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Preface 
This workshop is intended to bring together researchers who are interested in 

simulated learners, whatever their role in the design, development, deployment, or 
evaluation of learning systems.  Its novel aspect is that it isn’t just a workshop about 
pedagogical agents, but is also concerned about other roles for simulated learners in 
helping system designers, teachers, instructional designers, etc.  As learning 
environments become increasingly complex and are used by growing numbers of 
learners (sometimes in the hundreds of thousands) and apply to a larger range of 
domains, the need for simulated learners (and simulation more generally) is compelling, 
not only to enhance these environments with artificial agents, but also to explore design 
issues using simulation that would be otherwise too expensive, too time consuming, or 
even impossible using human subjects.  The workshop aims to be broadly integrative 
across all possible roles for simulated learners. 
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Abstract. The needs of special education populations require specific support 

to scaffold learning. The design and use of intelligent tutoring systems (ITS) 

has the potential to meet these needs. Difficulty in the development of these 

systems lies in their validation due to the ethics associated in studying learners 

from this population as well as the difficulty associated with accessing members 

of this learner group. This paper explores the use of simulated learners as a po-

tential avenue for validating ITS designed for a special education population. 

The needs of special education learners are discussed. Potential avenues for 

employing simulated learners and simulated learning environments to test ITS, 

instructional materials, and instructional methods are presented. Lastly, the ex-

pansion of an educational game designed to develop emotion recognition skills 

in children with autism spectrum disorder is used to illustrate how simulated 

learning environments can be used to support the learning of these students. 

Keywords: Special Education, Ethics, Simulated Learners, Simulated Learning 

Environments 

1 Introduction 

Many intelligent learning environments have been shown to help learners who belong 

to the general population, but few existing systems have been shown to meet the 

needs of those who fall under the umbrella of special education [1]. Learners in this 

category have highly differentiated needs that are specified in an individual education 

plan (IEP) [2]. Their increased need for personalization and continuous reinforcement 

makes the argument for augmenting their education with intelligent tutoring systems 

(ITS) even stronger. However, this has not been done widely. 

Several factors may contribute to the lack of ITS use within special education. The 

lack of validation that has been performed on the systems for special education popu-

lations [1], the difficulty of integrating ITS into special education settings [3], and the 

difficulty of designing activities that ensure deep understanding may contribute to the 



lack of ITS that support this population. The variability of learner needs presents ad-

ditional challenges for system designers with respect to content development [3]. 

Furthermore, challenges that relate to the motivation, attitude, and social vulnerability 

of members of this population make it more difficult to design and validate systems. 

Developing systems for the special education population as a whole is difficult [4]. 

In addition to the above challenges, it may be difficult for designers to obtain ac-

cess to a sufficiently large sample of the population to ensure that their ITS is benefi-

cial in special education contexts. This is where the use of simulated learners and 

simulated learning environments can be advantageous since their use can mitigate the 

challenges presented by limited access to this vulnerable population and reduce the 

negative ethical implications of testing these systems on members of this population. 

It is important to look at the research on situated learning in order to understand the 

achievements in best practices and lessons from research on simulated learning. Criti-

cal to this research is the combination of immersion and well-designed guidance that 

supports the situated understanding of learners whereby they not only have a deep 

understanding of the particular concepts that are being targeted, but the learners are 

able to then generalize and apply these learned concepts to other contexts [5]. Re-

search shows that game-like learning through digital technologies is a viable tool 

across disciplines [6] and suggests that elements of game-like learning scaffold and 

guide learners towards a deep understanding of concepts. The on demand instruction 

of information that is vital to progress in the game is also important [5] and can be 

exploited to encourage learning. Simulations can include these elements and use 

stimuli to which special education populations react positively. Some stimuli that 

have been shown to increase student engagement include music, visual cues, and 

social stories [7]. Not only do these “strategies…help teachers increase engagement 

[but they] are vital for promoting positive outcomes for students” [7]. 

