearney & Treagust, 2000). A growing body of research and 

scholarship on games and cognition emphasizes cycles of prediction, explanation, and 

refinement at the core of game-play processes (Salen & Zimmerman, 2004, Wright, 

2006).

In terms of scaffolding prediction, SURGE II shifts mechanics to adapt to what we 

have learned from SURGE I. In SURGE II, players navigate their avatar through the 

play area to collect Fuzzies and treasures and deliver them to safe locations while 

avoiding obstacles and enemies (as in SURGE I). Rather than employing the real-time 

interfaces of the original SURGE grant (where pressing an “arrow key” resulted in 

immediate application of an impulse or constant thrust in the direction of the arrow 

key), the new versions incentivize prediction by requiring the player to spatially place 

all of the commands in advance. This feature has the advantage of requiring the player 

to make predictions about the results of each command in terms of the motion of the 

player’s avatar, rather than simply interacting reactively. Furthermore, SURGE II 

reduces the total number of commands a player initiates in a given level (thereby 

increasing the salience and impact of each individual command) to encourage players 

to think more carefully about the outcomes and implications of each action. 
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Our research with the new predictive interface to date has been promising. In our 

current study, 96 students played SURGE over three days. Learning outcomes were 

measured with an 11-item multiple-choice test of Newtonian kinematics modeled 

after the Force Concept Inventory and the Tennessee Comprehensive Assessment 

Program (TCAP) high-stakes science test. The pre- and post-test scores were com-

pared using a two-sample paired t-test. The test showed a mean gain in test scores, 

from M = 3.48 to M = 4.51, and this result was statistically significant (t = 5.184, p < 

.001). The effect size was medium (Cohen’s d = 0.57). Furthermore, the game was 

broadly appealing to students, with 92% of the respondents saying they “liked it” or 

“really liked it.” Moreover, 80% of students considered the game appealing for both 

boys and girls. The sample comprised a cross-section of students who almost never 

play video games (40% reported playing less than two hours a week) as well as stu-

dents for whom video games are a daily or near daily activity (33% reported playing 

an hour per day or more). These increased effect sizes encourage pushing forward 

with our exploration of leveraging prediction in the navigation interfaces.

5 SURGE II Design Approach: Self-Explanation within Game 

Dialog to Scaffold Model Articulation. 

While the increased emphasis on prediction in the navigation design seems produc-

tive, the learning it promotes still focuses on making if/then predictions in the context 

of the consequences of different actions. We are, therefore, also exploring approaches 

for integrating explanation functionality into the dialog to leverage the increased in-

tuitive grasp of the physics involved. Few games provide coherent structures for ex-

ternalizing and reflecting on game-play; more often, such articulation and reflection 

occur outside the game, through discussion among players or participation in online 

forums (Gee, 2007; Squire, 2005; Steinkuehler & Duncan, 2008). We are now work-

ing to develop supports for this articulation and reflection by encouraging explanation 

and self-explanation in the dialog between the players and the characters within the 

game.

Research on self-explanation by Chi and others provides insight into the value of 

explanation for learning (e.g., Chi, Bassok, Lewis, Reimann, & Glaser 1989; Roy & 

Chi, 2005; Chi & VanLehn, in press). A recent review of research on students’ self-

explanation reports that self-explanation results in average learning gains of 22% for 

learning from text, 44% for learning from diagrams, and 20% for learning from mul-

timedia presentations (Roy & Chi, 2005).  Encouragingly, research by Bielaczyc et al. 

(1995) shows that instruction that stresses generating explanations improves perfor-

mance even after the prompts that drive the explanations are discontinued. Mayer and 

Johnson (2010) have conducted preliminary work in embedding self-explanation in a 

game-like environment with encouraging results, including gains on transfer tasks. 

This emphasis on explanation is mirrored in research on science education. Work by 

White and Frederickson (1998, 2000), for example, demonstrates the value of asking 

students to reflect on their learning during inquiry with physics simulations. 
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Our design plan involves leveraging game dialog, which is a very popular aspect of 

conventional game design. Interestingly, while many aspects of commercial game 

design are currently very sophisticated, dialog in commercial games tends to involve 

relatively simple "multiple-choice" dialog trees that are not difficult to create. In fact, 

dialog in games is an area where educational games could take the lead. In SURGE II, 

after a player has completed a set of missions in the core game, a computer-controlled 

character in the game contacts the player and asks for help in mounting a similar res-

cue mission. The plan is for the resulting dialog tree to scaffold the player, requiring 

him or her to construct a solution for the character and to convince the character to try 

the solution by explaining how it fits a larger pattern of phenomena related to New-

ton's three laws of motion. Our goal is to present these invitations for dialog as puz-

zles that are engaging in their own right (Clark & Martinez-Garza, in press; Clark, 

Martinez-Garza, Biswas, Luecht, & Sengupta, in press). We will conduct our first 

studies of this approach later this year and will continue to explore its affordances for 

explicit articulation. 
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Abstract. This paper presents work on applying clustering and association rule 
mining techniques to mine users’ behavior in interacting with an intelligent 
educational game, Prime Climb. Through such behavior discovery, frequent 
patterns of interaction which characterize different groups of students with 
similar interaction styles are identified. The relation between the extracted 
patterns and the average domain knowledge of students in each group is 
investigated. The results show that the students with significantly higher prior 
knowledge about the domain behave differently from those with lower prior 
knowledge as they play the game and that pattern could be identified early 
during the interactions. 

Keywords: Intelligent Educational Games, Behavior Discovery, Association 

Rule Mining, Open Ended Learning, Scaffolding 

1 Introduction 

Open-Ended Learning Environments (OELEs) support student-centered learning and 
allow learners to follow an exploratory interaction behavior to construct their own 
models of concepts and revise their beliefs subsequent to receiving immediate 
feedback on their actions [1]. Previous studies have shown that students could not 
benefit much from an open-ended learning environment if not receiving proper 
feedback [2]. Among learning environments, educational games are designed to foster 
motivation and engagement which are shown to be influential in learning [3]. To this 
end, educational games such as Crystal Island provide exploratory learning 
environments and encourage autonomous interaction with the game [4]. While such 
freedom in interaction is required to maintain engagement in the game, it also 
provides learners with the possibility of showing different interaction patterns. The 
interaction patterns might be indicative of certain characteristics and understanding 
such patterns can provide valuable information about the students. 

Adaptive OELEs have been designed to answer the need for understanding and 
intelligently supporting varying learning styles, capabilities, and preferences in 
individuals in developing their skills. An adaptive educational system maintains a 
model of student’s learning and leverages the student’s interactions with the system to 
provide tailored scaffolding. Many educational systems apply data mining approaches 
on the logs of students’ recorded interactions to extract behavioral patterns and extract 
high-level information about students [5-7]. Along this line of research, we 
concentrate on understanding how students interact with Prime Climb (PC), an 
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adaptive educational game (edu-game) and whether there is a connection between 
behavior patterns of students and their attributes such as prior knowledge. The 
ultimate goal in an adaptive educational game such as PC is to help a higher number 
of students learn the desired skills through interacting with the game. Achieving such 
an objective requires a pedagogical agent which maintains an accurate understanding 
of individual differences among users and provides more tailored interventions, with 
the aim of guiding the learners in the right learning direction. For instance, if a 
pedagogical agent is capable of identifying a group of students with high domain 
knowledge, it is possible to leverage such information to construct a more accurate 
user model and intervention mechanism. The user’s interaction behaviours can also be

provided to developers to improve the design of educational systems [8]. 
Behavioral discovery has been vastly used in educational systems, but there is 

limited application in educational games such as Prime Climb, in which educational 
concepts are embedded and presented in the game scenarios and narratives with 
minimum explicit technical notation (for instance mathematical notations in PC) to 
more genuinely support game aspects of the system. In Prime Climb, students do not 
explicitly practice approaches to number factorization but implicitly follow a self-
regulated learning approach [9] to explore and understand the methods and practice 
them. This paper describes the first step toward leveraging students’ behavioral 
patterns into building a more effective adaptive edu-game. The ultimate goal is 
devising mechanisms for extracting abstract high-level patterns from raw interaction 
data and leveraging such understanding for real-time identification of interaction 
styles to enhance user modeling and intervention mechanism in an edu-game like PC. 

Behavior discovery has been recently applied in different educational systems. 
Kardan et al. [6] leveraged behavior discovery to propose a general framework for 
distinguishing users’ interaction styles in exploratory learning environments. Keshtkar 
et al. [10] describe an approach to distinguishing players and mentors roles in a multi-
chat environment within the epistemic game Urban Science. In another related work, 
Mccuaig et al. [5] discuss using interaction behaviors to distinguish students who will 
fail or pass a course in a Learning Management System (LMS). A sequence mining 
approach has been also used in differentiating behavior patterns in students’ 
interacting with Betty’s Brain, a learning-by-teaching environment [7].  
Although behavior discovery has been recently applied to many educational systems, 
there is very limited work on behavior mining in an open ended intelligent 
educational game like Prime Climb in which learning through playing the game is 
intended. Additionally, most of the previous works use the entire interaction data to 
make inferences about the users. In this work, we present the results of behavior 
mining not only on a big portion of interaction data but also on a truncated data set, 
which will provide the possibility of constructing an online classifier for early 
detection of varying patterns of interactions. 

2 Prime Climb an Intelligent Edu-game 

Prime Climb (PC) is an intelligent educational game for students in grades 5 and 6 to 

practice number factorization skills. Prime Climb is equipped with an intelligent 

pedagogical agent which maintains a probabilistic model of the student’s knowledge 

on number factorization skills. 
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  The pedagogical agent leverages 
the probabilistic model to provide 
an adaptive scaffolding mechanism. 
If model’s assessment about the 
student’s knowledge on a skill falls 
below a certain threshold, a hint is 
presented to the player. The hints 
are given in incremental level of 
details. In PC, the player and his/her 
partner climb a series of 11 
mountains of numbers by pairing up 
the numbers which do not share a 
common factor. There are two main 
interactions of a player with PC: 

Making Movements: A player makes one or more movements at each time, by 
clicking on numbered hexagons on the mountains. PC provides immediate feedbacks 
on correctness of movements. If a player makes a wrong movement, s/he falls down. 
Using Magnifying Glass Tool: The magnifying glass (MG) tool is always available 
for the user to benefit from. The MG is used to show the factor tree of a number on 
the mountains; it is located in the top right corner of the game (Fig. 1). 

4 Behavior Discovery in Prime Climb 

Fig. 2: Behavior discovery methodology in Prime Climb 

4.1 Data Collection 

Data collection is first component of the behavior discovery methodology in PC 
shown in Fig. 2. We collected interaction logs of 45 students who played PC 
voluntarily. Prime Climb consists of 11 levels (mountains), and not all students could 
manage to reach the last level. Out of the 45 students, 43 completed 9 or more levels. 
The remaining 2 students who completed fewer levels were excluded from further 
analyses to ensure that all students in analysis had completed a minimum of 9 levels. 
For the remaining 43 students, the interaction data for the first 9 mountains was used 
in the feature extraction process.  

Fig. 1 Prime Climb 
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4.2 User Representation 

Features Definition: Each user is represented by a vector of features.  Based on the 2 
main groups of interaction previously mentioned (movements and MG), two types of 
features are defined: (1) Movements features based on statistical measures on 
movements students made on the mountains and (2) MG features: based on statistical 
measures on students’ usages of the MG tool. Table 1 shows some of these features: 

Table 1 Some features used for behavior discovery 

Movement Features 

[Sum/Mean/STD] of number of [correct/wrong] movements made by a student across mountains 

[Sum/Mean/STD] of time on [correct/wrong] movements made by a student across mountains 

[Mean/STD] of length of sequences of [correct/wrong] moves made by a student 

[Mean/STD] of time spent per sequence of [correct/wrong] moves made by a student 

Magnifying Glass (MG) Features 

[Sum/Mean/STD] of MG usage 

Mean number of [correct/wrong] movements per each MG usage 

STD of number of [correct/wrong] movements per each MG usage 

Feature Set Definition: Each feature is a measure computed based on user’s 
interactions with one or more mountains. There are two types of feature: 
Mountain-Generic Features (m – n), (m >= 1 and n <= 9): Calculated based on the 
users’ interactions with mountains m to n, inclusively. For instance, the feature, 
correct-movements (1–9), represents the total number of correct movements made by 
the user on mountains 1 to 9.  
Mountain-Specific Features (k), (1 <= k <= 9): Calculated based on interactions with 
mountain k. For instance, correct-movements (7), represents the total number of 
correct movements made by the user on mountain 7. 
In this paper, we present the behavior discovery results on the two feature sets: 
Mountain-Generic Movement(1–9) Set: Contains mountain-generic features (1–9) 
which are related to movement actions the student makes. 
Mountains-Generic+Specific-MG+Movement(1–2) Set: Contains mountain-generic 
MG features (1–2), mountain-generic movement features (1–2), mountain-specific 
MG features (1) and (2), and mountain-specific movements features(1) and (2).  

4.3 Clustering 

Feature Selection: Prior to performing clustering, feature selection is applied to filter 
out irrelevant features [11]. 
Clustering: The optimal number of clusters is determined as the lowest number 
suggested by C-index, Calinski and Harabasz[12] and Silhouette [13] measures of 
clustering validity. Once all the students are represented by vectors of selected 
features, the GA K-means (K-means for short) clustering algorithm [6], which is a 
modified version of GA K-means [14], is applied to cluster the users into an optimal 
number of clusters. 
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4.4 Rule Mining: Higher Prior Knowledge vs. Lower Prior Knowledge 

Next, the Hotspot algorithm [15] is used to extract the rules for each discovered 
cluster. Also, we analyzed whether the resulting clusters are significantly different on 
a measure called cluster’s prior knowledge, which is defined as follows: 
Cluster’s Prior knowledge: The cluster’s prior knowledge gives the average level of 
factorization skills of the cluster’s members prior to playing the game and is defined 
as the average of raw pre-test scores of the cluster’s members. The following formula 
is used to calculate the cluster’s prior knowledge: 

where  is the student’s pre-test score. Before playing the game, a
student takes a pre-test on number factorization skills. The maximum score a student 
can get is 15. The average pre-test score across the 43 students is 11.7, and the 
standard deviation is 3.29. 
Behavior Discovery on Mountain-Generic-Movement(1–9) set: In this feature set, 
each student is represented by a vector of mountain-generic movement features(1–9). 
As a result of the features’ selection mechanism, 18 features were selected out of the 
original 30 features. The optimal number of clusters was found to be 2, and the K-
means method was used to cluster the set of students into 2 groups. The result of a t-
test showed that there is a statistically significant difference between the prior 
knowledge of cluster 1 of students (higher prior knowledge (HPK) group) (M = 13.0 , 
SD = 2.0) and cluster 2 of students (lower prior knowledge (LPK) group) (M = 11.3 , 
SD = 3.45), p=.03 and Cohen’s d= 0.53. Next, the Hotspot association rule mining 
algorithm was applied on the clusters to extract the associative rules. Table 2 shows 
the rules extracted for each cluster. 
Understanding the Rule Mining Results:  
Rules: Each bulleted item in following tables shows an extracted rule. For example, 
“Mean-Time-on-Movements=Higher” is an extracted rule which applies to at least 
25% of the members of cluster 1. (In this study, the threshold of 25% is applied for all 
rules extracted by the Hotspot algorithm). This rule shows that the values for the 
feature “Mean-Time-On-Movements(1–9)” across the cluster’s members belong to 
the “Higher” Bin. 
Bins: In this study, the Hotspot algorithm considers two bins for values of each 
feature: (1) Lower bin and (2) Higher bin. Each bin shows a range of values of the 
features such that the lower bin represents the lower range of values and the higher 
bin represents the upper range of values for the feature. The cut-off point for splitting 
a range of values for a feature into two ranges (lower and upper) is calculated 
specifically for the feature in each extracted rule by the Hotspot algorithm. The lower 
and higher bins are indicated by the words “Lower” and “Higher” in front of the 
features in the following tables. 
Rule’s Support: The other important information is the rule’s support shown in 
square brackets in front of the extracted rules in the following tables. For instance, 
[6/6=100%] in front of the first rule for the cluster 1 in Table 2 shows that there are in 
total 6 (in denominator) out of 43 students on which the extracted rule applies and all 
of these students belong to cluster 1 (6 in the numerator of the fraction). In addition, it 
can be concluded that this extracted rule applies to 60% (6/10) of the cluster 1 (note 
that the size of cluster 1 is 10).  
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Table 2: Extracted Rules for Mountains-Generic-Movement(1–9) 

Rules for Cluster 1[HPK]: (Size: 10/43 = 23.26%)  

· Mean-Time-on-Movements(1-9) = Higher, [6/6=100%] 

· Mean-Time-Spent-On-Correct-Movements-On-Mountains(1-9) = Higher, ([5/5=100%]) 

Rules for Cluster 2[LPK]: (Size: 33/43 = 76.74%) 

· Mean-Time-On-Movements(1-9) = Lower, [33/37=89.19%] 

o STD-Time-On-Wrong-Correct-Moves(1-9) = Lower, [33/35=94.29%] 

· Mean-Time-On-Consecutive-Wrong-Movements(1-9) = Lower, [31/35=88.57%] 

o STD-Time-On-Movements(1-9) = Lower, [31/33=93.94%] 
o STD-Time-On-Correct-Movements(1-9) = Lower, [31/33=93.94] 

 
Discussion and Interpretation: The extracted rules show that the students belonging 
to the HPK cluster (cluster 1) spent more time on movements and correct movements 
across 9 mountains. This could indicate that the students with higher prior knowledge 
were more involved in the game and spent more time before making a movement. 
Since the time spent on making a correct movement is higher for this group of 
students, it might mean that a correct move by this group of students is less likely to 
be due to a lucky guess as compared with the total population. In contrast, the group 
of students with lower prior knowledge spent less time on making movements as well 
as making wrong movements. This could be an indication of less involvement in the 
game by the lower prior knowledge group. It could show that a correct movement by 
this group of students is more likely due to a guess. In addition, there are some other 
frequent patterns of interaction for the group of students with lower prior knowledge. 
These patterns show a lower standard deviation on time spent on making movements 
and correct movements. This indicates that this group of students showed a consistent 
pattern of lack of engagement in the game. Therefore, we can conclude that the 
students with higher prior knowledge showed more engagement in the game than 
students with lower prior knowledge. 
Behavior Discovery on Mountain-Generic+Specific-MG+Movement(1–2) set: 
This feature set does not employ interaction data from all 9 mountains; instead, only 
the data from the first 2 mountains is included. Such feature set is mainly valuable for 
constructing an online classifier to classify students based on their interaction with the 
game during the game play. The ultimate aim is leveraging such a feature set to step 
toward building a more accurate individualized student model and intervention 
mechanism as the student makes progress in the game. For instance, if the classifier 
can identify a student as a lower/higher knowledgeable student, it could leverage the 
information for early adjustment of the adaptive intervention mechanism. Similarly K-
means was applied to cluster the students represented by the Mountains-
Generic+Specific-MG+ Movements (1–2) Set. The optimal number of clusters was 
calculated to be 2, and 25 features out of 51 original ones were selected, as a result of 
applying the features selection mechanism. The cluster’s prior knowledge was 
calculated for each of the discovered clusters and compared using a t-test. The result 
of the t-test showed a statistically significant difference between cluster 1’s prior 
knowledge (M = 12.45 , SD = 2.66) and cluster 2’s prior knowledge (M = 9.22 , SD = 
3.93), p = 0.02, Cohen’s d = 1.08. Next, association rule mining was applied on the 2 
clusters, as shown in Table 3.  
Interpretation and Discussion: As shown in Table 3, the results of behavioral 
discovery on the Mountains-Generic+Specific-MG+Movements(1-2) set is not 
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consistent with the results of behavior discovery on the Mountains-Generic-
Movements(1-9) set. Behavior discovery on interaction data from the first two 
mountains shows that students with higher prior knowledge (M = 12.45 , SD = 2.66) 
constitute around 79% of the all students and spend less time on making movements. 
It was previously shown in Table 2 that the students in the HPK cluster constituted 
approximately 23% of all students and spent more time on making movements when 
interaction data from all 9 mountains was included. Despite this, we expect that as the 
students progress in the game, the students with higher prior knowledge would behave 
differently from the other students and separate themselves from the others. To verify 
this, we also extracted frequent patterns when more interaction data from upper 
mountains is included in the clustering and rule mining. When the interaction data 
from the first 3 mountains is included in patterns mining, 2 clusters are identified 
which are not significantly different on their prior knowledge. When interaction data 
from the first four mountains is included, we observe patterns similar to those 
identified using the interaction data from all 9 mountains as shown in Table 3-right. 
The result of the t-test shows a statistically significant difference between cluster 1’s 
prior knowledge (M = 13.28, SD = 1.58) and cluster 2’s prior knowledge (M = 11.39 , 
SD = 3.4), p = 0.02, Cohen’s d = 0.60. Also, approximately 16% of students belong to 
the HPK cluster, and 84% belong to the LPK group. This result is very similar to the 
results when data from all 9 mountains is included. Similar patterns are observed 
when more interaction data from upper mountains is included in the analysis. 