To support the argument for the use of simulated learners in this educational con-

text, we first describe the characteristics and needs of this population as well as the 

learning environments in which they can be found. Following this, we discuss the use 

of ITS by special education students, which includes student interactions with agents. 

After laying this groundwork, we discuss the ethical implications and potential bene-

fits to using simulated learners for validating ITS for use by special education popula-

tions. We then describe the potential uses of simulated learners and learning environ-

ments. This includes the description of an educational game, called EYEdentify, 

which was designed to develop emotion recognition skills in children with autism 

spectrum disorder (ASD). A discussion of how gaming principles and simulated envi-

ronments can be further employed to expand EYEdentify for the purposes of helping 

scaffold learners’ social interactions is provided.  

2 Special Education 

An introduction to the learning environments that exist in schools and the needs of 

learners who are classified as special education is presented. The use of agents and 

other forms of intelligent tutoring, within special education contexts, is then provided.  



2.1 Learners and Learning Environments 

These learners are either segregated into dedicated special education classrooms or 

integrated into classrooms whose majority population consists of learners from the 

general student body. Research has explored the design and integration of ubiquitous 

technology into special education classrooms [8], but few e-learning environments 

have been created to specifically support these students. 

The needs and abilities of this population are highly variable, which can make gen-

eralizability hard [9]. This variability can be used to argue for the importance of per-

sonalizing students’ learning materials, environments, and experiences, which is evi-

denced by the existence of IEP that detail the learner’s specific needs and the accom-

modations that can be used to help the learner succeed [2]. Some of these accommo-

dations include providing learners with additional time in order to complete tasks [1] 

or allowing learners to perform tasks using different modalities (e.g., oral responses 

rather than written ones) [2]. While these accommodations are necessary to ensuring 

the learner’s success, it can be difficult to provide the necessary support, especially in 

integrated classrooms. The use of ITS that better support the individual needs of these 

learners could help alleviate the teacher’s need to provide these supports.  

2.2 Simulated Learner and Agent Use 

While the use of agents within ITS used by special education populations has been 

studied, it appears that researchers and system developers are not simulating learners 

who have special needs. Nilsson and Pareto have instead used teachable agents within 

a special education context to help learners improve their math skills [3]. However, 

they experienced difficulty integrating the ITS into the classroom.  Whereas, Woolf et 

al. were able to integrate their ITS into a classroom that had a mixed demographic: 

the class consisted of both low and high performing students, and of those who were 

low-performing, one third had a learning disability [10]. In this case, students inter-

acted with an agent who played the role of a learning companion in order to support 

the learner’s affective needs.  It was found that this approach was especially benefi-

cial to the low-performing students in the study, which may indicate the potential that 

this system holds for helping many of the learners who fall under the special educa-

tion umbrella. Other work has also shown that interactions with agents within an ITS 

can improve or maintain learner interest and motivation [1]. 

3 Ethics 

Given the vulnerable nature of this population, it is important that we not increase the 

risk that they are exposed to by introducing them to ITS or other learning techniques 

that have not been properly vetted since these could threaten the emotional well-being 

of learners or their learning success [11]. The use of simulated learners can help en-

sure that these systems are properly tested before we expose special education learn-

ers to them. Simulated learners can help teachers, instructional designers, and system 

developers meet the ethical guidelines of professional bodies by providing evidence 



of the limitations and appropriateness of the instructional methods used by systems or 

of the system itself [12]. 

4 Potential for Simulated Learner Use 

We foresee two potential uses for simulated learners within a special education con-

text both of which have been explored within other contexts. The first is during the 

development and testing of ITS [13, 14], and the second is for teacher training [13]. 

Using simulated learners in these ways provides developers and instructors with ac-

cess to learners in this population and prevents any potential harm that could result 

from experimenting with members of this population. However, it may create a false 

sense of the validity and usefulness of different systems and instructional techniques, 

especially when we lack a full understanding of the abilities and symptomology of 

some members of this population (e.g., those with Phelan-McDermid Syndrome). 