Table 3: Extracted Rules for Mountains-Generic+Specific-MG+ 

Movements(1-2) [left] and MG+Movements(1-4) [right] 

Rules for Cluster 1[HPK] 

(Size: 33/42=78.57%)  
· Mean-Time-On-Movements(1)=Lower, [30/31 

=96.77%] 

· Mean-Time-On-Movements(1-2) = Lower,
[29/30 = 96.67%]

Rules for Cluster 2[LPK] 

(Size: 9/42=21.43%) 
· Mean-Time-Spent-On-Mountain(1-2) =

Higher, [7/7=100%] 

· Total-Time-On-Mountain(1) = Higher,

[5/5=100%]

Rules for Cluster 1[HPK] 

(Size: 7/43=16.28%)  
· Mean-Time-On-Movements(4) = Higher, [5/5 =

100%] 

· Mean-Time-On-Correct-Movements(3) = 
Higher, [3/3 = 100%]

Rules for Cluster 2[LPK] 

(Size: 36/43=83.72%) 
· Mean-Time-On-Correct-Movements(1-4) =

Lower, [35/35 = 100%] 

· Mean-Time-On-Movements(1-4)=Lower, [34/34

= 100%]

5 Conclusions and Next Steps 

This paper discusses behavior discovery in Prime Climb (PC). To this end, different 
sets of features were defined. The features were extracted from interaction of students 
with PC in the form of making movements from one numbered hexagon to another 
numbered hexagon and usages of the MG tool. To identify frequent patterns of 
interaction, first, a feature selection mechanism was applied to select more relevant 
features from the set of all features. Then a K-means clustering was applied to cluster 
the students into an optimal number of clusters and the Hotspot algorithm of 
association rule mining was applied on the clusters to extract frequent interaction 
patterns. Finally, the prior knowledge of the clusters were compared. When 
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interaction data from all 9 mountains was included in behavior discovery, it was 
found that the students with higher prior knowledge were more engaged in the game 
and spent more time on making movements. In contrast, the students with lower prior 
knowledge spent less time on making movements, indicating that they were less 
involved in the game. Behavior discovery also was conducted on truncated sets of 
features in which only a fraction of interaction data was included. The results showed 
that using the interaction data from the first two mountains resulted in groups of 
students that are statistically different on their prior knowledge. 
The scaffolding mechanism in PC relies on the student model so we expect 
improvements in the model to result in more tailored interventions and guidance. 
Current PC uses the same student model for all students. Following the results of the 
presented study, we plan to adjust the model based on the characteristics of each 
discovered group of students. In addition, an online classifier will be built which 
identifies frequent patterns of interaction in the students, classifies them into different 
groups in real time, and leverages such information to build a more personalized user 
model and adaptive intervention mechanism in PC.  
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Abstract. Digital objects in learning games provide opportunities to scaffold 

teacher and student learning toward deeper epistemological understanding of 

the concepts they represent.  Representations encapsulated in digital objects, 

however, have the potential to misrepresent the concepts they stand in place of. 

Using student and teacher interview data after playing a physics learning game, 

analysis of the role of representations in students’ epistemological development 

led to two design recommendations.  When designing digital objects to effec-

tively scaffold concepts, designers should pay attention to the ways in which 

learning environments explore the nature of core concepts represented by digi-

tal objects and explicitly model the meaning of the representations in the learn-

ing environment. 

Keywords: Digital learning environments, representation, scaffolding, 

epistemology, science education 

1 Introduction 

In their review of the literature on digital games and simulations for science educa-

tion, Clark, et al [1] propose a shift in research agenda away from an exploratory 

phase that furnishes mere proofs of concept and instead calls on researchers to focus 

on ascertaining the design principles that best support learning and conceptual 

change.  Design principles in digital learning environments necessarily rely on the use 

of representations that interact with players in order to model core concepts.  These 

representations then have the power to scaffold the learning trajectory of both teach-

ers and students as they play the game.  Representations, however, have the ability to 

take on a life of their own as a teacher or student appropriates them as tools for learn-

ing.  Using interview data collected from a four-day classroom implementation of the 

SURGE: EPIGAME physics learning game, this paper will explore two questions 

central to the interplay between design, representation, and epistemology: 

• How do representations in the SURGE learning environment interact with teachers

and students?

• How do these representations scaffold the development of teachers’ and students’

epistemology of force?
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1.1 Theoretical Framework 

When thinking about how to use representations to scaffold concepts in a digital 

learning environment, Ball and Cohen’s [2] educative curriculum framework provides 

an orientation that positions the learning environment to scaffold learning not only for 

students, but also their teachers. Using learning games to develop deeper content 

knowledge in teachers, however, will only be effective insofar as 1) the representa-

tions in the learning environment properly embody the focus concept(s) and 2) if the 

correct scaffolds are in place to bridge teachers’ intuitive understanding of their con-

tent with the concepts represented in the game. 

1.2 Representations in the Learning Environment 

In order to discuss the potential for learning games to educate students, and the im-

portance of representations to accomplish this task, this analysis will focus on a key 

representation in the SURGE: EPIGAME learning environment: force.  In SURGE, 

players must navigate a spaceship around obstacles while staying on a set path.  This 

is accomplished by issuing commands to the ship as to the magnitude and direction 

the ship should fire forces to achieve the desired path. Within the game, these repre-

sentations are represented by force tiles placed on a timeline delineated in one-second 

increments. 

As representations in the game, force tiles are intended to represent a command 

given to the ship to fire a force of a specific magnitude and direction at a certain time. 

This representation is not the actual force being applied, but rather a command to the 

ship to fire the desired force. Force tiles are placed within the timeline at the bottom 

of the simulation space, representing when the ship should issue the command to fire 

the force indicated on the force tile.  The timeline is thus intended to represent and 

visualize the amount of time between commands to fire forces. 

2 Impact of Representations on Scaffolding Learning 

Lehrer and Schauble [3] have shown that representations edit concepts insofar as 

they reduce or enhance the information they contain.  In the best case scenario, these 

reductions and enhancements effectively scaffold student and teacher understanding 

toward the concept embodied in the representation.  These representations, however, 

also have the potential to misrepresent the concept to such an extent that, despite the 

best design intentions, students and teachers emerge from interaction with the repre-

sentation holding a fundamentally different concept than intended by designer. 

2.1 Force 

Throughout student interviews, force tiles take on independent ontological status as 

actors in the game’s simulation space, contrary to the intent of the designers.  One 

student repeatedly talks of ‘sending’ a force from the timeline into the simulation 
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space in order to do work, even gesturing from force tiles in the timeline to the point 

in the simulation space in which the force is applied: 

Student: Like, where it sends... where you send a 60 Newton force over here 

to get to this point, and then you'd send another 60 Newton force to 

stop it [student gestures from 60 Newton force on timeline to the 

spot where the force is applied in the simulation space] ... and then 

a 20 Newton force... [repeats gesture] and then a 20 Newton force 

to stop it and go up... [repeats gesture] 

In the student’s explanation, he student sends a 20 Newton force “to stop” the ship. 

In the student’s mind, the force tile does not represent a mere command for the ship to 

apply force and decelerate, but rather the force tile object itself travels into the simula-

tion space to oppose the movement of the ship.   

This distinction is important with regard to the student’s developing epistemology 

of force.  Within the framework of the force tile merely representing a command of 

the ship to apply force, the action of the ship carrying out the force tile’s command 

represents a change in velocity to decelerate the ship, Newton’s second law of motion. 

The student’s conception of the force tile being ‘sent’ into the simulation space to 

‘oppose’ the ship, however, gives agency to the force tile to travel into the simulation 

space and push backward on the ship in order to stop it, an enactment Newton’s third 

law of motion.  This unintended consequence is directly related to the design of the 

force representation. 

The student’s teacher, perhaps unsurprisingly, also echoes his student’s epistemo-

logical misconception.  Following gameplay, the student’s teacher was given an ex-

ample level from the game and asked to identify each of Newton’s laws in the level: 

Teacher: Newton's second... of course, when I change from at rest to in mo-

tion I've applied a force.  So [the ship] starts moving from left to 

right.  When I stopped [the ship] here I had to put an unbalanced 

force on it to go up to down. 

Teacher: Newton's third law... opposites.  When I stopped the ship I had to 

apply an opposite force of the same force amount to make my ship 

stop.  

In these two statements, the teacher’s epistemology of force becomes evident: un-

balanced forces (Newton’s second law) start the motion of the ship and opposing 

forces (Newton’s third law) stop the ship.  Parsing the teacher’s response, the verb ‘to 

apply’ takes center stage.  In his second law formulation, the teacher “applied a force” 

and in his third law formulation, the teacher also “had to apply an opposite force” in 

order to achieve the outcome he desired in the simulation space.  Within the semantic 

frame of application, force is no longer applied by the ship, but by the teacher.  What 

and where this force is, however, remains elusive.  It is conceivable, based on the 

formulation of Newton’s third law to ‘stop the ship’, that the ability to apply force in 
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the simulation environment is a property of the force tile, which pushes on the ship to 

cause it to stop.  As the teacher seeks to answer the question ‘What is force?’, the 

representations of the learning game lead to the conclusion that force is a property of 

an acting object opposing another acting object, scaffolded by the representation of 

the force tile opposing the ship.  

3 Redesign Suggestions for Scaffolding Learning 

As a result of the effects of representations on scaffolding epistemological for-

mation evidenced in the student interview, two considerations for future design of 

scaffolding in digital learning environments emerge. 

3.1 Exploration of Core Concepts 

Confusion emerges on the part of the student as to the nature of force.  Integrating 

opportunities within the game to explore the question “what is force?” could poten-

tially clarify for students what the force tiles represent, allow for the representation to 

better scaffold understanding of force and motion, and further reinforce canonical 

understanding of Newton’s laws.  In the absence of such an exploration, students are 

free to ascribe their own properties to the objects, ‘sending’ them to do work that they 

are actually incapable of doing. 

3.2 Explicit Modeling of Representations 

Beyond exploration, however, teachers and students must have the nature of repre-

sentations in gaming environments explicitly modeled to ensure properties of the 

object are correctly ascribed.  In the SURGE example, a simple statement that the 

force tiles are not, in fact, independent objects that travel to the simulation space and 

push on the ship, but rather are simply commands given to the ship to fire its rockets, 

could potentially alleviate the confusion as to the tile’s agency in the simulation 

space.  
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Abstract. Diagnostic classification is an important part of clinical care, which 

is often the main determinant of treatment and prognosis. Clinicians’ under- or 

over-confidence in their performance on diagnostic tasks can result in diagnos-

tic errors which can lead to delay in appropriate treatment and unnecessary in-

crease in the cost of medical care. This paper presents a version of SlideTutor 

aiming to reduce pathologists’ and dermatopathologists’ bias in diagnostic deci-

sion-making. This is accomplished by frequently prompting them to make met-

acognitive judgments of confidence, presenting them with the expert diagnostic 

solution path for each case, and de-biasing them by making them conscious of 

their metacognitive biases. This paper describes and summarizes the functional-

ities of SlideTutor, its cognitive training, tutoring phase, expert feedback, meta-

cognitive intervention, and the open learner model. 

1 Introduction and Background 

Intelligent tutoring systems (ITSs) are adaptive and personalized instructional systems 

designed to mimic the well-known advantages of human one-on-one tutoring over 

other types of instructional methods [e.g., 1]. ITSs are capable of accelerating and 

enhancing the training of novices by providing adaptive and individualized scaffold-

ing and feedback based on a complex interaction between several modules represent-

ing the domain knowledge as well as learner knowledge acquisition and development 

of expertise. The adaptive scaffolding and feedback in ITSs are targeted at improving 

student learning and fostering skills, such as making accurate metacognitive judg-

ments [see 2]. In contexts where the teacher has limited time to spend on presenting 

content, teaching problem solving skills, and providing tailored feedback to individual 

students, ITSs can prove extremely helpful by providing adaptive individualized in-

struction to learners, organize content, and point out their errors for as much time and 

as many iterations as the learner requires [3].  

ITSs can prove beneficial in training of highly specialized clinicians, such as 

pathologists. Training of specialized clinicians is very difficult in traditional training 

contexts for several reasons, including insufficient exposure to infrequently encoun-
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tered cases, and the increased workloads of mentors which limit the time for training 

the next generation of practitioners and increase the potential for clinical errors 

among less-experienced practitioners. Training of pathologists typically requires five 

or more years, which includes both residency training (3-5 years) and advanced fel-

lowship (1-3 years). In the context of training pathologists, ITSs could help alleviate 

many of the above-mentioned problems by providing a safe environment where resi-

dents can practice whenever they have time and as frequently as needed, and receive 

individualized feedback and guidance without inadvertently harming patients in the 

process. More specifically, ITSs can scaffold residents’ accuracy of diagnoses, there-

by alleviating their overconfidence or under-confidence in their performance on diag-

nostic tasks. Overconfidence would cause the clinician to conclude the diagnosis too 

quickly, therefore neglecting to fully consider alternative hypotheses and all the evi-

dence in the case, which can result in diagnostic errors [4]. On the other hand, under-

confidence might lead them to order unnecessary or inappropriate additional testing 

and use consultative services, which increases the risk of iatrogonic complications 

(i.e., complications caused by medical treatment or diagnostic procedures), delays 

treatment, and unnecessarily increases the costs of medical care [5].  

In order to alleviate the problem of under- or overconfidence in residents’ diagnos-

tic performance (i.e., poor calibration of judgment and performance), scaffolding 

needs to be provided to improve the accuracy of their metacognitive judgments (i.e., 

Feeling of Knowing, FOK) and eliminate any diagnostic bias. FOK is defined as the 

learner’s certainty of his/her actual performance [6]. ITSs can play a significant role 

in assisting pathologists in making more accurate metacognitive judgments about 

their diagnostic decision-making and performance, and as a result make more accu-

rate diagnoses.  
One of the important methods of scaffolding and improving learners’ 

metacognitive skills and performance is the use of open learner models (OLMs) in 

ITSs. A student model is an important part of an ITS which observes learner behavior 

and builds an individualized qualitative representation of her/his cognitive and 

metacognitive skills and gets updated in real-time during learners’ interaction with the 

ITS [7]. Learner models are usually embedded in the ITS architecture and are not 

visible to the students, however, several researchers [e.g., 8] have investigated the 

benefits of allowing learners to access their learner model (OLM). Research has 

indicated that the mere displaying of visualizations of OLMs in ITS interfaces raises 

the awareness of the learners, allowing them to reflect on different aspects of their 

learning and problem solving. Besides all the advantages of using OLMs in interac-

tive ITSs, according to [9], no study has investigated the use of OLMs for displaying 

metacognitive processes (e.g., metacognitive judgments of correctness of perfor-

mance). In spite of the great potential and possibilities offered by the use of medical 

ITSs, few of these systems have been fully developed [e.g., 9] and only a fewer have 

been empirically evaluated [e.g., 10].  
In this paper, we describe an adapted version of SlideTutor, an ITS which scaffolds 

pathology residents’ accuracy of metacognitive judgments using different metacogni-

tive interventions and an OLM for presenting metacognitive accuracy. The paper does 

not include our evaluation of the effectiveness of the implemented modules. 
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2 Description of the Medical ITS: SlideTutor 

The SlideTutor intelligent tutoring system (http://slidetutor.upmc.edu) was modified 

for use in this study. The computational methods and the architecture of the original 

system have been previously published [11].  For the current study, the system uses a 

modular architecture implemented in the Java programming. SlideTutor provides 

users with cases to be solved under supervision by the system. Cases incorporate vir-

tual slides, which are gigabyte size image files created from traditional glass slides by 

concatenating multiple images from a high resolution robotic microscope. Virtual 

slides are annotated using a custom built editing environment to produce case repre-

sentations of discrete findings and their locations. A separate Ontology Web Lan-

guage (OWL) based expert knowledge base consists of a comprehensive set of evi-

dence-diagnosis relationship for the entire domain of study. A reasoning module uses 

a decision tree approach to construct a dynamic solution graph (DSG), representing 

the current state of the problem and all acceptable next steps including the best-next-

step. As for the interface, participants use a graphical user interface (Fig. 1) to exam-

ine and diagnose the cases. Participants can pan and zoom in the virtual slide, locate 

findings using the mouse, and select from lists of findings and qualifiers, such as size 

and type, from a tree-like representation. Once findings are specified, they appear as 

evidence nodes in the diagrammatic reasoning palette (Fig 1). Afterwards, partici-

pants assert hypotheses using a separate tree-based menu, which eventually appear as 

nodes in the diagrammatic reasoning palette. Support links can then be drawn be-

tween evidence and hypothesis nodes to specify relationships between the two. Final-

ly, one or more hypotheses may be dragged to the diagnosis window, and selected as 

the final diagnosis(es) before proceeding to the next case.  

Fig. 1. SlideTutor interface 
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2.1 The Dynamic Book 

An interactive knowledge browser has been developed (called the Dynamic Book) 

that shows feature-diagnosis relationships as well as glossary information on all fea-

tures and diagnoses in the selected domain of dermatopathology (i.e., perivascular 

diseases) (Fig. 2). A description of the domain and the cases is presented in the next 

section. A total of sixty-two diagnoses and fifty-seven findings are presented in this 

interface. Six of the diagnoses comprising six patterns were used in the tutoring phase 

of the study. By clicking on each one of the diagnoses, an image is presented in the 

interface showing an example of how the disease presents on a patient’s skin. A de-

scription of the diagnosis was also presented under the image. Additionally, a list of 

potentially associated findings is presented to the right of the image and diagnosis 

description. A zoomed-in virtual slide image accompanied each of the findings in the 

list, where the presentation of the finding is indicated by an arrow. A description of 

the particular finding together with a list of potentially associated diagnoses is also 

presented. In order to guide the exploration of participants during the Dynamic Book 

phase towards important parts of the book, they are provided with a list of tasks to 

work through which pertained to a mix of patterns they would encounter in the tutor-

ing phase and ones they would not.  

Fig. 2. Dynamic book interface 

2.2. Pathology Cases 

The Perivascular Dermatitis domain was selected for the current SlideTutor study 

because the domain is well-tested, includes patterns (i.e., a combination of evidence 

identified in a particular case) with multiple cases, and more cases are available than 

other domains. Also, Perivascular Dermatitis is a large domain and it is unlikely that 

participants would have complete knowledge of this diagnostic area. 20 cases were 

used for the tutoring phase. Cases were obtained from the University of Pittsburgh 
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Medical Center (UPMC) slide archive and from private slide collections. Diagnoses 

were checked and confirmed by a dermatopathologist prior to inclusion in the system 

repository. For each case, a knowledge engineer and an expert dermatopathologist 

collaborated in defining all present and absent findings, their locations on the slide 

(case annotation), and relationships among findings and diagnoses (knowledge-base 

development). Each diagnosis included a set of one or more diseases that matched the 

histopathologic pattern.  

2.3 The Coloring Book and Metacognitive Judgments 

For the intervention condition, once participants complete identifying findings, hy-

potheses, and diagnoses for a case, they progress to an interface called the Coloring 

Book (Fig. 3A). In this interface, they indicate if they are sure or unsure of the items 

they identified for the case (i.e., FOK judgments) by clicking on them and coloring 

them as either green (sure) or yellow (unsure). Next, they are presented with a win-

dow with a slider where they indicate how accurate they think their self-assessments 

in the coloring book were (ranging from underconfident to overconfident). After-

wards, they are presented with correct findings, hypotheses, and diagnoses for the 

respective case (colored in green) and incorrectly identified items as red. After reflect-

ing on their performance and the feedback from the system, they are presented with a 

window juxtaposing the sliders for their self-assessment of their FOK judgments and 

the evaluation of the tutor based on their performance and their FOK judgments (the 

open learner model: OLM) (Fig 3B). At the bottom of the window, one or more indi-

vidual findings or diagnoses may be listed, which reflects the participant’s cumulative 

accuracy in previous cases as well as the current case for the particular finding or 

diagnosis. At the end, they are asked to make another metacognitive judgment and 

state whether they would feel confident solving similar cases, to which they respond 

on a 6-point Likert scale ranging from “not confident” to “very confident”. This con-

cludes the case, and progresses them to the next case.  

Fig. 3. Coloring book interface (A) and the OLM (B) 
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3 Study Timeline 

As part of the design of the study and interface of the ITS, the study phases and time-

line were determined as follows (Fig. 4). An approximate total time of four hours was 

allocated as the participant session time. At the beginning and after signing the in-

formed consent form, the participants were administered a test (pre-pre-test) of their 

prior knowledge of the domain targeted by the current version of SlideTutor (i.e., 

Perivascular diseases). Next, they spent 30 minutes acquiring cognitive knowledge of 

the domain while accomplishing a task given to them by the experimenter (Dynamic 

Book phase). Afterwards, another test of cognitive knowledge of the domain was 

administered (pre-test). Once the test was completed, they proceeded to the tutor 

training and tutor use phase (in intervention or control condition) where they solved 

20 cases and indicated their confidence in their responses and were shown an OLM 

(intervention condition), or solved the cases and progressed with no feedback from 

the system (control condition). At the end, a post-test was administered to gauge their 

knowledge gains during interactions with the tutor. A detailed description of the ITS, 

the tests, dynamic book, and the tutoring interventions is presented below. 

Fig. 4. Study timeline 

4 Measures 

4.1 Cognitive Measures 

In order to measure the prior cognitive knowledge of the domain at the beginning of 

the tutoring session, cognitive gains after the cognitive learning phase, and the 

knowledge gains after the tutoring session, three 24-item tests were administered. 

Three versions of each test were created, and the test order was randomized per ses-

sion to control for order effects. Each test comprised of 24 questions, and the ques-

tions were a mix of tutored and untutored items. Tutored items were about the materi-

al that was presented in the cases seen with the tutoring system, while untutored items 

were about material that was not covered by the tutoring system. Three question types 

were used in the tests: finding, diagnosis, and differentiate questions. Finding ques-

tions consisted of a static microscopic image with an arrow pointing at a feature to be 

identified. Diagnosis questions consisted of a list of findings, and participants had to 

provide the diagnosis(es) that match the findings. Differentiate questions consisted of 

two diagnoses, and participants had to provide a feature that can be used to differenti-
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ate the two. After responding to each question, participants were asked to rate if they 

were sure or unsure of their responses using radio buttons (FOK metacognitive judg-

ment).  

4.2 Metacognitive Measures 

Feeling of knowing (FOK) metacognitive judgment measures were collected on all 

test items in the three cognitive knowledge tests and on all findings, hypotheses, and 

diagnoses identified in cases in the tutoring phase. The FOK measures were collected 

as binary values: sure vs. unsure. The data from metacognitive ratings on test ques-

tions were only used for analyses after the study was completed. However, the meta-

cognitive judgment ratings for items identified in cases in the tutoring phase in the 

Coloring Book layout (see section 2.3) were used for calculation of a measure of 

over- or under-confidence called Bias, which was presented to the participant after 

solving the case and indicated their confidence in the items they identified in the case 

(in the OLM: see section 2.3). The bias score is calculated by subtracting the relative 

performance on all items (total correct items divided by all items) from the proportion 

of items judged as known (total sure items divided by all items) [12]. Figure 5 indi-

cates how bias scores are calculated. Positive bias scores indicate over-confidence and 

negative scores indicate under-confidence. When performance perfectly matches the 

rated confidence level, the bias score equals zero. In other words, the bias score indi-

cates the direction and degree of lack of fit between confidence and performance [13]. 

The bias score for each case was presented to the participant in the form of a slider 

ranging from under-confident to perfect to over-confident with a cursor indicating the 

participant’s bias score.     

Fig. 5. FOK contingency table and the calculation of bias 

5 Conclusion 

We described the functionalities of a version of SlideTutor aimed at reducing the 

metacognitive bias of pathologists and dermatologists while diagnostic decision-

making by deploying metacognitive interventions and using an open learner model to 

aid participants in reflecting on their diagnostic performance. Open learner models 

have not been used in the previous studies for displaying the metacognitive perfor-

mance of participants [8], and the current iteration of SlideTutor is novel in this re-
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gard. The Dynamic Book interface used for the cognitive learning phase provided 

participants with an environment to conduct a targeted search and knowledge acquisi-

tion (targeted at completing the task assigned by the experimenter). As mentioned 

above, since the domain chosen for this version of SlideTutor is a very large domain, 

a cognitive learning phase was deemed necessary in order to provide the opportunity 

for acquisition of some cognitive knowledge and freely explore the glossary of diag-

noses and findings.  
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Abstract. This paper considers the potential for scaffolding learning in open-

ended learning environments using a robotic tutor and an open learner model. 

While we expect this approach to be more broadly applicable, we here illustrate 

with a map-reading activity in geography and/or environmental sciences. The 

paper presents issues raised in open-ended teacher interviews, which suggest 

real possibilities for incorporating a robotic tutor together with an open learner 

model in the classroom. 
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1 Introduction 

Open learner models (OLM) externalise the learner model in a way that is inter-

pretable by the user, e.g.: skill meters [16], concept maps [19], treemaps [14]. One of 

the aims of opening the learner model to the learner is to help promote reflection on 

the part of the learner; to facilitate their planning and decision-making; and raise their 

awareness of their understanding or their developing skills [3]. Thus, the OLM can be 

seen as a form of scaffolding for cognitive and metacognitive processes, with a par-

ticular focus on supporting and developing self-regulation. This focus is very much in 

line with previous considerations of tools offering scaffolding (see e.g. [1]). This ap-

proach to supporting the learner can be very light or can be more closely guided, de-

pending on the level of detail of the modelling and the visualisation of the model, as 

well as the goals of the interaction and the user’s current learning needs.  

Most learner models that are inspectable by the learner have focussed on knowl-

edge-related attributes. However, despite it being a difficult task, there is growing 

interest in detecting and responding to affective states (e.g. [6]; [24]; [25]), and in-

creasingly with a goal of adaptive scaffolding to support individual differences [10]. 

A taxonomy of “academic emotions, which are directly related to academic learning, 

classroom instruction or achievement”, has been identified [17]: the positive activat-

ing emotions of enjoyment, hope, and pride; the positive deactivating emotion of 

relief; the negative activating emotions of anger, anxiety, shame; and the negative 

deactivating emotions of hopelessness and boredom.  

OLMs can offer an additional mechanism by which learner model data about affec-

tive states can be confirmed and/or clarified. In addition to visualisation of the learner 
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model, the term ‘open learner modelling’ encompasses methods that allow users to 

contribute to, edit, or negotiate the contents of the learner model [3]. While we do not 

wish to require or rely on self-report about emotions and affective states, if a learner 

is frustrated by feedback that has been generated in part based on inaccurate or in-

complete affect detection, a simple method to advise a learning environment of this 

could be of substantial benefit. Thus, while providing an OLM of the more traditional 

knowledge/skills representations, we recommend also allowing the learner to access 

the representations regarding their affective state (e.g. inferred through sensors [24], 

semantic and contextual cues [25], or based on a video corpus of affective expressions 

[7]). This may bring new issues to the problems of affect modelling (e.g. if the learner 

model indicates an affective state that the learner disagrees with, might this make 

them angry, demotivated or frustrated?) Nevertheless, as well as offering an opportu-

nity to modify or influence the representation of affect, it may also help increase 

learner trust in the learner model, as the user will be able to identify why certain as-

pects of feedback or scaffolding are tailored in the manner that they are, and have the 

opportunity to address or challenge any discrepancies. In this paper we take the start-

ing point of benefits previously demonstrated for OLMs (e.g. [12]; [16]), and consider 

their use in a more open-ended context, and with affect modelling.  

2 Scaffolding with an Open Learner Model 

As argued above, OLMs can be considered as ways to help scaffold learning and 

the learning process, and may have particular potential in open-ended tasks and envi-

ronments. With the increasing focus on professional competency frameworks and the 

inevitable extension of the competency perspective to educational contexts (e.g. for 

language [8], for STEM literacy [2], for geography [21]), there comes even greater 

scope for future use of open-ended learning environments, and corresponding chal-

lenges for scaffolding learning in such situations. Competency frameworks have al-

ready been applied in a generic OLM context, with examples for language [4] and 

meeting facilitation [20]. We propose that such approaches be further developed to 

meet the requirements of the changing educational focus, curricula, and assessment. 

We illustrate here with a geography and/or environmental science map-based activ-

ity, where tools may be used to discover information from a map, to measure distance 

and area, to view terrain or entities on the map such as buildings, cities and countries. 

The learner may identify features, follow directions in a trail, explore the area, or 

determine the best location for some purpose (e.g. where to situate a new visitor cen-

tre). Such activities can range from specific to very open-ended, and a range of com-

petencies may be demonstrable (e.g. map-reading, map sketching, mapping, geo-

graphical argumentation, ethical judgement (see [21]).) This relates closely to the 

England and Wales National Curriculum for Geography [9] key processes, e.g.:  

“Pupils should be able to: 

• use atlases, globes, maps at a range of scales, photographs, satellite images

and other geographical data;

• ask geographical questions, thinking critically, constructively and creatively;
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• analyse and evaluate evidence, presenting findings to draw and justify con-

clusions;

• solve problems and make decisions to develop analytical skills and creative

thinking about geographical issues.”

However, the nature of this type of open-ended activity may also lead to different 

affective states across and within individuals. In the next section we consider the op-

portunities for improving scaffolding using OLMs that include representations of 

affective states, supported by an empathic robotic tutor. 

3 Support from a Robotic Tutor 

Opening up a system’s representations of a learner’s affective state could, as indi-

cated above, further influence learner affect. To mitigate a possibly negative reaction 

that could impact motivation, we recommend taking a social robotics approach. Arti-

ficial tutors may incorporate their understanding of the learner’s emotional state in 

their pedagogical strategies and interventions [5]. The presence of a 2D or 3D charac-

ter has revealed some positive learning effects, especially in engagement [15]; and 

recall has been shown to be higher with a robotic teacher when adaptive cues have 

been given based on EEG measurements of engagement [22]. Studies that compared 

virtual representations of characters with robots showed a preference for robotic em-

bodiment with reference to social presence [13], enjoyment [18] and performance 

[11]. Thus, we suggest this to be a useful avenue to explore for scaffolding learning 

particularly when affective states are also modelled. For example, Figure 1 shows the 

Nao Robot and its ability to point or gesture towards items on a tabletop, which in-

clude visualisations of the learner model. Since many of the activities we envisage are 

map-based, we will use an interactive map approach on a touch table in this example.  

Fig. 1. The Nao Robot and a competency-based open learner model (skill meters and word 

cloud shown, from the Next-TELL open learner model [20]) 

Examples of general interactions and scaffolding between the learner and the robot 
include: offering assistance by guiding the learner through instructions; asking ques-
tions (to prompt reflection); gestures (to illustrate or focus attention, or indicate shared 
focus); offering affective support if learners’ actions are not optimal (telling them not 
to worry and try again); drawing attention back to task if a learner becomes distracted; 
mirroring affective state when this is positive, and bringing awareness to affective state 
if it is negative. This aims to foster a perception of the robot as empathic (see e.g. [7]). 
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In addition to the learner model visualisations on the tabletop, the robot can itself 
express the model content by giving a summary of relevant knowledge or competen-
cies, perhaps at the start of a session to show that it remembers the learner, but also 
during a session to give the learner a sense of achievement and to prompt them to think 
about their learning and how they might use the learner model information. As with 
adaptive scaffolding in general, interaction about the learner model will be tailored as 
appropriate to the individual, as will other scaffolding behaviours from the robot. 

When using the OLM to investigate its representations of their affective state, the 
learner will already be accustomed to the robot’s shared understanding of their compe-
tencies. Therefore, when it then comes to reviewing affective states in the model, the 
robot’s ability to invite or allow discussion or adjustment to the affective model con-
tents can build on the relationship that the learner has with the robot, with reference to 
their understanding or competencies. This approach will build on previous findings 
using a chatbot, that child-system negotiation of the knowledge-focussed data in an 
OLM resulted in significant improvements in children’s learning without additional 
tutoring [12]. In that case negotiation involved student or system challenges and dis-
cussion about the child’s beliefs (representations in the learner model) with the aim of 
prompting reflection and increasing the accuracy of the learner model by taking stu-
dents’ opinions about their learning into consideration. In our current work we propose 
also encouraging the learner to think about their affective state, how this may influence 
their learning, and how they might regulate their affect. In effect, this is an approach to 
help learners self-scaffold during the transition from more tightly to less tightly guided 
interaction. The first step towards this goal involves obtaining teacher viewpoints on 
the potential of this approach in the classroom. This is considered in the next section. 

4 Teacher Interviews 

Following from the arguments above that suggest possibilities for scaffolding in 

open-ended tasks using an OLM together with an empathic robot, teacher interviews 

were undertaken to determine the likelihood of uptake of this approach in contexts 

where the required technologies are already in place. 

4.1 Participants, Materials and Methods 

Seven participants took part in open interviews (4 teachers, 2 teaching assistants, 1 

trainee). The aims of the study were described, highlighting emphatic tutoring and 

interaction, and personalising robotic tutoring to the learner’s needs. In a semi-formal 

interview, specific questions relevant to scaffolding and OLMs included: 

• What role would a system like this play? (To ascertain teachers’ views on how

the robot could effectively ‘fit’ into the classroom and classroom practice.)

• If you had a robot that could monitor how a child is progressing, how would

you like that robot to interact with the child? (To provide information for the

design of the learning scenarios and robot interactions.)

• Would it be beneficial to set the level of difficulty and how do you do this at

the moment? (To gauge the extent of teachers’ likely acceptance of a coarse-

grained personalisation approach with a robotic tutor.)
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• How do you detect when a student is having difficulties and how do you help

the learner overcome the difficulties? (To ascertain how teachers detect when a

learner is facing difficulties in this kind of open-ended activity, and whether

they may be receptive to more fine-grained adaptation with the robotic tutor.)

Written notes were made by the researcher. Comments were then categorised to 

help design subsequent formal interviews before building the prototype environment. 

4.2 Results 

Table 1 summarises the number of teachers expressing each of the points addressed 

below, following the comment categorisations, with representative viewpoints then 

discussed further. Several teachers were very interested in the fact that they could use 

the system to encourage independent learning, as this is becoming a key objective for 

teachers. To address the varied needs of students, at the moment the teachers might 

give out different question sheets to different students. Typically the teachers change 

the difficulty of an activity by changing the language style, the number of prompts, 

breaking down the activity into smaller steps, and the amount of scaffolding provided. 

The most difficult questions or problems may be very open-ended, and require the 

learner to argue a point in their own words, or the teacher may apply extra constraints 

such as working within a budget. All teachers were keen that the system to be trialled 

should be able to respond to the individual, stretching the most able while also ensur-

ing suitable personalisation for the less advanced students.  

Table 1. Teacher comments categorised 

Comment No. teachers 

Encourage independent learning 3 

Personalisation / adaptivity 7 

More open-ended activities 7 

Prompt metacognitive behaviours 7 

Affect detection 7 

Use of progress bars 2 

Incorporation of robot into classroom 7 

In addition, all teachers stated that they would like the learning activities they un-

dertake to easily move beyond basic map reading skills to activities where the learner 

needs to make comparisons, decisions and arguments. Comparisons in this space 

could be to compare high and low CO2 production, population density, and similar. 

Decisions and arguments could be made on tasks which involve, for example, decid-

ing on the most appropriate location for a visitor centre or flood defence: the learner 

must make an argument in favour or against an action. Thus, the teachers are looking 

for ways to incorporate more open-ended activities into the classroom interaction. All 

also wanted to encourage reflection and metacognitive behaviours, for example, by 

saying “Have a think”, “Did you consider...?”. They also thought that the robot could 

usefully point out that there is no really wrong answer in some of the activities. 
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   All teachers already detect whether a learner is having difficulties, from their be-

haviour. For example: the teacher can tell if the learner is not listening, not paying 

attention or not understanding. This information can come from their facial expres-

sion, where they are looking, whether they are fidgeting, how they respond to instruc-

tions, whether they are actively asking for help verbally or by raising their hand, or if 

they are chatting or disrupting other children. The teachers can also identify whether a 

learner is attempting a task in a sub-optimal way.  

Two teachers suggested that progress bars may be beneficial. They stressed that 

real time assessment would be desirable, and if a learner faced difficulties, these need 

to be caught promptly and acted upon as appropriate by the system or the teacher. 

There were no concerns from any of the teachers about fitting the robot into the 

classroom activities, particularly if the lesson plan actively included the robot (e.g. as 

a station in a station rotation lesson where a number of learners in a class would have 

a turn with the robot). The teachers were interested in monitoring the learner’s pro-

gress from a console, enabling the teacher to intervene if the learner stopped making 

progress, particularly useful if there were multiple learners interacting with multiple 

artificial tutors. They also thought that the simple fact that there was a robot would 

make any task seem novel and more engaging. 

4.3 Discussion 

Because the interviews were open, not all points were discussed in each interview. 

The lower level of comments in some areas therefore may not indicate disagreement, 

but rather that these issues were not raised during the interview. 

The possibility for the robot to adapt to individuals, as requested by all partici-

pants, is exactly the kind of approach enabled by a learner model. For this reason the 

learner model is anticipated to be acceptable to teachers in this robot-tabletop context. 

All teachers also wished to use open-ended tasks such as described above, to match 

the requirements of the England and Wales National Curriculum for Geography [9]. 

This is, therefore, another indication of likely acceptance. Furthermore, because 

teachers are already identifying student engagement and other affective states, the 

modelling of affect and use of a physical robot is an approach that they will under-

stand: while they may not be able to discuss knowledge and competencies individu-

ally to the extent they wish, a robotic tutor can help in this task while maintaining an 

approximation of the empathic approach a teacher would use. The fact that two teach-

ers suggested progress bars indicates that these participants wish to have a view of 

learning visible on the tabletop, in line with OLM. In addition, the OLM should facili-

tate the kind of metacognitive behaviours considered important by all teachers. The 

request for being able to monitor learners is also in line with OLM also being a tool to 

support teachers [20]. This goes beyond many learning analytics visualisations (e.g. 

dashboards [23]), to focus on understanding, competencies, and now also affect.  

An important immediate concern is practical deployment in the existing learning 

context and curriculum. All teachers could see how the robot and touch table could be 

integrated into the classroom, and could identify benefits for doing so. Thus we argue 

that there is a role for empathic robots and OLMs in scaffolding open-ended learning. 
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5 Summary and Conclusions 

This paper has argued the benefits of using an OLM as a means to lightly scaffold 

learners in open-ended learning contexts where the development of self-regulation 

skills and metacognitive behaviours are considered important. This is becoming in-

creasingly central with the competency focus adopted in many subjects and countries. 

Affective modelling is considered beneficial in such contexts, given the potential 

frustrations of the open-ended nature of activities, and the provision of a means to 

discuss and possibly correct the system representations of affect is suggested. Because 

of the advantages of robotic tutors, an empathic robot approach is proposed. The 

teacher interviews confirmed the feasibility of introducing this solution to real class-

rooms that have the appropriate technologies.  
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1 Introduction 

Supporting metacognition has been identified as one of the most important princi-

ples of instructional design [4]. In recent years, interventions using a variety of meta-

cognitive skills have been studied. Aleven et al. examine the use of a metacognitive 

tutor for help seeking within a cognitive tutor for geometry [1]. Some systems, such 

as MetaTutor, focus on teaching students self-assessment skills to identify knowledge 

gaps or monitor their own progress [3,10]. Betty's Brain can teach students metacog-

nitive skills by having them request that Betty engage in those skills herself [11]. 

These projects have shown the success of tutoring interventions based on developing 

metacognitive skills. 

Inquiry-based learning has long been pursued as a desirable approach to classroom 

curriculum design [6], and significant efforts have been made to incorporate authentic 

scientific modeling and inquiry into science education, such as in projects like Think-

er Tools [13]. This paper presents our early efforts to construct a metacognitive tutor-

ing system specifically aimed at teaching these skills within an open-ended learning 

environment named MILA (for Modeling & Inquiry Learning Application). 

2 Tutoring Scientific Inquiry-Driven Modeling in MILA 

MILA (Modeling & Inquiry Learning Application) is an interactive learning envi-

ronment for supporting learning about ecosystems in middle school science. Students 

use MILA to construct Component-Mechanism-Phenomenon models of complex 

ecological phenomena. Component-Mechanism-Phenomenon models are adaptations 
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of Structure-Behavior-Function models [7,12], and MILA evolves from our earlier 

work on learning Structure-Behavior-Function models of ecosystems [8,12]. 

To support students' modeling and inquiry while engaging with MILA, we con-

structed a metacognitive tutoring system consisting of four separate metacognitive 

tutoring agents playing four different functional roles: a Guide, a Critic, a Mentor, and 

an Interviewer. Broadly, these tutors were constructed according to lessons and guide-

lines transferred from other initiatives in metacognitive tutoring [2,10]. Students in-

teract with tutors by clicking tutors' avatars in the tutor box. Upon clicking, the tutor’s 

window appears and gives the student any feedback it has available, as shown in Fig-

ure 2. Reactive tutors checks their Mappings when the student clicks in order to re-

spond to students' help-seeking behaviors [1]. A proactive tutor actively monitor stu-

dents' progress and interrupt the students to provide their feedback or ask their ques-

tion in order to facilitate just-in-time error correction [10]. 

Fig. 2. An example of one of the four tutors, the Critic. All tutors appear in dialog boxes such 

as this one. In addition to text feedback, tutors may ask students to answer questions or offer 

students questions they might want answered. 

The Guide serves to answer students’ questions, and thus is a reactive tutor. She is 

developed to anticipate what questions students may want to ask based on the current 

lesson, the students’ current model, software, and tutor interactions and then offer 

those questions when called. For example, early in the unit, the Guide anticipates 

questions that largely focus on interaction with the software itself. Later, she expects 

and offers questions based on students' current models or recent model construction 

process. 

The Critic analyzes students’ models, validating students’ models against a set of 

defined model criteria. He is a reactive tutor who only checks models when students 

are looking for feedback, demonstrating the knowledge gaps of which students should 

be aware in model construction and providing guidance on how to fill those 

knowledge gaps, as well as avoid them in the future. 

The Mentor leverages the notion of cognitive apprenticeship [5]. He is a proactive 

tutor who observes students’ interaction with the software and demonstrates new or 

difficult concepts. In practice, the main role of the Mentor has been to set expecta-

tions and learning goals, addressing Roll et al.’s eighth design principle: communicate 

the metacognitive learning goals to the students [10]. 

Completing the set of four tutors is the Interviewer. The Interviewer asks students 

to answer questions in natural language. The Interviewer serves the metacognitive 

goal of encouraging students to self-reflect on their process by prompting students to 

elucidate their decision-making. 
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3 The Architecture of MeTA 

This set of metacognitive tutors for teaching inquiry-driven modeling has been 

constructed in an experimental architecture titled MeTA, for Metacognitive Tutoring 

Architecture. At a basic level, the MeTA architecture builds on the characterization of 

an intelligent agent as a function f that maps a history of percepts P* into an action A; 

f: P* � A. This section describes MeTA at a software architecture level, consisting of 

percepts, actions, and mappings between them. 

Percepts are defined information the tutor can sense in the learning environment. 

We have used six categories of percepts for constructing our tutors, including history 

software and tutor interaction and a current model of student behavior. Actions, in 

turn, are output complements to the input percepts. Whereas percepts tell tutors for 

what to look for, actions tell them how to respond.  We have used six different cate-

gories of actions, including textual feedback, soliciting further information, and alter-

ing an underlying model of student behavior. Mappings pair up sets of Percepts with 

sets of Actions. When every Percept in a given Mapping is observed, the tutor re-

sponds with the associated Actions. In many ways, individual tutors can be seen as 

prioritized lists of Mappings. 

4 Initial Deployment & Results from MeTA in MILA 

MILA was used in a two-week camp in Summer 2012 with 16 middle school stu-

dents. The phenomenon that students were charged with explaining was the actual, 

sudden death of thousands of fish in a nearby lake. To investigate this problem, stu-

dents took field trips to the lake, participated in physical science and biology exercis-

es, and engaged with MILA in groups of two or three. MILA provided facilities for 

stating the problem, proposing multiple hypotheses, modeling those hypotheses, con-

sulting static simulations, and researching online hypermedia and data sources. Given 

that this was the first use of MeTA tutors in a classroom, data gathering and analysis 

was treated as an exploratory study; the goal, in line with design-based research, was 

to observe the strengths and weaknesses to better understand how to create effective 

metacognitive tutors in the future. We found two primary guidelines that are inform-

ing our ongoing revisions to the tutoring systems. First, our experience deploying 

tutors that play multiple functional roles within the software directed our attention to 

the different ways in which students interact with different roles and types of feed-

back; this has been similarly touched on elsewhere in research on metacognitive tutor-

ing [3,9]. This has led to the revision of these tutors for new interventions to better 

differentiate their functional roles and expand the range of types of feedback availa-

ble. Secondly, we observed the need to address the challenge outlined in Roll et al. 

2007 [10] regarding applying one of Anderson et al. 1995's original design guidelines 

[2] to the metacognitive tutoring domain. This principle – "Facilitate successive ap-

proximations of the target skill" – addresses the need to differentiate and address the 

student's current level of efficacy with the target skill, changing the way in which the 

skill is addressed as student efficacy changes. Ongoing revisions to the tutors outlined 
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here attempt to equip the system with the ability to infer and address successive ap-

proximations of the target skill. 
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Abstract. This paper describes the initial evaluation results for providing adap-

tive support based on effective/detrimental interaction patterns discovered by 
applying data mining on user interaction data for an Interactive Simulation. 
Previously, we presented the process of building a classifier user model for the 
AIspace CSP applet, an open-ended interactive simulation which helps with 
learning how to solve constraint satisfaction problems. In a later work, we pre-

sented a methodology for providing adaptive interventions based on the class 
association rules that form our classifier user model. In this work, we discuss 
how to use the generated adaptation rules for delivering adaptive support in the 
form of hints. The initial qualitative evaluation of the resulting support mecha-
nism, as well as a quantitative evaluation using eye tracking and action logs, 
show that the interventions were well-received by users. 

Keywords: Adaptive Interventions, Interactive Simulations, Eye Tracking 

1 Introduction 

Interactive Simulations (IS hereafter) are increasingly used as learning tools, where 

they present an open-ended and exploratory environment to support learning in many 

different disciplines. These ISs are designed to foster exploratory learning by giving 
students the opportunity to practically and proactively experiment with concrete ex-

amples of concepts and processes they have learned theoretically. However, it has 

been shown that if the students are left to experiment and explore without any addi-

tional support, many will show suboptimal interaction behaviors (e.g., [1]) and may 

not learn well from this form of interaction (e.g., [2]). These students can benefit from 

having additional support in the form of scaffolding while interacting with this type of 

Open-Ended Learning Environments (OELEs) (e.g., [3]). The Constraint Satisfaction 

Problem (CSP) Applet is one of the collection of interactive tools for learning com-

mon Artificial Intelligence algorithms, called AIspace [4]. The CSP applet is an Inter-

active Simulation designed to help students deepen their understanding of solving 

constraint satisfaction problems. We intend to add adaptive support to the CSP applet 
to help students use the applet effectively for learning. Implementing adaptive inter-

ventions requires adding two components to an OELE: (1) a user model that deter-
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mines if and when to intervene, with additional information on which interventions 

are appropriate at the time; and (2) an intervention mechanism that delivers different 

interventions based on the assessment of the student model. 

Due to the open-ended nature of the interactions with ISs, providing intelligent 

support is challenging because many different possible behaviors should be taken into 

account and most often it is not known a priori which behaviors are effective and 

which ones are not. All this makes developing a successful intelligent support mecha-

nism time consuming [5]. To address these challenges in a timely and generalizable 
manner, we employ Educational Data Mining [6] methodologies. Our goal is to find 

relevant patterns in user interaction data in an IS (e.g. the CSP applet) that leads to 

different levels of user performance. Then, build a user model based on these patterns 

and finally, use these patterns to extract adaptation rules for delivering relevant adap-

tive interventions.  

To achieve this goal, first we developed a user modeling framework that utilizes 

user clustering and class association rules mining to identify relevant user 

types/behaviors from interface actions [7]. Then, we devised a methodology for using 

the discovered association rules to generate adaptation rules which are then trans-

formed to adaptive interventions [8]. This paper describes the initial evaluation of 

adaptive interventions that are implemented following our proposed process. 

The rest of the paper is organized as follows: First, we briefly describe the CSP ap-
plet, the user modeling framework used for extracting user behaviors (i.e., the class 

association rules), and the methodology for generating adaptation rules based on these 

behaviors. Then, we discuss the different dimensions for providing interventions 

based on these adaptation rules. Finally, we present the results of a pilot study with a 

new version of the CSP applet that implements the proposed support mechanism. 

2 The AIspace CSP applet 

A CSP consists of a set of variables, variable domains and a set of constraints on legal 

variable-value assignments. Solving a CSP requires finding an assignment that satis-

fies all constraints. The CSP applet illustrates the Arc Consistency 3 (AC-3) algorithm 

for solving CSPs represented as networks of variable nodes and constraint arcs. AC-3 

iteratively makes individual arcs consistent by removing variable domain values in-

consistent with a given constraint, until all arcs have been considered and the network 

is consistent. Then, if there remains a variable with more than one domain value, a 

procedure called domain splitting is applied to that variable in order to split the CSP 

into disjoint cases so that AC-3 can recursively solve each case.  

The CSP applet demonstrates the AC-3 algorithm dynamics via interactive visuali-

zations on graphs using color and highlighting, and graphical state changes are rein-

forced through textual messages. The applet provides several mechanisms for the 
interactive execution of the AC-3 algorithm on a set of available CSPs. These mecha-

nisms are accessible through the toolbar, or through direct manipulation of graph 

elements. The user can perform seven different actions: (1) Fine Step: use the fine 

step button to see how AC-3 goes through its three basic steps (selecting an arc, test-

ing it for consistency, removing domain values to make the arc consistent); (2) Direct 

Arc Click: directly click on an arc to apply all these steps at once; (3) Auto AC: 
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automatically fine step on all arcs one by one using the auto arc consistency button; 

(4) Stop: pause auto arc consistency; (5) Domain Split: select a variable to split on, 

and specify a subset of its values for further application of AC-3 (see pop-up box in 

the bottom right of Fig. 1); (6) Backtrack: recover alternative sub-networks during 

domain splitting; (7) Reset: return the graph to its initial status. 

Fig. 1. CSP applet with example CSP problem Fig. 2. General User Modeling Approach. 

3 Mining Behavior Patterns 

In this section we briefly describe the two main phases of our approach to building 

a classifier user model from interaction data first described in [7]: Behavior Discovery 
(Fig. 2A) and User Classification (Fig. 2B). In Behavior Discovery, raw unlabeled 

data from interaction logs is preprocessed into feature vectors representing individual 

users in terms of their interface actions. These vectors are the input to an unsupervised 

clustering algorithm (i.e., k-means with a modified initialization step, see [7]) that 

groups them according to their similarities. The resulting clusters represent users who 

interact similarly with the interface. These clusters are then analyzed to identify 

if/how they relate to learning. Afterwards, association rule mining is applied on each 

cluster to extract the common behavior patterns in the form of class association rules 

for each performance level. A Class Association rule is a rule in the form of Xà c, 

where X is a set of feature-value pairs and c is the predicted class label (i.e., the clus-

ter) for the data points where X applies (see Table 1). 
Our goal is to use these detected behaviors and information regarding their effec-

tiveness as a guide for intelligent adaptive support during the interaction. Thus, in the 

User Classification phase (Fig. 2B), class association rules extracted in the Behavior 

Discovery phase are used to build an online classifier user model. This classifier is 

used to assess the performance of a new user based on her interactions.  

In [7], we reported the result of applying our framework on the action logs collect-

ed from a study with 65 users using the CSP applet. For this dataset, the Behavior 

Discovery resulted in two clusters of users that achieved significantly different learn-

ing performance levels (high vs. low). We will refer to them as High Learning Gain 

(HLG) and Low Learning Gain (LLG) groups respectively. Also, the online classifier 
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achieved an accuracy of over 80% in classifying new users as HLG or LLG by ob-

serving only the first 25 percent of their interactions.  

In addition to assigning a label to the user, the user model also returns the observed 

rules that caused that classification decision. In [8], we described our proposed meth-

odology for building an intervention mechanism based on the discovered behavior 

patterns which is briefly described in the next section.  

4 Extracting Adaptation rules from Discovered Patterns 

The class association rules generated in the Behavior Discovery phase represent 

the interaction behaviors of LLG and HLG. All of these rules are used in the classifier 

user model to determine the performance of a new user, and identify a set of behav-

iors that are either conducive or detrimental to learning. Ideally, one would want to 

design adaptive interventions that discourage all the detrimental behaviors, and en-

courage all the good ones. For instance, consider the following rule for the LLG:  

Rule4: If Direct Arc Click frequency = Lowest and Direct Arc Click Pause Aver-

age = Lowest à Cluster LLG 
This rule indicates that if the frequency of Direct Arc Click (DAC) action is lower 

than a threshold (the mechanism to set this threshold is described in [7]) and the aver-

age pause time between a DAC and the next action is also lower than a certain thresh-

old then the user is considered a LLG. Here, we want to prevent this from happening 

and there are two possible interventions (intervention items from now on) that can be 

delivered to address this rule: (1) Encouraging/enforcing the user to perform DAC 

more often; (2) Encouraging/enforcing the user to pause longer after DAC actions 

(possibly thinking about the DAC outcomes).  

There may be several rules like the one above that are applicable at a given time. 

The number of rules, may pose a challenge considering factors such as the cost of 

implementation and effectiveness of the resulting intervention items, thus filtering the 
rules is necessary (see [8] for a detailed discussion). For each intervention item, we 

compute a score calculated as the sum of the weights of the rules which recommend 

that item within a given cluster (these weights indicate the importance of each rule in 

classifying a user [7]) and use this as an importance factor for that item. Then we 

apply a filtering strategy that keeps the most prominent behaviors and ignores the 

weaker ones while taking the diversity of the intervention items and their cost of im-

plementation into account (see [8] for details). For our current study, we use 6 inter-

vention items as selected by our filtering strategy, highlighted in Table 1. 

Table 1. A selection of representative rules for HLG and LLG clusters in the CSP dataset 

Rules for HLG cluster: 

Rule1: Direct Arc Click frequency = Highest  

Rule5: Domain Split frequency = Highest and Auto AC frequency = Lowest  

└ Rule8: Domain Split frequency = Highest and Auto AC frequency = Lowest and Fine Step Pause

Average = Highest and Reset frequency = Lowest 

Rules for LLG cluster: 

Rule1:  Direct Arc Click Pause Average = Lowest 

Rule3:  Direct Arc Click frequency = Lowest  
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When delivering the implemented interventions to a user, there can be more than one 

rule satisfied at a certain time leading to multiple items being recommended to that 

user. If the items are semantically correlated (as determined by the system designer), 

there is an opportunity to combine two items into one hint. For instance, based on the 

light blue items in Table 1, a hint can recommend using Direct Arc Click instead of 

Auto AC, because Direct Arc Click is a finer-grained version of Auto AC, with added 

user involvement (semantically correlated items have the same color in Table 1). 

However, non-related items will need separate hint messages and we decided to de-
liver only one hint at a time to prevent users from possibly getting overwhelmed. 

Therefore, in each step we choose the intervention item with highest score, calculated 

similar to above but only for the satisfied rules that recommend that item.  

Adaptation rules can be categorized into two main groups, (1) Preventive interven-

tions that discourage bad behavior as detected by the rules for LLG cluster, e.g.: “IF 

user is classified as a LLG and is using Direct Arc Click very infrequently (less than a 

threshold), then give a hint to promote this action”; and (2) Prescriptive interventions 

that encourage the effective behaviors described by the rules for HLG cluster. In this 

case, we want these rules to be satisfied. This means that if a student labeled as LLG 

shows any behavior in contrast with these rules then the corresponding intervention 

will be delivered to her, e.g.: “IF the user label is LLG, then if Direct Arc Click fre-

quency is lower than x and Auto AC frequency is higher than y then “prompt user to 
use Direct Arc Click instead of Auto AC”.  

The advantage of preventive interventions is that we already know these behaviors 

result in bad performance so we can confidently prevent users from following such 

patterns. Prescriptive interventions are less reliable because it is not clear if/how be-

haviors that were effective for some learners could be beneficial for others. 

5 Designing adaptive interventions 

There are different forms of adaptive interventions that can be used to implement a 

specific adaptation goal (in our case, helping students use and learn most effectively 

from the CSP applet). Similar to most of the educational environments that provide 

adaptive support, we provide explicit advice via textual hints, and provide this advice 

incrementally. However, our focus on the interface actions when extracting the user 

interaction behaviors enables us to make interface changes as another way of deliver-

ing interventions. Thus, we provide a first level of advice with a textual hint that sug-

gests or discourages a target behavior, followed when needed by a textual hint that 

reiterates the same advice, accompanied by a related interface adaptation (e.g., high-

lighting or deactivating relevant interface items). 

Delivering adaptive interventions also require deciding whether the interventions 

should be subtle or forceful. Subtle interventions are in the form of suggestions that 
can be easily ignored by the user (e.g. a text message shown in a hint box at the cor-

ner of the screen). Forceful interventions make the user follow the related advice by 

reducing or eliminating user’s options for the next action (e.g. deactivating all the 

items on the toolbar to force the user to pause before taking next action). 

The current adaptive version of the CSP applet uses the subtle approach. The main 

drawback of this approach is that the recommendations may not be attended to by 
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users or the user might decide not to follow them. However, this approach has the 

very desirable advantage of being less intrusive than the forceful approach. Therefore, 

from a usability point of view, it makes sense to try and see whether subtle adaptive 

interventions can already significantly improve the effectiveness of the CSP applet.  

The detailed procedure of delivering the subtle incremental interventions described 

above is as follows: (1) for each intervention there is a text message presented in for-

mat of a hint that appears in a hint box at the upper left corner of the applet’s main 

panel (level-1 hint). The hint box will blink once, each time a new message is dis-
played. (2) After receiving the hint, the student is given a time window to change her 

behavior. (3) If after the time window, the preconditions for that intervention are still 

satisfied the intervention will be provided again. In this case in addition to a text mes-

sage, corresponding interface element(s) for that intervention will be highlighted until 

the user chooses her next action (level-2 hint). Figure 3 shows a level-2 intervention 

suggesting a decrease in use of Auto AC vs. an increase in use of Direct Arc Click. In 

addition to a text message the arcs that can be clicked are also highlighted. 

Fig. 3. A hint suggesting the use of Direct Arc Click action with the interface highlights (left); 
and the content of the hint box (right).  

6 Evaluation 

We ran a pilot study in a Wizard-of-Oz setting (i.e., experimenter would trigger the 

interventions based on a set adaptation rules) to evaluate the intervention mechanism 
described above for three factors: visibility, intrusiveness, and follow rate of the in-

terventions. The data was collected from 6 computer science students. Each partici-

pant: (1) studied a textbook chapter on the AC-3 algorithm; (2) wrote a pre-test on the 

concepts covered in the chapter; (3) used the CSP applet to study two CSPs, while her 

gaze was tracked with a Tobii T120 eye-tracker; and (4) took a post-test analogous to 

the pre-test [9]. At the end of the experiment, a qualitative evaluation of interventions 

was done using a post-hoc questionnaire and a follow-up interview. 

Figure 4 summarizes the opinion of our 6 participants about the text hint messages 

collected by the post-hoc questionnaire. The participants did not find the hint mes-

sages intrusive or annoying. They found the messages easy to notice and useful in the 

process of interaction. Moreover, most of the participants reported following the in-
structions provided in the hints. The rest of this section will present quantitative re-

sults derived from action logs and eye gaze data collected during the interaction. 

 Regarding visibility of the hints, out of 27 hints provided in total, 25 of them were 

attended to by the participants. One of two omitted hints was a level-1 hint given to 

participant 4 (P4), while she did not notice this hint, the subsequent level-2 of the 

same hint (with interface highlights) managed to grab her attention. The second case 

was a level-2 hint given to P6, where he decided not to follow a level-1 hint prior to 
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this hint and was given a level 2 hint. In this case, the highlighting reminded him of 

the recommended action (Direct Arc Click) from the level-1 hint, thus he followed the 

hint without having to look at the hint box. These two cases, highlight the importance 

of the 2-level hinting strategy reinforced by interface changes.  

Figure 5 illustrates the number of hints shown, attended to and followed by each 

participant. Out of 27 hints given, 20 were followed by the participants (74% follow 

rate). Students, who show many detrimental behaviors, will get more hints. Such stu-

dents are the target group that we want to help learn better from their interaction with 
the CSP applet. Therefore, P2 and P4 are of especial interest. Both of these partici-

pants reported finding the interventions relevant and useful. However, P4 did not 

follow every hint, and generally only followed the recommendations when repeated in 

the form of a level-2 hint. This is reflected in her self assessment of how often she 

followed the hints as well (Table 2).  

Fig. 4. Reception of the text hints by participants Fig. 5. Number of hints shown, attended 

and followed for each participant 

We also analyzed the average reading time of the hint messages for each partici-
pant, overall and for the hints they dismissed/followed (Table 2). We can observe an 

individual element in reading time between participants which can be further investi-

gated as a guide for user adaptive reaction time for hints. Another trend is that users 

who received more hints also spent less time reading them. This is expected as these 

users are the ones with sub-optimal interaction behaviours and this again shows the 

importance of the 2-level progressive hinting strategy which gets more intrusive the 

second time a hint is provided.    

Table 2. Hint rate, self rated following of hints, and average reading time for each participant 

P1 P2 P3 P4 P5 P6 

Followed Hints - Self-rated (1-5) 4 4 4 2 4 3 

Avg. Reading Time (ms) 2814 1642 1547 925 2639.5 9460 

Avg. Reading Time: Followed (ms) 2814 1530.6 1663 937.5 3464 8975 

Avg. Reading Time: Dismissed (ms) - 2199 1199 887.5 1815 9945 

# Hints given 3 6 4 9 2 3 
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7 Conclusion and future work 

In this paper, we presented the final step of the process for adding adaptive interven-

tions to an OELE called AIspace CSP applet. This process started with mining behav-
ior patterns in the form of association rules from a dataset of collected user interface 

actions [7]. Then, continued with extracting adaptation rules from the discovered 

behaviors [8]. The final step was to deliver the adaptive interventions defined based 

on the adaptation rules via an intervention mechanism. We identified the form and 

forcefulness of delivering the interventions as two aspects of this step and described 

our 2-level subtle method of delivering interventions using both text messages and 

interface changes. The very encouraging initial results of our pilot study regarding 

reception of the interventions by the users, shows a great potential for the Adaptive 

version of the CSP applet which provides personalized support. A second pilot study 

is scheduled to test the user model and the improvements made to the applet based on 

our findings in the first pilot study. We plan to run a full scale study afterwards.  
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Abstract. Intelligent Tutoring Systems (ITS) can be designed to im-
prove learning and performance through Pedagogical Agents (PAs) that
are designed to foster self-regulated learning through interactions and ex-
change of information with human learners. PAs are intelligent and follow
rational behaviors, but to adaptively track students’ progress, they need
to be systematically and specifically designed. However, in order to fol-
low a common goal, different self-regulatory systems have been designed
that use PAs, but fail to provide an adaptive multi-agent architecture
which provides such feature that agents adaptively track students’ scaf-
folding. In this paper, we introduce a multi-agent framework designed for
an agent-based ITS. We also define the agent architecture, multi-agent
framework and communication mechanism.
Keyword. Pedagogical Agents, Self-Regulated Learning, Multi-Agent
Systems, Agent Communication Mechanism.

1 Introduction

Increasing adaptivity is being devoted to frameworks involving intelligent com-
ponents that receive (or search for) data and dynamically update their internal
engine to efficiently acquire and integrate information. This adaptivity is becom-
ing a crucial feature in ITSs that provide scaffolding for students to effectively
self-regulate their learning. There are various ITSs [1–4, 6], which are used to con-
duct educational research. But in this paper, we only concentrate on agent-based
ITSs [1, 3, 4, 6] where PAs continuously interact with students and objectively
provide guidance to facilitate the process of learning and use of effective SRL
processes. We concentrate on this category of ITSs because agents are intelligent
components that could be equipped with adaptive applications and dynamically
track student behaviour, based on the scaffolding they are receiving.

Current ITSs are not entirely adaptive to students’ knowledge acquisition
during learning in real-time. This may be because in most agent-based ITSs [1,
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4, 6], agents are developed to interact with students to facilitate their naviga-
tion through parts of the system and provide adaptive scaffolds and feedback
to facilitate their learning. This is done using rule-based (predefined) decision
maker modules that pick a specific action, which can be either feedback to the
students or some sort of communication with the system. The action selection
mechanism has been thoroughly defined and enables agents to effectively react to
students’ progress based on predefined scenarios. In such ITSs, agents generally
have a narrower focus on specific performance features/outcomes that illustrate
acquisition of knowledge in the target domain.

To address the aforementioned adaptivity problem, PAs need to maintain
decision making procedures [5] that continuously interact with the student (in
the form of direct interaction and recording the data about that interaction)
and dynamically analyze the collected data to update the scaffolding model
that the agent builds as it assesses students’ progress. By analyzing collected
data, agents are able to better interact with students since they are aware of
students’ detailed work and progress in learning. In this paper, we focus on a
multi-agent framework designed for an agent-based ITS that is being designed to
analyze a much wider array of student behavior, activities, responses to agents,
and performance in order to better understand many aspects of both students’
understanding of domain knowledge and underlying self-regulatory abilities.

2 Multi-Agent Architecture

The proposed multi-agent architecture is a simulation environment designed to
model and scaffold learners’ SRL processes as they learn a biology topic. This
environment is focused on further understanding of students’ deployment of SRL
processes by providing a computer-based learning environment with Pedagogical
Agents (PAs) that model and track students’ progress while learning complex
science topics. In the proposed muti-agent architecture, there are three PAs that
directly interact with students:
Peer agent, that interacts the most with the student and obtains basic infor-
mation (like his/her knowledge level) from the student. In fact, the peer agent is
the one that builds the student model and dynamically updates the model with
respect to students’ activities and deployment of SRL processes;
SRL agent, that tracks students’ progress towards using effective SRL pro-
cesses. This agent is in charge of guiding the student in accomplishing the learn-
ing goal and effectively finalizing the process of learning about the complex topic.
The SRL agent also provides relative data (computed knowledge level) that in-
fluence the peer agent’s further interaction with the student.
Science agent, that is in charge of helping and scaffolding the student to un-
derstand the science content. This agent informs the other two agents when the
student is having difficulties with the content, choosing relevant page sequences,
reading the content at an optimal time, and evaluating his/her goals.

The three introduced agents directly interact with students and are known
by students as their interactive partners. These agents also interact with each
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Fig. 1. Multi-agent framework.

other to better guide the student to accomplish the goal of learning about the
complex science topic. To adaptively track and model students’ scaffolds, there
are various data types regarding students’ use of SRL processes that need to
be collected and analyzed in order to maintain adaptive scaffolding and provide
effective guidance to the student. In the proposed framework, we assign four
hidden agents, each of which are associated to a category that captures related
data, analyses the data and provides relative reports in the form of messages to
other involving agents. These massive data is categorized into four groups:
Cognitive agent, that provides details regarding students’ learning-related pa-
rameters, including their content reading process, highlighting, note taking, and
all other cognitive processes;
Metacognitive agent, that provides details regarding students’ performance-
related parameters, such as scores on various quizzes, accuracy of judgment of
learning, and all other metacognitive processes;
Motivational agent, that provides details regarding students’ task difficulty,
attributions, self-efficacy;
Affective agent, that provides details regarding students’ motivations while
interacting with the system.

The whole architecture enhances the performance of data collection, and an-
alyzes agents’ decision making. Moreover, the multi-agent architecture provides
modular functionalities that makes it simpler to test, analyze, and integrate in
the system. Figure 1 illustrates the multi-agent architecture together with the
involved agents. Hidden agents are rational intelligent components that are ca-
pable of analyzing data related to a specific architecture and a pre-defined logic.
PAs are rational and are developed with goals related to educational purposes,
such as, to optimize learning for students. The core of an agent architecture
is its data processing engine that analyses the data that is collected from the
surrounding environment and provides an action that best fits its goal-directed
purpose. In the proposed architecture, PAs also run data analyses and react to
the environment via a selected action by the student. We focus here on the ob-
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tained data that help (whether one of the three PAs or the four hidden agents)
to analyze and better understand environmental changes, specifically students’
decisions and actions.

In the proposed architecture, hidden agents continuously communicate to
capture students’ activities while interacting with the system and therefore pro-
vide accurate information, evidence, and reasoning to the three interactive agents
who can then adaptively provide feedback and scaffolds to the students. In the
proposed architecture, the main role of these four agents is to collect data regard-
ing cognitive, metacognitive, motivational, and affective SRL processes. These
massive data are continuously collected, analyzed and updated to adaptively
track their learning progress and adaptations based on the scaffolding they are
being provided with.

3 Conclusion

This paper introduces an adaptive multi-agent framework designed for intel-
ligent tutoring systems. This framework could be used in agent-based learning
environments where pedagogical agents coordinate with one another to facilitate
SRL processes in learners [3]. The main objective is to enable PAs to effectively
track students’ progress while interacting with the system throughout the learn-
ing session. In future research, we intend to propose different mechanisms to
develop adaptive multi-agent communication and decision making to represent
an optimally efficient learning environment to facilitate the acquisition, interna-
tionalization, application, and transfer of self-regulatory processes.
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Abstract. Effective design and improvement of scaffolding in complex
and open-ended learning environments, requires the ability to assess the
effectiveness of a variety of scaffolding options, not only in terms of over-
all performance and learning, but also in terms of more subtle effects
on students’ behavior and understanding. In this paper, we present a
novel data mining technique that aids the analysis of scaffolding and
students’ learning behaviors by identifying activity patterns that distin-
guish groups of students (e.g., groups that received different scaffolding
and feedback during an extended, complex learning activities) by differ-
ences in both total behavior pattern usage and evolution of pattern usage
over time. We demonstrate the utility of this technique through applica-
tion to student activity data from a recent experiment with the Betty’s
Brain learning environment and four different scaffolding conditions.

Keywords: learning behaviors, interestingness measure, sequence min-
ing, information gain

1 Introduction

In order to more effectively teach and promote skills required in the modern
world of near-ubiquitous computing and internet connectivity, computer-based
learning environments have become more complex and open-ended. This com-
plexity also drives a need for dynamic and adaptive scaffolding that can support
students in understanding how to employ and learn with these environments and
tools. However, in order to effectively design and improve such scaffolding, we
must first be able to assess the effectiveness of a variety of scaffolding options,
not only in terms of overall performance and learning, but also in terms of more
subtle effects on students’ behavior and understanding. In this paper, we present
a novel data mining technique that aids the analysis of how students’ learning
behaviors and strategies are employed with differing frequency over the course
of learning or problem-solving activities as the result of different scaffolds and
feedback that can be provided in a learning environment.

Identifying sequential patterns in learning activity data can be useful for dis-
covering and understanding student learning behaviors. Researchers have applied
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sequence mining techniques to a variety of educational data in order to better
understand learning. The primary sequential pattern mining task is to discover
sequential patterns of items that are found in many of the sequences in a given
dataset [1, 2]. For example, Perera et al. ([3]) use sequential pattern mining to
provide mirroring and feedback tools to support effective teamwork among stu-
dents collaborating on software development using an open source professional
development environment called TRAC. Other researchers have also employed
sequential pattern mining to identify differences among student groups or gen-
erate student models to customize learning to individual students [4–6].

Once these behavior patterns are mined, researchers must interpret and ana-
lyze the resulting patterns to identify a relevant subset of important patterns that
provide a basis for generating actionable insights about how students learn, solve
problems, and interact with the environment. Researchers have developed a vari-
ety of measures to utilize properties other than the default of pattern frequency
to rank mined patterns [7]. These measures are often referred to as “interesting-
ness measures” and have been applied data mining tasks like sequence mining
and association rule mining [8]. To better analyze student learning and behav-
ior, interestingness measures have been used for tasks such as ranking mined
association rules (e.g., [9]).

Investigation of the frequency with which a pattern occurs over time can
reveal additional information for pattern interpretation and may help identify
more important patterns, which occur only at certain times or become more/less
frequent, rather than patterns with frequent, but uniform, occurrence over time.
In this paper, we present a novel approach, combining sequence mining and
an information-theoretic measure for ranking behavior patterns that distinguish
groups of sequences (e.g., groups of students in different experimental conditions)
by differences in both total pattern usage and the evolution of pattern usage
over time. To effectively analyze these patterns and quickly identify trends in
the evolution of pattern usage, we employ a related visualization in the form of
heat maps.

2 Identifying Interesting Differences in Pattern Usage

In this section, we present the Differential Temporal Interestingness of Patterns
in Sequences (D-TIPS) technique, and its novel interestingness measure, for iden-
tifying and visualizing patterns that are employed differentially over time among
groups of students (e.g., groups that receive different scaffolding in an open-ended
learning environment). The first step in analyzing learning activity sequences is
to define and extract the actions that make up those sequences from interaction
traces logged by the environment. The definition of actions in these sequences
for Betty’s Brain data is discussed further in Section 3. Given a set of sequences
corresponding to the series of actions performed by each student, the D-TIPS
technique consists of four primary steps:

1. Generate candidate patterns that are common to the majority of students in
at least one group by combining the sets of patterns identified through ap-
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plying sequential pattern mining separately to each group’s learning activity
sequences (with a frequency threshold of 50%).

2. Calculate a temporal footprint for each candidate pattern by mapping it
back to locations where it occurs in the activity sequences. Specifically, each
sequence is divided into n consecutive slices, such that each contains 100

n
%

of the student’s actions in the full sequence, where n is the chosen number
of bins defining the temporal granularity of the comparisons. Corresponding
slices for a group (e.g., the first slice from each sequence in the group, the
second slice from each, and so on) are then grouped into bins and each action
in the slices is marked to indicate whether or not it is the beginning of a
pattern match in its original sequence. This set of binned and marked actions
defines the temporal footprint of the pattern for the group.

3. Provide a ranking of the candidate patterns using an information-theoretic
interestingness measure (described in more detail below) applied to the tem-
poral footprint of each pattern.

4. For the highly-ranked patterns, visualize their temporal footprints using heat
maps to identify differences in usage trends and spikes across student groups.
Specifically, we employ a two-dimensional heat map where the y-axis is stu-
dent group and the x-axis is time discretized by temporal bin. In a single
row (i.e., for a specific student group), each cell’s count is the percentage
of total pattern occurrence (with respect to the student group) within the
corresponding temporal bin. The use of percentages of pattern occurrence al-
lows analysis of temporal variation normalized by the total frequency of the
pattern in the group, which will tend to highlight different temporal trends
in pattern usage across groups, even when total pattern occurrence differs
significantly among groups.

In order to identify more interesting patterns by their difference in tempo-
ral usage across groups in step 3, the D-TIPS interestingness measure applies
information gain (IG) with respect to pattern occurrence across the groups in
each of the n corresponding bins of their temporal footprints. Information gain
is defined as the difference in expected information entropy [10] between one
state and another state where some additional information is known (e.g., the
difference between a set of data points considered as a homogeneous group ver-
sus one split into multiple groups based on the value of some other feature or
attribute). Information entropy is the amount of expected uncertainty found in
a random variable, X, whose value can be called the class of the data point. IG
when used in classifiers, such as decision trees, is applied to a dataset where each
data point has multiple features in addition to its class. The IG of a given feature
is then the reduction in expected uncertainty about the correct class of a data
point when its feature value is known, or conversely the increase in information
about the class of the data point. IG is calculated as the difference between the
information entropy of the data without knowledge of the feature values and the
conditional information entropy when the feature values are known.

Information gain is leveraged in classifiers to determine which features are
most discriminatory because they provide the least amount of uncertainty among
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classes in the data. D-TIPS applies information gain to determine which patterns
are the most interesting because knowledge of their occurrence and temporal
location provides the least amount of uncertainty among the student groups.
In D-TIPS, each action/data-point’s class is its group, and the feature of each
data point, for a given pattern, is the combination of whether the action begins
an occurrence of the pattern and the number of the bin in which the action
occurred. This information-theoretic definition of the D-TIPS measure provides
two important properties: 1) given two patterns with the same total occurrences
for corresponding groups, the pattern with the greater discrimination of groups
by differences in temporal location/bin among groups will have a higher rank, and
2) given two patterns with the same relative temporal behaviors (i.e., the same
proportion of total pattern occurrence in each bin) for corresponding groups,
the pattern with the greater discrimination of groups by differences in total
occurrence among groups will have a higher rank.

Therefore, the D-TIPS measure provides a way of recognizing differences
among groups both by total pattern occurrence and by temporal behavior (e.g.,
decreasing usage versus increasing usage, or spikes in different bins). Further,
when the same differences across groups occur for two patterns, the pattern
with higher overall frequency will have the higher rank. Thus, D-TIPS tends to
emphasize patterns with large relative differences among groups (by total occur-
rence and/or temporal behavior) even when they are not especially frequent in
the overall dataset, while also emphasizing patterns with more moderate differ-
ences among groups when the frequency of the pattern in the overall dataset is
high. Conversely, D-TIPS tends to deemphasize patterns that are homogeneous
across groups (by both relative occurrence and temporal behavior) or that are
especially rare in all groups.

3 Betty’s Brain Data

The data we employ in the analysis in Section 4 consists of student interaction
trace from the Betty’s Brain [11] learning environment. In Betty’s Brain, stu-
dents read about a science process and teach a virtual agent about it by building
a causal map. They are supported in this process by a mentor agent, who pro-
vides feedback and support for their learning activities. The data analyzed here
was obtained in a recent study with 68 7th-grade students taught by the same
teacher in a middle Tennessee school. At the beginning of the study, students
were introduced to the science topic (global climate change) during regular class-
room instruction, provided an overview of causal relations and concept maps,
and given hands-on training with the system. For the next four 60-minute class
periods, students taught their agent about climate change and received feedback
on content and learning strategies from the mentor agent.

The study tested the effectiveness of two support modules designed to scaf-
fold students’ understanding of cognitive and metacognitive processes important
for success in Betty’s Brain (details provided in [12]). The knowledge construc-
tion (KC) support module scaffolded students’ understanding and suggested
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strategies on how to construct knowledge by identifying causal relations in the
resources, and the monitoring (Mon) support module scaffolded students under-
standing and suggested strategies on how to monitor Betty’s progress by using
the quiz results to identify correct and incorrect causal links on Betty’s map.
Participants were divided into a control and three treatment groups. The knowl-
edge construction (KC) group used a version of Betty’s Brain that included the
KC support module and a causal link tutorial that they could access at any
time and were prompted to enter when the mentor determined they were having
difficulty identifying causal links in the resources. The monitoring (Mon) group
used a version of Betty’s Brain that included the Mon support module and a
tutorial about employing link annotations to keep track of links shown to be
correct by quizzes. The full (Full) group used a version of Betty’s Brain that
included both support modules and tutorials. Finally, the control (Con) group
used a version that included neither the tutorials nor the support modules.

In Betty’s Brain, the students’ learning and teaching tasks were organized
around seven activities: (1) reading resource pages to gain information, (2)
adding or removing causal links in the map to organize and teach causal in-
formation to Betty, (3) querying Betty to determine her understanding of the
domain based on the causal map, (4) having Betty take quizzes that are gen-
erated and graded by the mentor to assess her current understanding and the
correctness of links in the map, (5) asking Betty for explanations of which links
she used to answer questions on the quiz or queries, (6) taking notes for later
reference, and (7) annotating links to keep track of their correctness determined
by quizzes and reading. Actions were further distinguished by context details,
which for this analysis were the correctness of a link being edited and whether
an action involved the same subtopic of the domain as at least one of the pre-
vious two actions. The definition of actions in Betty’s Brain learning activity
sequences are discussed further in [13].

4 Results

To illustrate and characterize the performance of the D-TIPS technique on edu-
cational data, we present selected results from its application to student learning
activity data in the Betty’s Brain classroom study described in Section 3. The
D-TIPS analysis identified 560 activity patterns that occurred in at least half
of the students in one or more of the four experimental conditions. Given the
limited number of students in each condition, we chose to bin pattern occurrence
values into fifths of the activity sequences for a broad analysis of their usage evo-
lution over time. Table 1 presents 3 of the top 30 most differentially-interesting
patterns identified by D-TIPS across the four scaffolding conditions. For com-
parison, the average occurrences per student and ranking by that value is also
presented. Over half (18) of the 30 analyzed D-TIPS patterns had a rank past
50th by occurrence, with 13 of them ranking beyond 100th, indicating that they
would be unlikely to have been considered without D-TIPS.
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Table 1. Selected Patterns with D-TIPS and Occurrence Rankings

Pattern D-TIPS Rank Occurrence Rank Avg Occurrence

[Quiz] 3 2 21.8

[Read] → [Note] 18 100 1.7

[Read] → [Read] → [Remove Link−] 29 137 1.4

Fig. 1. [Quiz]

The first pattern in Table 1 illustrates a single action pattern that was ranked
very high by both D-TIPS and overall occurrence. While individual student ac-
tions are often less interesting than longer patterns, they are still important to
consider, especially when they also illustrate a tendency to be employed differ-
entially across groups and over time. Figure 1 shows that all groups tended to
use quizzes more frequently later in their work on the system. Since students’
causal maps grew over time, monitoring and correction of the maps were more
important later in their learning activities. There were some differences in usage
trends over time among the different conditions, such as the steeper increasing
trend for the KC and Full groups than the Monitoring group and the earlier
peak in usage for the Full and Control groups. However, the overall occurrence
by conditions differed markedly, with the Control group performing far more
quiz actions than the others, and the Monitoring group performing more quiz
actions than the KC and Full groups. While the Monitoring group’s use of the
quiz was expected to be high due to the focused monitoring support that relied
heavily on the quiz, it is surprising that the Control group had the highest quiz
usage. This might indicate that without either KC or monitoring support, the
Control group struggled more and fell back on guessing and checking (with the
quiz) strategies.

Figure 2 illustrates a knowledge construction behavior of reading and taking
notes that was ranked highly by D-TIPS. Another difference among the groups,
which added to the interestingness of this pattern under the D-TIPS analysis,
is that the Control group tended to perform reading followed by note-taking
primarily in the last fifth of their activities, as opposed to the first two fifths for
the other groups. However, further analysis of the data attributed this primarily
to only two of the Control group students, although the reason for this aberration
is still unclear.
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Fig. 2. [Read] → [Note]

Fig. 3. [Read] → [Read] → [Remove Link−]

The pattern illustrated in Figure 3 involves a sequence of (two) reading ac-
tions followed by removing an incorrect link. While there was no consistent
temporal trend in the usage of this pattern, the Monitoring and Control groups
exhibited this pattern less than once per student, while the KC group averaged
2.4 times per student. Although ranked lower by D-TIPS at 45th, the sub-pattern
of a single read action followed by removing an incorrect link illustrates the same
differences. This suggests that students with the KC feedback, relied more heav-
ily on reading to identify incorrect links than either the Control and Monitoring
groups, possibly because the Control group struggled more in general and the
support in the Monitoring group focused students more on the use of quizzes to
identify incorrect links.

5 Conclusion

While identification of high-frequency patterns is undoubtedly useful, finding
patterns that have differing usage over time across a set of student groups is also
important for analyzing the effects of scaffolding. In this paper, we presented
the D-TIPS technique, which identifies patterns that differ in their usage among
student groups by either total (group) occurrence or temporal behavior, even
when they are not especially frequent in the overall dataset. Results from the
use of this technique to mine Betty’s Brain data illustrated the potential benefits
and helped characterize differences between D-TIPS and a baseline occurrence
ranking. D-TIPS identified patterns that illustrated potentially important dif-
ferences in learning behavior among different scaffolding conditions that would
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have probably been overlooked by considering only pattern frequency. Future
work will include autonomous identification of an effective number of bins for
splitting a given set of activity sequences, as well as methods to individually
characterize student groups by the patterns identified in D-TIPS.
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Abstract. Invention activities are Productive Failure activities in which students at-

tempt to invent methods that capture deep properties of given data before being taught 

expert solutions. The current study evaluates the effect of scaffolding on the invention 

processes and outcomes, given that students are not expected to succeed in their inquiry 

and that all students receive subsequent instruction. Two Invention activities related to 

data analysis concepts were given to 130 undergraduate students in a first-year physics 

lab course using an interactive learning environment. Students in the Guided Invention 

condition were given prompts to analyze given data prior to inventing and reflect on 

their methods after inventing them. These students outperformed Unguided Invention 

students on delayed measures of transfer, but not on measures of conceptual or proce-

dural knowledge. In addition, Guided Invention students were more likely to invent 

multiple methods, suggesting that they used better self-regulated learning strategies.  

Keywords: Invention activities, productive failure, scaffolding, interactive 

learning environments, transfer. 

1 Introduction 

Invention activities are activities in which students generate solutions to novel prob-

lems prior to receiving instruction on the same topics. For example, students may be 

asked to generate methods that capture the variability of given data sets prior to being 

taught about mean deviation  [1-3]. Invention activities facilitate Productive Failure in 

that students commonly fail to generate valid methods in these activities [4-5]. For 

example, students may use range or count the number of different values as a measure 

of variability, ignoring distribution and number of data points. However, the failure is 

often productive as students learn from the subsequent instruction and practice better 

than students who receive only instruction and practice, controlling for overall time 

on task [1,3-6]. 

Unlike other forms of Productive Failure, in Invention activities students are given 

carefully designed sets of data, called contrasting cases, to invent mathematical 

methods that capture deep properties of data [7-8]. For example, the contrasting cases 

in Figure 1 are given to students when asked to create a method for calculating a 

weighted average. The contrast between Carpenters A and C helps students notice and 
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encode the roles of spread and magnitude. The contrast between A and D helps stu-

dents notice the role of sample size.  

Figure 1 Contrasting cases emphasize the roles of magnitude, distribution, and sample-size in 

determining weighted average. 

The invention process resembles an inquiry process in that students attempt to discov-

er the underlying structure of data [9]. Thus, in the absence of additional support, it is 

of no surprise that students rarely invent valid methods. However, as described earli-

er, the invention process improves subsequent learning even in the absence of suc-

cessful invention [1,2,6]. This raises an interesting question, which we address in this 

paper: Should the invention process be supported? One hypothesis suggests that sup-

porting invention may lead to improved learning, as students may invent better meth-

ods. However, an alternative hypothesis suggests that failure is necessary for learning 

[10]. Thus, supporting students during their invention process may, in fact, hinder 

learning.   

Scaffolding Invention Activities 

One common form of support is scaffolding [11]. Specifically, scaffolding the inquiry 

process was shown to improve learning in discovery learning [12-13]. Within the 

context of Invention activities, similar scaffolding was shown to improve the inven-

tion process and its outcomes [3]. Within the scope of this study, we chose to focus on 

scaffolding two key phases that bracket the invention process: orientation and reflec-

tion.  

Orientation. Invention Activities constrain the inquiry process by offering stu-

dents contrasting cases to work with. However, simply having the contrasting cases 

may not be enough. We have previously found that many students working with In-

vention activities do not engage with the available contrasts when developing their 
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methods [3]. Thus, following a prescriptive cognitive task analysis, we developed and 

validated prompts that help students orient themselves to the given data. This is done 

by instructing students to make pairwise comparisons between the contrasting cases 

with regard to the target concept.  For example, students would be asked to compare 

carpenters A and D in figure 1 to determine which one did a better job of measuring 

the width of a bridge, see Figure 2. Since the two cases have roughly the same aver-

age and spread, students are confronted with the issue of sample size and need to 

determine whether and how the number of measurements may factor into the prob-

lem. 

Figure 2. Ranking pairwise contrasts in the orientation scaffold. 

Reflecting on the invented method. A second process that we chose to focus on is 

evaluation and reflection. In addition to being a key process in the scientific toolbox, 

the process of evaluation is beneficial, as it requires students to self-explain their cor-

rect or incorrect reasoning. In the context of Invention activities, once students devel-

op their methods, the scaffolding asks them to explain how their invented methods 

take into account what they have learned during the pairwise comparisons. Students 

then apply their invented method to the contrasting cases, and then are asked to evalu-

ate their method by comparing these results to their qualitative rankings as identified 

by them intuitively in the orientation phase.  

Scaffolding students’ orientation and reflection processes was found to improve 

students’ invention behaviours and their invented methods on paper [3]. However, we 

are yet to evaluate the effect of the scaffolding on students’ learning gains. The cur-

rent study evaluates the effect of scaffolding during Invention activities on learning in 

two ways. First, we evaluate whether scaffolding improves the invention process it-

self. Given that evaluation and iteration are important inquiry skills, and that multiple 

invented methods are often associated with better learning in Productive Failure tasks 

[5], we evaluate the invention process by measuring the likelihood that groups invent 
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more than a single solution. Second, we evaluate the effect of scaffolding on learning 

outcomes from the overall invention-instruction-practice process. We do so by com-

paring pre-to-post gains. Notably, these scaffold are static, unlike the view of scaf-

folding as an adaptive, negotiated process [14]. Understand when students require 

scaffolding in Productive Failure, and how to detect that using a student model, is 

outside the scope of the current work.  

Method 

We compared the Invention activities with and without scaffolding using a pre-to-

post design. The in-vivo study took place in a first-year physics laboratory course at 

the University of British Columbia. 130 first-year students from four sections of the 

course participated in the study. The study was spread across a four-month term with 

the pre-test and two Invention activities given in three subsequent weeks at the begin-

ning of the term. The final post-test was delivered at the end of the term, roughly two 

months after students had finished the second invention activity.  

Students were randomly assigned to two groups, and different groups were assem-

bled for the two activities. Students in the Unguided Invention (UI) condition worked 

with a convention invention activity, as defined in [1.2] (n = 65). Students in the 

Guided invention (GI) condition received the additional scaffolding, as described 

below (n = 65). Students were given approximately 30 minutes to work on the Inven-

tion activities. Each activity was followed by a short lecture on the target domain 

from the course instructor, which included a group discussion to direct students’ at-

tention to the important features of the data. Following the direct instruction, students 

worked on scientific experiments for roughly two more hours. These experiments 

provided opportunities for students to practice applying the expert solution from the 

Invention activities. Topics from the Invention activities were revisited or built on in 

subsequent weeks. 

All students worked on the Invention activities using a dedicated interactive learn-

ing environment, the Invention Support Environment (ISE) [15]. Figure 3 shows the 

interface of ISE for the second activity used in this study, which focuses on evaluating 

goodness of fit for linear trendlines. The majority of the screen estates are dedicated 

to an accordion that breaks down the invention process:  

- Introduction: background story and task 

- Part 1: orientation. I this phase students analyze the contrasting cases qualita-

tively (available to GI students only). 

- Part 2: generation. In this phase students invent a mathematical method to cap-

ture the deep property of the data. This is done using an equation editor 

(shown in Figure 3). 

- Part 3: Students were guided to apply their method using a calculator or a 

spreadsheet software (e.g., MS Excel), and report back their values. 

- Part 4: Students were asked to evaluate their methods based on their qualita-

tive ranking (GI condition only).  
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The left side of the screen presents the contrasting cases to students. These stay 

available throughout the process. Students can zoom in on the contrasting cases and 

see the raw data by clicking on the Zoom In button. The centre of the screen shows 

students their initial and final ranking, when these are available (GI condition only).  

The ISE is a skeleton that can deliver a variety of invention activities that share the 

same structure. It is used regularly by instructors in this course to deliver roughly 5-6 

activities per term. A current version of ISE also includes instruction and opportuni-

ties for practice within the environment. Authoring new problems in ISE requires 

designers to give the text and data, but not to author new behaviours, as these are 

already built into ISE. ISE was built using the Cognitive Tutor Authoring Tools 

(CTAT) [16]. 

Figure 3: The Invention Support Environment 

The two conditions differed with regard to support that students received before 

and after inventing their methods. The scaffolding that was given to students in the GI 

condition was modeled after the paper scaffoldings that were used in [3]. These scaf-

folding were designed to promote expert scientific behaviours that were identified in a 

prescriptive cognitive task analysis using similar invention activities:  

The goal of the Orientation prompts was to get students familiar with the data prior 

to beginning to invent. Students were asked to compare pairs of contrasting cases and 

rank these according to the target feature. Students were then asked to briefly explain 

each of their rankings.  

To encourage students to reflect on their invented methods, students were explicit-

ly asked to self-explain their invented methods, referring back to their pairwise rank-

ings. In addition, students were explicitly asked to evaluate their methods by compar-

ing the results of their calculated values with their initial ranking during the orienta-

tion.  
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It should be noted that while the UI group did not have explicit prompts to perform 

these particular steps, they still had the opportunity to engage in them spontaneously. 

For example, the implementation process often leads naturally to reflection, as stu-

dents recognize the shortcomings of their formulas, especially if the students sponta-

neously analyzed the contrasting cases first. Thus, the main difference between the 

conditions is the explicit prompting to carry out and reflect on each of the key stages. 

Table 1 summarizes the differences between conditions. Snapshots of the entire pro-

cess can be found in Appendix B.  

The pre- and post- tests included three types of questions on both invention topics. 

Procedural items asked students to calculate numeric answers by applying the formu-

las. Conceptual items asked students to apply the concepts without calculation to 

demonstrate understanding of the basic principles of the domains. Transfer items 

provided students with equations that were deliberately varied from the domain for-

mulas and asked students to evaluate whether the formulas were reasonable ways to 

accomplish the same task. This requires a deep understanding of the deep features of 

the domain and their mathematical expressions in the equations [17]. Each type of 

assessment had two items, one on each topic.  

Results 

There was no effect for condition on pre-test: t(127) = 0.18, p = 0.856 (see Table 1). 

A paired t-test found significant learning from pre-test (M = 0.47, SD = 0.24) to post-

test (M = 0.61, SD = 21) on items that were shared by both tests: t(129) = 5.75; p < 

.0001. 

Overall, 111 pairs of students worked on the two activities (56 pairs on the first ac-

tivity and 55 pairs on the second). A logistic regression model found that groups in 

the GI condition were significantly more likely to create multiple methods, control-

ling for task, GI = 51%  UI = 38%; B = 1.13, SE(B) = 0.56  e
B
 = 3.091, Z = 4.02,  p = 

0.045. The odds ratio (e
B
) suggest that the odds to invent multiple methods is three 

times as high for GI students compared with UI students.  

Table 1. Mean (SD) pre- and post-test scores on procedural, conceptual, and transfer items. 

Item Type Unguided Invention Guided Invention 

Pretest: 28% (31%) 33% (32%) 

Posttest: 

- Procedural 46% (31%) 47% (28%) 

- Conceptual 75% (28%) 74% (32%) 

- Transfer 21% (29%) 33% (35%) * 

* p < 0.05
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An ANCOVA evaluating the effect of scaffolding on learning found no significant 

effect for condition on procedural, F(2,127) = 0.02, p = 0.882; or conceptual 

knowledge, F(2,127) = 0.09, p = 0.761. However, condition had a significant effect 

on transfer items, GI: M = 0.33, SD = 0.35; UI: M = 0.21, SD = 0.29: F(2,127) = 

4.81; p = 0.030.  

Discussion and Summary 

The results presented above show that adding scaffolding to the invention process 

led to a higher rate of multiple methods during the invention process and to increased 

gains on a measure of transfer two months after the initial learning period. The scaf-

fold had no effect on procedural and conceptual items. This is not surprising since the 

invention process itself usually has no benefits for these items compared with direct 

instruction and practice alone [1,2,17]. Thus, modifying the invention process similar-

ly has no effect on performance on these items.  

One key question to be answered is how the scaffolding resulted in the observed 

improvements. One likely answer suggests a two-fold process. By requiring students 

to compare pairs of contrasting cases, students notice more features, thus gaining a 

fuller understanding of the target domain. Using reflection prompts, the scaffolding 

improves students’ meta-knowledge in that it highlights what is known (features) 

versus what is yet to be learned (the integrated method). Thus, orientation and reflec-

tion prompts help students obtain a fuller understanding of the domain, but not neces-

sarily of any specific method. This may explain the observed effect on transfer, but 

not other, items.  

The study further demonstrates that Productive Failure works not simply because 

support should be delayed. Instead, it is the transmission of domain knowledge that 

should be withheld, while other forms of support may be beneficial for learning even 

using the Productive Failure paradigm [6].  

 The study has several limitations. Most notably, due to the dynamic allocation of 

students to groups, we did not directly evaluate the relationship between quality of 

invention and quality of learning. Future work will have to address this issue, as well 

as focus on topics other than data analysis.  

Notably, adding guidance during Invention activities helps learning even though 

students commonly fail to invent the expert solutions. Thus, not only that the failure 

to invent is, indeed, productive, but also, some failures are more productive than oth-

ers. This study demonstrates how engaging students with good scientific practices 

helps them achieve a more productive failure.  

Acknowledgements 

This work was supported by the Pittsburgh Science of Learning Center, which is 

funded by the National Science Foundation, award number (#SBE-0836012), and by 

the University of British Columbia through the Carl Wieman Science Education Initi-

ative. 

References 

67



1. Roll, I., Aleven, V., & Koedinger, K. R. (2009). Helping students know 'further'-increasing

the flexibility of students' knowledge using symbolic invention tasks. In Proceedings of the

31st annual conference of the cognitive science society (pp. 1169-74).

2. Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: the hidden

efficiency of encouraging original student production in statistics instruction. Cognition

and Instruction, 22(2), 129–184. Doi:10.1207/s1532690xci2202_1

3. Roll, I., Holmes, N., Day, J., & Bonn, D. (2012). Evaluating metacognitive scaffolding in

guided Invention activities. Instructional Science, 40(4), 691–710. doi:10.1007/s11251-

012-9208-7

4. Kapur, M. (2008). Productive failure. Cognition and Instruction, 26(3), 379–424.

doi:10.1080/07370000802212669

5. Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learn-

ing Sciences, 21(1), 45–83. doi:10.1080/10508406.2011.591717

6. Westermann, K., & Rummel, N. (2012). Delaying instruction: evidence from a study in a

university relearning setting. Instructional Science, 40(4), 673–689. doi:10.1007/s11251-

012-9207-8

7. Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus

inventing with contrasting cases: The effects of telling first on learning and transfer. Jour-

nal of Educational Psychology, 103(4), 759–775.

8. Roll, I., Aleven, V., & Koedinger, K. R. (2010). The invention lab: Using a hybrid of

model tracing and constraint- based modeling to offer intelligent support in inquiry envi-

ronments. In V. Aleven, J. Kay, & J. Mostow (Eds.), Proceedings of the 10th International

Conference on Intelligent Tutoring Systems (pp. 115-24). Berlin: Springer Verlag.

9. de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer

simulations of conceptual domains. Review of Educational Research, 68(2), 179–201.

doi:10.3102/00346543068002179

10. VanLehn, K. (1988). Toward a theory of impasse-driven learning (pp. 19-41). Springer

US.

11. Koedinger, K. R., & Aleven, V. (2007). Exploring the assistance dilemma in experiments

with cognitive tutors. Educational Psychology Review, 19(3), 239-264.

12. de Jong, T. (2006). Scaffolds for scientific discovery learning. In J. Elen, R. E. Clark, & J.

Lowyck (Eds.), Handling complexity in learning environments: Theory and research (pp.

107–128). Howard House: Emerald Group Publishing.

13. Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and Achievement

in Problem-Based and Inquiry Learning: A Response to Kirschner, Sweller, and Clark

(2006). Educational Psychologist, 42(2), 99–107. doi:10.1080/00461520701263368

14. Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Jour-

nal of Child Psychology and Psychiatry, 17(2), 89-100. doi:10.1111/j.1469-

7610.1976.tb00381.x

15. Holmes, N. G. (2011). The invention support environment: using metacognitive scaffold-

ing and interactive learning environments to improve learning from invention (Master’s

dissertation, University of British Columbia).

16. Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R. (2009). A new paradigm for

intelligent tutoring systems: Example-tracing tutors. International Journal of Artificial In-

telligence in Education, 19(2), 105-154.

17. Roll, I., Aleven, V., & Koedinger, K. R. (2011). Outcomes and mechanisms of transfer in

Invention activities. In Proceedings of the 33rd annual conference of the cognitive science

society (p. 2824-2829.

68



Embedded Scaffolding for Reading Comprehension in 

Open-Ended Narrative-Centered Learning Environments 

Jonathan P. Rowe, Eleni V. Lobene, Bradford W. Mott, and James C. Lester

Department of Computer Science, North Carolina State University, Raleigh, NC 27695 

{jprowe, eleni.lobene, bwmott, lester}@ncsu.edu 

Abstract. Narrative-centered learning environments tightly integrate 

educational subject matter and interactive stories, where students serve as active 

participants in story-centric problem-solving scenarios. Embedding scaffolding 

within the storyline of a narrative-centered learning environment is a discreet 

approach to supporting students’ learning processes without diminishing the 

motivational benefits of interactive narratives. This paper presents an 

implementation of story-embedded scaffolding in a narrative-centered learning 

environment, CRYSTAL ISLAND. CRYSTAL ISLAND’s curricular focus has recently 

been expanded to include literacy education, with a focus on reading. 

Scaffolding takes the form of concept matrices, which are student-generated 

graphic organizers for complex informational texts that students read as part of 

CRYSTAL ISLAND’s interactive narrative plot. Leveraging generative learning 

theory, we discuss directions for fading concept matrix-based scaffolding, and 

examine technical challenges and potential solutions. 

Keywords: Narrative-centered learning environments, scaffolding, reading. 

1   Introduction 

There is growing evidence that narrative-centered learning environments, a class of 

game-based learning environments that embed educational content in interactive story 

scenarios, are an effective medium for fostering student learning and engagement [1–

2]. A key benefit of narrative-centered learning environments is their capacity to 

discreetly support students’ learning processes by tightly integrating educational and 

narrative elements. Guiding student problem solving in open-ended narrative-centered 

learning environments is particularly important, because students often have varying 

degrees of competency at solving ill-structured problems. Consequently, scaffolding 

in narrative-centered learning environments should meet at least two requirements: 

scaffolding should be dynamically tailored to individual students, and scaffolding 

should be naturalistically embedded within interactive narratives in order to sustain 

student engagement. 

This paper proposes extensions to an open-ended narrative-centered learning 

environment, CRYSTAL ISLAND, that incorporate story-embedded scaffolding features 

for literacy education using generative graphic organizers. In CRYSTAL ISLAND, 

reading comprehension is critical for students gathering clues to solve a science 
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problem-solving mystery. Adaptively scaffolding students’ reading processes is a 

promising direction for enhancing students’ literacy skills, and has been the subject of 

considerable research by the intelligent tutoring systems community [3–4]. We 

describe how CRYSTAL ISLAND’s plot and game mechanics currently incorporate 

story-embedded graphic organizers to scaffold students’ reading comprehension 

processes, and outline future directions for intelligently diagnosing and fading this 

scaffolding. 

2   CRYSTAL ISLAND for Literacy Education 

Over the past several years, our lab has been developing CRYSTAL ISLAND (Fig. 1), a 

narrative-centered learning environment for middle school microbiology [1]. 

CRYSTAL ISLAND’s curricular focus has recently been expanded to include literacy 

education based on Common Core State Standards. CRYSTAL ISLAND’s narrative 

focuses on a spreading illness afflicting a research team on a remote island. Students 

act as medical detectives who must diagnose and treat the illness to save the team. 

As part of CRYSTAL ISLAND’s curricular focus on literacy, students encounter 

books and articles throughout the camp that contain complex informational texts 

about microbiology concepts (Fig. 2, left). Students read and analyze these texts, as 

well as complete associated concept matrices, to acquire knowledge to diagnose the 

illness. Concept matrices (Fig. 2, right) are graphic organizers, which students use to 

record key pieces of information encountered in the informational texts. The concept 

matrices are framed within the narrative as partially completed notes written by one of 

the research team’s sick scientists. Students must discover and “complete” the notes 

based on content in the informational texts. The graphic organizers serve both as 

scaffolds for reading comprehension, as well as embedded assessments of 

Fig 1. CRYSTAL ISLAND narrative-centered learning environment. 
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students’ reading comprehension skills. Completing a concept matrix involves

clicking on each blank cell and selecting responses from drop-down menus. After a 

student has filled out a concept matrix, she can press an on-screen “Submit” button to 

receive immediate feedback on her responses. 

3 Story-Embedded Scaffolding for Reading Comprehension

Graphic organizers, such as concept matrices, provide a natural mechanism for 

scaffolding reading comprehension skills in a non-obtrusive manner within narrative-

centered learning environments. However, generative learning theory suggests that 

students will achieve improved learning gains if they create the concept matrices 

themselves. The current implementation of concept matrices in CRYSTAL ISLAND is 

highly structured. We plan to extend the current approach by intelligently reducing 

concept matrices’ pre-specified structure as students improve their reading skills. 

Specifically, we propose fading the story-embedded scaffolding by transitioning from 

highly structured concept matrices to increasingly student-generated concept matrices. 

Currently, whenever a student encounters a concept matrix in the story world, the 

matrix’s layout (i.e., number of columns, number of rows) is fixed, the headings are 

pre-specified, and the set of possible answers for each cell are given. Fading the 

structure of story-embedded concept matrices can occur in at least three stages. First, 

one could remove the multiple-choice response menus for interior cells, instead 

requiring students to enter free-form text. This would require students to 

independently identify relationships between key terms and concepts from 

informational texts. Second, one could remove the pre-specified headers for each 

column and row, replacing them with either multiple-choice menus or free-form text 

entries. This would require students to independently identify the important themes in 

informational texts. Third, one could require students to specify the concept matrix 

layouts by selecting their number of columns and rows. This would require students 

to independently evaluate which, and how many, themes are most salient. 

Effectively fading concept matrix-based scaffolding within CRYSTAL ISLAND raises 

notable technical challenges. The first challenge is identifying when to transition 

between successive levels of fading. This could be implemented as a fixed 

Fig 2. (Left) An informational text stylistically formatted like a virtual book, and (Right) a

concept matrix stylistically formatted as a scrap of note paper. 
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progression (e.g., if the student has encountered N concept matrices, fade by one 

level). Alternatively, fading decisions could be based on probabilistic student 

models—a common practice in ITSs—although assessing student knowledge from 

concept matrices presents its own challenges. One could also leverage reinforcement 

learning to induce optimal fading policies from an exploratory corpus of student 

interaction data, a technique that has shown success in tutorial dialogue modeling [5].  

A second challenge is automatically assessing the quality of student-generated 

concept matrices. Automated assessment would require models of important concepts 

and themes from informational texts, as well as robust techniques for comparing 

informational text models to student-generated concept matrices, which may suffer 

from spelling errors, misconceptions, and incompleteness. Third, providing feedback 

tailored to individual students based on their self-generated concept matrices is 

difficult. Feedback could concern a broad range of subjects, such as corrections of 

factual errors, clarifications about important themes, or suggestions for alternate 

layouts, and it would need to cope with students’ free-form written content. 

Automated assessment and feedback raise interesting computational challenges, 

but intermediate solutions may exist. For example, it seems plausible that one could 

identify constraints that good concept matrices meet (e.g., included content terms, 

content of rows/columns), suggesting that constraint-based models [6] may show 

promise. While the computational challenges are substantial, tailoring and fading 

generative graphic organizers to scaffold reading comprehension in open-ended 

narrative-centered learning environments shows considerable promise for promoting 

both effective and engaging literacy learning experiences. 
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Abstract. Adaptive scaffolding in computer-based learning environments 

(CBLEs) continues to be an active area of research, with researchers framing 

the problem as determining the what, when, how, and by whom or what of adap-

tive scaffolding strategies. This paper presents our recent work in developing a 

taxonomy for adaptive scaffolds in CBLEs. The taxonomy, motivated by previ-

ous work in developing adaptive scaffolds, attempts to address the how of scaf-

folding by describing the tools and techniques available for scaffolding in 

CBLEs. We present the taxonomy, which describes adaptive scaffolds as one or 

more suggestions, assertions, and learning task modifications, and we discuss 

the utility of the taxonomy in describing adaptive scaffolding strategies. 

Keywords: adaptive scaffolds, taxonomy, computer-based learning environ-

ments 

1 Introduction 

Research in computer-based learning environments (CBLEs) has long recognized the 

vital role of adaptivity in the success of a system’s ability to independently foster 

learning in students [1]. Adaptive CBLEs regularly capture and analyze student ac-

tivities in order to make decisions about how and when to scaffold learners [2]. These 

systems take explicit actions [3]; they may remind learners of relevant information, 

advise learners on how to proceed in their learning tasks, or modify the difficulty 

level of the learning activity itself.  

The methods and tools used for scaffolding may vary widely based on the goal of 

instruction. For example, Chi and colleagues [4] presented 15 types of scaffolding 

actions identified in the research literature. These scaffolds include providing hints, 

fill-in-the-blank prompts, explanations, and correct answers, among others. Under-

standing these techniques, including when and why a particular scaffold may be more 

effective than another, remains an important area of research. Pea [5] framed the 

problem as defining the what, why, and how of scaffolding. What information should 

a scaffolding action focus on, why should a CBLE employ a scaffold, and how does 

the CBLE actually scaffold the learner (i.e., what action does it take)? This frame-

work was later revised by Azevedo & Jacobson [2] to focus on what, when, how, and 
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by whom or what. The revised framework replaces the why question with a when 

question: when should a CBLE scaffold learners? It also introduces a new question: 

who or what should provide the scaffolds?  

In this paper, we attempt to address the how question by presenting a novel taxon-

omy for classifying adaptive scaffolds in CBLEs. The taxonomy classifies adaptive 

scaffolds as a set of one or more suggestions, assertions, and learning task modifica-

tions (SAMs). Section 2 presents the background and motivation for the taxonomy; 

section 3 presents the taxonomy; and section 4 discusses future directions. 

2 Previous Work in Classifying Adaptive Scaffolds 

While some researchers in the field of educational technology have proposed methods 

for classifying and describing adaptive scaffolding approaches based on well-defined 

terms (e.g., [6-7]), no comprehensive taxonomy of the tools and techniques available 

for scaffolding currently exists. Thus, the field now suffers from a lack of operational 

definitions, and several researchers refer to the scaffolds in their systems as “hints” or 

“feedback.” Often, researchers define these scaffolds via examples. Bell & Davis [8], 

for instance, differentiate between three types of hints provided by a pedagogical 

agent named Mildred: activity hints, evidence hints, and claim hints. The provided 

descriptions of the hints are vague, and they are mainly illustrated with examples: 

The current instantiation of Mildred provides three types of hints - on activities, 

evidence, and claims. For example, in the “Critique Evidence” activity of All 

The News, an activity hint might say, “When you critique the evidence, you 

will think about: (1) the science ideas used in the evidence, (2) the methods 

used to create the evidence, and (3) how credible or believable the evidence is.” 

Further activity hints for the Critique Evidence activity would provide defini-

tions and examples of the critique criteria of science, methods, and credibility. 

Evidence hints are more specific, providing help in thinking about a particular 

piece of evidence. A hint for the “Bicyclists at Night” evidence (used in both 

All The News and How Far) is, “Why is the person in white [clothes] easier to 

see? What is happening to the light?” A student working on a critique of the 

Bicyclists at Night evidence could then receive converging evidence on both 

the act of critiquing and the specific evidence being critiqued. Likewise, claim 

hints help students think about a particular claim. For example, a claim hint 

about black “attracting heat” (as opposed to absorbing light) might say, “What 

would happen if there were a heat source in a dark room? Would someone 

wearing black get hotter than someone wearing white?” (p. 144) 

Similarly, Jackson, Guess, & McNamara [9] present a CBLE, iStart, and describe 

the scaffolds provided by the system as “feedback” without defining the term, instead 

relying on examples: 
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Merlin provides feedback for each explanation generated by the student. For 

example, he may prompt them to expand the explanation, ask the students to 

incorporate more information, or suggest that they link the explanation back to 

other parts of the text. Merlin sometimes takes the practice one step further and 

has students identify which strategies they used and where they were used. (p. 

129) 

Some researchers have developed more specific scaffold classifications. For exam-

ple, Belland, Glazewski, & Richardson [10] propose four types of scaffolds: concep-

tual support, metacognitive support, procedural support, and strategic support. These 

support types are defined as help about “what to consider,” “how to manage the learn-

ing process,” “how to use tools,” and “what strategies to use in approaching the prob-

lem,” respectively. This classification differentiates scaffolds based on a single di-

mension: the type of information the scaffold is designed to support. However, be-

cause scaffolds are actions, an appropriate classification needs to consider both what 

information is supported and how it is supported. 

In presenting a general framework for the design of Intelligent Tutoring Systems 

(ITSs), VanLehn [6] defines minimal feedback and three types of hints: point, teach, 

and bottom out. In ITSs, learners are presented with small multi-step problems in a 

well-defined domain (e.g., physics). When students are having trouble correctly com-

pleting a problem step, the system usually intervenes to provide one of these types of 

scaffolds. Minimal feedback scaffolds indicate whether or not a learner’s attempt at 

completing a problem step is correct or incorrect. Hints are provided in relation to a 

particular knowledge component (e.g., a fact, definition, or procedure), and they are 

defined as follows: 

Pointing hints mention problem conditions that should remind the student of 

the knowledge component’s relevance. Teaching hints describe the knowledge 

component briefly and show how to apply it. Bottom-out hints tell the student 

[how to apply the knowledge component to solve] the [current problem] step. 

(p. 242) 

This scaffold classification, unlike the classification described in [10], does fo-

cus both on the information the scaffold is designed to support and the methods by 

which the information is supported. However, it is not general enough to classify a 

number of scaffolds that have been implemented in CBLEs. For example, several 

CBLEs provide scaffolds that suggest the use of a particular resource within the 

system rather than mentioning or explaining a knowledge component. 

As a final example, Graesser & McNamara [7] describe the scaffolds imple-

mented within a CBLE called AutoTutor, which teaches physics by posing ques-

tions and then holding natural language dialogues with learners as they attempt to 

answer those questions. During the course of these dialogues, AutoTutor may em-

ploy any of five types of dialogue moves: pumps, hints, prompts, correctness feed-

back, and assertions. Pumps ask the learner to continue elaborating on the answer 

they have started to offer. For example, AutoTutor might encourage a student to 
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“keep going.” Hints are questions that attempt to elicit a question-relevant proposi-

tion from the learner. For example, AutoTutor may ask students how Newton’s 

second law of motion applies to the current question. Prompts are questions that 

ask the learner to provide explicit words or phrases that are important in answering 

the current question. For example, AutoTutor may present a partial definition of 

Newton’s second law of motion and ask the learner to fill in the missing infor-

mation. Feedback indicates whether the learner’s answer is correct or incorrect, 

and assertions communicate entire propositions to learners when hints and 

prompts fail to elicit them. 

In considering the presented scaffold classifications, some common themes 

emerge. First, several of the presented scaffolds operate by providing a suggestion. 

For example, pointing hints in ITSs direct attention to specific problem features, 

suggesting that learners consider those features; Merlin suggests that learners link 

their current explanation back to other parts of the text; and AutoTutor pumps 

learners, suggesting that they continue elaborating on their answer. Second, several 

of the presented scaffolds operate by asserting information. For example, teaching 

hints assert knowledge components and how to apply them; bottom-out hints as-

sert how to solve the current problem step; and AutoTutor’s assertions communi-

cate question-relevant propositions to learners. Third, some scaffolds operate by 

modifying the learning task. For example, when AutoTutor asks the learner a ques-

tion as part of delivering a hint, it is redirecting the learner’s attention away from 

their former task (answering the original question) to a new task (answering a 

related question).  

These observations have led us to develop a taxonomy that classifies adaptive 

scaffolds as one or more suggestions, assertions, and learning task modifications. 

This taxonomy is general and widely-applicable. Moreover, it provides a language 

for presenting and communicating scaffolding strategies.  

3 The Suggest-Assert-Modify Taxonomy 

The Suggest-Assert-Modify (SAM) taxonomy is illustrated in Figure 1. Suggestion 

scaffolds provide information to learners for the purpose of prompting them to engage 

in a specific behavior (e.g., accessing a resource). By executing the recommended 

behavior, learners should encounter critical information that, if properly internalized, 

would allow them to make progress in accomplishing the learning task. The taxonomy 

classifies suggestions based on whether they target metacognitive activities (e.g., 

planning or reflection) or cognitive knowledge integration activities. Knowledge inte-

gration is the process of analyzing and connecting multiple chunks of information in 

order to achieve new understandings about how they are related [11-12]. It can target 

several cognitive processes, such as: (i) goal orientation, in which learners integrate 

chunks of information with their understanding of their current goal; (ii) explanation 

construction, in which learners assemble chunks of information to explain a system, 

process, or phenomenon; (iii) prediction, in which learners integrate chunks of infor-

mation with a hypothetical scenario, and several others. 
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Assertion scaffolds communicate information to learners as being true; ideally, 

learners will integrate this information with their current understanding as they con-

tinue working toward completing their learning task. Unlike suggestions, assertion 

scaffolds don’t directly encourage learners to engage in a particular behavior; they 

only state information.  

Fig. 1. The SAM Taxonomy for Adaptive Scaffolds 

The taxonomy distinguishes between four types of assertion scaffolds: declarative, 

procedural, conditional, and evaluative. Declarative assertions communicate “know-

ing that” information [11]. Such information is often conceptualized as being repre-

sented as and with schemata: mental structures that represent a concept and the fea-

tures that characterize it [12]. For example, a schema representing an animal might 

contain features such as the animal’s number of legs and the sound that the animal 
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makes. Features correspond to variables in an algebra expression or computer pro-

gram; they can take on any of a number of values when instantiated; and an “in-

stance” of an animal schema may represent an actual animal in the world. Thus, de-

clarative assertions contain information that may be represented by a schema; this 

includes facts, definitions, concepts, and understandings of relationships and inter-

relationships among actors in complex systems. In the proposed taxonomy, declara-

tive assertions are sub-divided based on their topic, which may be the problem do-

main, cognitive processes, metacognitive strategies, and the learner’s behavior while 

using the system. Examples of each type of declarative assertion are listed in Table 1. 

Assertion Category Example 

Declarative – Problem Domain Sunfish eat mosquito fish. 

Declarative – Cognitive Processes You have to know how to multiply fractions. 

Declarative – Metacognitive 

Strategies 
The “cross-multiply” strategy may help you. 

Declarative – Learner Behavior You haven’t tried any division problems. 

Procedural 
To multiply fractions, first multiply the nu-

merators, and then multiply the denominators. 

Conditional 

The “cross-multiply” strategy should be used 

whenever you need to solve for an unknown 

value in an equation consisting of only frac-

tions. 

Evaluative 
You don’t seem to have a good understanding 

of how to divide fractions. 

Table 1. Types of Assertion Scaffolds with Examples. 

Procedural assertions communicate “how-to” information: sets of actions that, 

when executed in a loosely-ordered sequence, can accomplish a task. These assertions 

explain how to perform cognitive processes, such as identifying important infor-

mation in text passages or applying causal reasoning to answer hypothetical ques-

tions. Conditional assertions communicate information represented as “if-then” rules 

that identify both when cognitive processes are applicable and whether or not they 

should be executed based on the current context [12]. These assertions usually explain 

metacognitive strategies. In a fractions learning environment, for example, the system 

might assert that a good strategy for solving algebraic expressions that consist entirely 

of fractions is to use a “cross-multiply” strategy. This would be represented as the 

following “if-then” rule: IF you want to solve an algebraic expression consisting 

entirely of fractions, THEN employ the cross-multiply strategy. Finally, evaluative 

assertions communicate evaluations of the learner’s performance and understanding. 

For example, the system may assert that the learner does not seem to understand how 

to divide fractions. 

Modification scaffolds, unlike suggestion and assertion scaffolds, do not operate by 

communicating information to the learner; rather, they change aspects of the learning 
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task itself. In doing so, they seek to adapt the task to the learner’s needs and abilities. 

The taxonomy differentiates between three types of modification scaffolds: simplifi-

cations, constrictions, and interventions. Simplification modifications, as specified by 

Wood, Bruner, & Ross [13], operate by “reducing the number of constituent acts re-

quired to reach solution.” Constriction modifications operate by reducing the number 

of options available to the learner. For example, the scaffolding agent may block ac-

cess to tools or resources in order to focus learners’ attention on other, more useful 

approaches to solving the task. Intervention scaffolds, rather than modifying features 

of the overall task, operate by temporarily shifting learners’ attention from their pri-

mary task to an intervention task. Upon completion of the intervention task, learners 

may return to the primary task. 

The SAM taxonomy addresses the how of scaffolding by describing the atomic el-

ements of adaptive scaffolds, and it provides a language for communicating both in-

dividual scaffolds and entire scaffolding strategies. For example, the scaffolding strat-

egy for ITSs discussed by VanLehn [6] could be described as a progression from 

cognitive suggestions (pointing hints) to declarative assertions that describe a 

knowledge component (teaching hints) to declarative assertions that provide the an-

swer to the current problem step (bottom-out hints). In comparison to the scaffolding 

classifications presented in Section 2, we argue that the SAM taxonomy is more com-

prehensive and general than its predecessors. 

4 Conclusion 

This paper has presented a novel taxonomy for describing and classifying adaptive 

scaffolds in computer-based learning environments. The taxonomy classifies adaptive 

scaffolds as one or more suggestions, assertions, and learning task modifications, and 

it provides a general, widely-applicable language for communicating and interpreting 

scaffolding strategies.  

The SAM taxonomy, however, is not without limitations. First, the distinction be-

tween suggestions and assertions is sometimes ambiguous, and a scaffold may consist 

of an assertion that implies a suggestion. For example, a scaffold in an algebra learn-

ing environment may assert that successful students used a particular problem solving 

strategy in order to indirectly suggest that the learner adopt that strategy. Second, the 

SAM taxonomy does not currently distinguish between different types of intervention 

scaffolds. Future work should investigate methods for breaking down interventions 

according to the types of activities learners are expected to accomplish during the 

intervention. For example, it may be valuable to separate modeling interventions (e.g., 

demonstrating how to solve a problem), metacognitive interventions (e.g., requiring 

learners to gauge their own comprehension), and cognitive interventions (e.g., requir-

ing learners to correctly define terms or explain properties of a complex system). 

It is important to note that the presented taxonomy represents an initial step toward 

a standardized language for describing the how of adaptive scaffolding strategies. As 

we continue to scan the literature for more examples of adaptive scaffolds in educa-
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tional technology, we will update the taxonomy as needed to reflect distinguishing 

features of adaptive scaffolds. 
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Abstract. The majority of educational software is designed for traditional com-

puters, which allow little opportunity for physical manipulation of an environ-

ment. Tangible Activities for Geometry (TAG) provides students a tangible 

learning environment. Currently, however, TAG does not employ adaptive scaf-

folding techniques. Accordingly, we describe how scaffolding techniques and 

teachable agent behaviors can be integrated into TAG to improve this tangible 

learning environment. 

Keywords: adaptive scaffolding, tangible learning environments, teachable 

agents  

1 Introduction 

Open-ended learning environments (OELEs) enable students to actively engage in 

problem solving, such as generation, testing and revision of a hypothesis [1]. Howev-

er, most educational systems target personal computers and their typical WIMP (win-

dow, icon, menu, pointing device) setup. These systems rarely  allow for embodied 

interaction between the student and the learning environment, despite the fact that 

students learn a great deal through physically engaging with their environment [2]. 

The Tangible Activities for Geometry system (TAG) aims to fill this gap, by providing 

a tangible OELE where students can move beyond the boundaries of the virtual world 

and explore different strategies for solving geometric problems [3]. 

  The current TAG system provides no feedback or adaptation to the user’s perfor-

mance. Therefore, our goal with this paper is to propose ways of integrating adaptive 

scaffolding techniques into this tangible learning environment (TUI), laying the foun-

dation for studying the effects that they would have in this type of learning environ-

ment. The majority of TUIs do not currently possess such capabilities, which allows 

us to start exploring this intersection. Here, we will review existing frameworks and 

techniques that can be used for scaffolding the user's learning in an adaptive manner 

and will describe ways in which they could be applied to our system. 
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2 Description of Current System 

In the current implementation of the TAG system, a student solves geometry prob-

lems by instructing a teachable agent on the steps needed to solve the problem. Prob-

lems include plotting a point in a given quadrant, translating a point, or rotating a 

point around a center of origin. While answers are sometimes the same, problems can 

often be solved in different ways. The system is comprised of three main components 

[3]. The problem space is a Cartesian plane projected on the ground. This is where the 

teachable agent and the problem objects, such as lines and points, are displayed. The 

interactions with the problem space occur through a hanging pointer that hangs from 

the ceiling, functioning as a mouse. Hovering the pointer over the problem space 

moves the cursor. Clicking is performed when the user moves the pointer below a 

certain height threshold and back up. The feedback for the user’s interactions on the 

problem space is received on the mobile interface, displayed on an iPod Touch. In this 

interface, the user is able to select an action that will be performed by the agent, view 

the steps already taken, and navigate through problems. 

3 Review of Existing Pedagogical Techniques 

Prior research has explored how various pedagogical techniques impact student learn-

ing. A number of these rely on a teachable agent paradigm, where students learn by 

tutoring a computerized agent modeled to simulate behaviors of a student tutee. For 

instance, reflective knowledge building uses questions and explanations generated by 

a teachable agent to prompt students to reflect on their own understanding of various 

concepts, and refine their ideas [4]. Agents could also use this technique to introduce 

new ideas to a student’s existing knowledge [5].  

Figure 1: Elements of the TAG system. The problem space (a), where the Cartesian plane is 

projected, the hanging pointer (b), used by the student to interact with the problem and the 

mobile interface (c), the iPod interface commands are issued to the agent. 
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Other research has shown that the level of abstraction in the advice provided by a 

teachable agent can impact a student’s perceptions and performance. Students who 

work with agents that give different kinds of feedback, ranging from high-level advice 

to concrete, task specific suggestions, performed better than students who interacted 

with agents that only used task-specific suggestions [6].  

Techniques used in cognitive tutors can also be useful for extending TAG. Cogni-

tive tutors provide the user with feedback on a step-by-step basis, in response to 

common errors and with on-demand instructional hints, and adapt the selection of 

problems based on user-performance [7]. The challenge is to adapt these techniques to 

an open-ended system such as TAG while still encouraging open-ended exploration. 

4 Proposed Extensions on the Current System 

We propose expanding TAG to employ adaptive scaffolding as a way to increase the 

system’s effectiveness. Techniques such as reflective knowledge building could be 

integrated into our system to improve student learning while also enhancing unique 

tangible aspects of our system. For example, if the student is attempting to plot a point 

in quadrant II, but moved the agent into quadrant IV, a question from the agent might 

prompt the student to recognize that their actions are not leading them to the correct 

solution. As another example, after a student solves a problem, the TAG agent could 

propose an alternate solution, helping students evolve their ideas, which some stu-

dents struggle to do in OELEs [8]. As an extension of adaptive scaffolding in a tradi-

tional learning environment, students could also be encouraged to try additional tan-

gible interactions that may not have been incorporated into their original solution.  

  Scaffolding could also be employed through hints given by the agent while a stu-

dent is working on a problem. In this scenario, the agent uses cues that a student 

might be confused, such as a long pause without any activity, and provides a hint to 

guide the student in the right direction. Are there unique cues within TUIs that could 

be detected to improve an adaptive scaffolding model? To study this, our system 

could monitor embodied behaviors exhibited by the student, such as pacing back and 

forth or kneeling down on the projected Cartesian plane. Following standard conven-

tion, the agent's hints should vary in detail based on the student's performance within 

a given problem. Students would initially be provided with high-level feedback from 

the teachable agent, allowing them to apply the information given to them by the 

agent to the problem domain. If the student continues having trouble, the system can 

adaptively adjust the agent’s hints to be more direct, allowing students to discover the 

correct approach, albeit, with less reflection on the metacognitive process. By provid-

ing feedback in this manner, we can foster an atmosphere of discovery, which should 

help students feel more engaged [2]. Since previous work has shown that increasing 

the sociability of an agent improves student perceptions of the system and student 

performance [9], hints from the agent could be provided textually through a pop up on 

the iPod interface while also being spoken by the agent.  

  On a less localized scale, adaptive scaffolding could also be applied based on a 

student’s performance throughout an entire session. Indicators that could be used to 
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measure student performance include the amount of time taken to solve a problem, 

the number of correct and incorrect solutions a student has produced, and the number 

of steps a student uses as compared to an optimal solution with a minimal number of 

steps. Applying this type of adaptive scaffolding in a TUI introduces some unique 

challenges. For example, how do we differentiate between students that are struggling 

with the problem domain and students that are having trouble understanding how to 

use the unique tangible interactions of our system? 

5 Conclusion 

By proposing a novel set of techniques to augment the TAG system, we aim to pro-

vide the appropriate level of scaffolding needed to improve student learning, while 

maintaining student engagement when faced with difficulties and failure. The ultimate 

goal is to ensure that students receive help when it is needed, but are not hindered 

during open-ended exploration. We also hope to learn more about how this scaffold-

ing should be presented to the student on the different dimensions that a TUI pro-

vides, exploring the advantages and drawbacks of each type of scaffolding. 

References 

1. Land S. Cognitive requirements for learning with open-ended learning environments.

Educational Technology Research and Development. 2000, Volume 48, Issue 3, pp 61-78.

2. Walker, E, and Burleson, W. User-Centered design of a teachable robot. Intelligent Tutoring

Systems, 2012.

3. Mulder, K., Lozano, C., Girotto, V., Burleson, W., and Walker, E. Designing a Tangible

Learning Environment with a Teachable Agent. Artificial Intelligence in Education, 2013.

4. Roscoe, D., Wagster, J., and Biswas, G., Using Teachable Agent Feedback to Support

Effective Learning by Teaching, In Proceedings of the 30th Annual Meeting of the

Cognitive Science Society, Washington, DC, 2008.

5. Blair, K., Schwartz, D., Biswas, G., and Leelawong, K. Pedagogical Agents for Learning by

Teaching: Teachable Agents. In Educational Technology & Society: Special Issue on

Pedagogical Agents, 2006.

6. Lester, J. C., Converse, S. A., Kahler, S. E., Barlow, S. T., Stone, B. A., and Bhogal, R. S.

The Persona Effect: Affective Impact of Animated Pedagogical Agents. In Proceedings of

CHI ‘97, 1997.

7. Koedinger, K., Aleven, V. Exploring the Assistance Dilemma in Experiments with Cognitive

Tutors. 2007.

8. Land, S. M. Cognitive Requirements for Learning with Open-Ended Learning Environments.

Educational Technology Research and Development 48.3, 2000.

9. Hershey D. K., Mishra P., and Altermatt, E. All or nothing: Levels of sociability of a

pedagogical software agent and its impact on student perceptions and learning. Journal of

Educational Multimedia and Hypermedia 14.2, 2005.

84



 “Gaming the system” in Newton’s Playground 

Lubin Wang, Yoon Jeon Kim, & Valerie Shute 

 Florida State University, Tallahassee, USA 

lw10e@fsu.edu,yk06c@my.fsu.edu,vshute@fsu.edu 

Abstract. This paper describes the current status of ongoing research looking 

into students’ “gaming the system” behaviors in an open-ended learning envi-

ronment—the game Newton’s Playground—in relation to their physics learn-

ing, enjoyment of the game, and persistence. Our next step is to code students’ 

gaming behaviors and then compare learning via pretest and posttest scores. 

We’ll also examine gaming behaviors relative to enjoyment of the game and 

persistence. Findings can inform improvements to Newton’s Playground (and 

other games) and guide the design of scaffolding for students in other OELEs.  

Keywords: game the system behaviors, game-based learning, physics learning, 

persistence 

1 Introduction 

Open-ended learning environments (OELEs) are technology-rich environments 

that allow learners to participate in authentic problem solving activities, interact with 

the system by actively making choices, and apply cognitive and metacognitive skills 

to assess and monitor their learning processes [5]. Providing players the freedom to 

explore the environment and make choices are essential features of OELEs, which 

render the environment engaging and meaningful.  

Well-designed digital games share similar features with such environments [1]. For 

example, Gee (2003) discusses properties of good games, such as interactive problem 

solving, adaptive challenges, feedback, and control that are aligned with learning 

principles to promote deep and meaningful learning. In games players actively inter-

act with the system by making choices, and this provides a sense of control and own-

ership to the players. Also, games provide players with complex and interesting prob-

lems to solve, allowing freedom in terms of how they reach the solution.  

In such wide-open environments, however, it is almost impossible to predict every 

possible way that learners will interact with the system. Studies have shown that for 

novice learners, having too much freedom can lead to frustration or unsuccessful 

learning [5]. This may result in unexpected behaviors by learners such as exploiting 

loopholes of the system, which is commonly referred to as gaming the system.  

Baker (2005) defines gaming the system as “attempting to succeed in an educa-

tional environment by exploiting properties of the system rather than by learning the 

material and trying to use that knowledge to answer correctly (p. 6).”  Reasons why 

learners game the system and how it influences learning have been investigated in 
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various forms of technology rich learning environments, primarily in intelligent tutor-

ing systems [1]. Broadly speaking, learners are more likely to show gaming the sys-

tem behaviors when (a) they dislike the subject matter, (b) they are frustrated, and/or 

(c) they lack drive or motivation.  

Unlike what happens in learning environments like intelligent tutoring systems, 

gaming the system is not always viewed negatively in the gaming context. In fact, it 

can be an important aspect of gaming culture as evidenced by a player proudly shar-

ing certain “tricks” with other players [4]. Therefore, as using games for learning 

purposes becomes a more common practice in the broader education community, it is 

important for educators and researchers to understand why players would game the 

system and how such behavior influences learning.   

2 Context 

We propose to investigate gaming the system behaviors in a game called Newton’s 

Playground (NP) [6]. NP is a two-dimensional computer game designed to assess and 

support qualitative physics and persistence. The core mechanic of the game is to 

guide a green ball to a red balloon by drawing physical objects and simple mechanical 

devices (i.e., ramp, lever, pendulum, springboard) on the screen that “come to life” 

once drawn. We call these devices “agents of force and motion” since they trigger or 

change the direction of motion. There are four types of agents that are categorized in 

terms of unique features and underlying physics principles: ramp, lever, pendulum, 

and springboard.  

A ramp is any line drawn that guides a ball in linear motion, and it is commonly 

used for problems that require transfer of potential energy to kinetic energy. A lever 

rotates around a fixed point usually called a fulcrum or pivot point, and it is used to 

move the ball vertically. A swinging pendulum directs an impulse tangent to its direc-

tion of motion, which is used to exert a horizontal force. A springboard stores elastic 

potential energy provided by a falling weight, and is used to move the ball vertically.  

As the use of these agents provides evidence for students’ physics understanding, 

NP has a built-in evidence identification system that automatically categorizes (with > 

95% accuracy when compared with human ratings) the type of agent based on salient 

features of drawn objects by students. Even though there is no absolute correct or 

incorrect way of solving problems, they are “probable agents” of force and motion 

that experts (or the game designers) expect players to use in given problems. 

In the fall of 2012, we had 165 ninth graders play the game for around 4 hours 

(across a one-week time frame). We also administered pre- and posttests of physics to 

measure improvement of students’ qualitative physics as the result of playing NP. As 

part of the study, we observed that some players came up with various ways to exploit 

the system, and we categorize them as stacking lines, breaking the system, and cutting 

corners (Table 1). We define these types of solutions as gaming the system behaviors 

in NP because these solutions (a) exploit loopholes in the system, and (b) do not re-

quire application of appropriate physics principles.  
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3 

Table 1. Gaming the System in Newton's Playground 

Gaming the system  behaviors Features 

Stacking Players consecutively draw short lines right be-

low the ball to lift up the ball to the balloon.  

Players are likely to show this behavior when the 

balloon is above the ball. 

Breaking the system Players draw random lines across the given ob-

jects until the system crashes and acts randomly.  

Players are likely to show this behavior when ei-

ther the balloon is above the ball or the path to the 

balloon is constrained by obstacles 

Cutting corners Players draw a line quickly beneath the ball that 

spans over to the balloon.  

Players are likely to show this behavior when the 

ball is moving away from the balloon or the starting 

point of the ball is higher than the balloon.  

3 Research Questions 

The present study aims to address the following questions: 

1. How does gaming the system in NP influence players’ physics learning?

2. How does gaming the system in NP relate to players’ enjoyment of the game and

persistence?  

Our hypotheses are: 

1. For most students, gaming the system is negatively related to players’ physics

learning; 

2. For most students, gaming the system is negatively related to players’ enjoyment

of the game and persistence. 

4 Method 

First,  two human raters will replay (with the “level replay” function in the game) 

all log files of a set of 16 problems that are solved by over 60% of the students, and 

manually code occurrences of gaming the system behavior related to the three identi-

fied categories (i.e., stacking, breaking the system, and cutting corners). Second, we 

will identify three different subgroups of players in terms of frequencies of the gam-

ing the system behaviors (i.e., none, some, and a lot). Third, we will analyze differ-

ences among these subgroups in terms of physics learning (via pretest to posttest 

gains), enjoyment, and persistence. Note that we already have the data collected, and 

just need to conduct the observation of replay files, code the behaviors, and analyze 

the data.  
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5 Discussion and Implications 

To ensure that learners with varying abilities can all benefit from playing games 

that are designed for learning, we need to identify any subgroups of students who may 

become lost in the environment and simply try to “cheat through” the problems with-

out applying appropriate knowledge and skills. If our hypotheses are established, we 

will need to devise appropriate scaffolds in NP to minimize the gaming behavior and 

thus maximize learning and enjoyment. Potential scaffolds that may fit in NP include 

tutorial videos and visual aid function. For example, for the visual aid function, dotted 

lines will show up on the screen upon request, which provide students with clues for 

appropriate agents rather than having them get stuck and thus frustrated.  

However, considering NP is still a game, any decisions regarding scaffolds need to 

balance with features of good games. That is, we need to be careful about how much 

scaffolds we provide, and how they are presented to students because poorly designed 

scaffolds in the game may spoil engaging features of the game (e.g., challenge, con-

trol, and adaptive difficulty).  

In conclusion, gaming the system behaviors have not been fully investigated in the 

context of games for learning, and we first need to understand how these behaviors 

influence learning—i.e., are they always maladaptive or can they sometimes yield 

positive outcomes? We hope that this study will provide us with useful information 

about learners’ gaming the system behaviors in NP in relation to learning and enjoy-

ment, and also shed light on appropriate forms of scaffolding to be used to prevent 

such behaviors, if warranted. The findings from this study may also be of interest to 

researchers who are interested in gaming behaviors and possible scaffolding in 

OELEs.  
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