Generalizability is difficult to perform with this population [9], but some level of 

generalizability is required if a system is to be used by many people. Unfortunately, 

current design methods, such as participatory design, fail to address how the system's 

use and design should change over time. Furthermore, most users are unable to pre-

dict how they will use a system until they have integrated that system into their envi-

ronment [15]. Carrying these challenges into the special education domain increases 

their severity because of the additional communication barriers that may exist be-

tween system designers and learners with special needs [4]. While observation is a 

component of many design methods, the lack of access to this population when com-

bined with the communication challenges that exist reduces the feasibility of employ-

ing many of the more traditional user-centered design techniques.  

Using simulated learners could benefit system designers and developers by allow-

ing them to evaluate a system with various members of the special education popula-

tion. This could reduce demands on a vulnerable population while allowing for some 

level of system validation to be performed. Furthermore, the use of simulated learners 

would allow systems to be tested with a far greater variety of learner types in order to 

identify where the system may or may not be beneficial. If the system were web-

based, the simulated learners could be implemented using a Selenium test suite based 

on behavioural models of the system's target learners. 

To effectively use simulated learners in this context, it is important to create these 

learners using different and competing theoretical models of their behaviours and 

abilities. This also alleviates some of the concerns that have been expressed over the 

use of simulated users when testing adaptive systems [16]. The source of these mod-

els can be teachers or special education experts since their mental models might in-

form good stereotype-based models of learners that capture general behaviours which 

are grounded in the expert's classroom experience. For example, haptic feedback can 

be used to reinforce certain behaviours (e.g., pressing a button) in children with ASD. 

However, we would argue for also including models from other sources since the 

above experts are in short supply and cannot provide sufficient diversity in the models 

to ensure that systems are adequately tested for a general special education popula-



tion. Simulated learners can be created from the cognitive models that are currently 

described in the educational psychology literature or through the application of educa-

tional data mining and learning analytics techniques to the logs of ITS usage where 

low performing and special education students were included in the classroom inter-

vention. An example from the educational psychology literature could consider mod-

els of attention deficit hyperactivity disorder (ADHD), which include the amount of 

hyperactivity and inattention that a learner has, to create simulated students that be-

have in a way that is consistent with both the inattention that is known to affect indi-

vidual outcomes and the hyperactivity that can affect the classroom environment for 

all students. Thus, allowing teachers to explore strategies that minimize the impact of 

both of the behaviours that characterize students with ADHD [17]. 

The diversity of models on which the simulated learners are based may help com-

pensate for the inaccuracies that are inherent to modeling techniques, therefore, reduc-

ing the need for simulated learners to have high-fidelity cognitive models.  Especially, 

since there is an incomplete understanding of the cognitive processes of all those who 

fall under the umbrella of special education, as is demonstrated by research in math-

ematics and learning disabilities [18]. 

That said, simulated learners that are based on these models could be used to vali-

date the design of learning materials and to ensure their effectiveness or comprehen-

sion [13, 14]. Teachers could use simulated learners to test learning materials for their 

ability to increase learner engagement across a variety of contexts [7] before trying 

the materials on learners in their class. This would give teachers the opportunity to 

refine their teaching materials and confirm their suitability for students in the class. 

Simulated learners can also be used to help prepare teachers either during pre-

service training or before a new school year begins when the teacher is preparing for 

his/her incoming students [13]. The use of agents who play different types of special 

education learners reduces the need to worry about the possible negative consequenc-

es that mistakes would have on learners [19]. This use of simulated learners also holds 

the potential to reduce teacher errors since teachers can try new techniques with the 

simulated learners and learn from those experiences, which may reduce the risk of 

their committing errors with live learners. 

5 Potential for Simulated Learning Environment Use 

While simulated learning environments can pose a threat to learning because of the 

complexity of the learning experience [20], they still hold the potential to benefit 

learners with special needs. Simulated environments allow learners to take risks in 

order to develop a deeper understanding of the situations they encounter [5]. This can 

increase learner awareness of potential situations that could be encountered when 

interacting with others. Ideally, simulated learning environments would be used to 

help the learner develop and transfer skills into the real world by gradually increasing 

the external validity of the tasks being performed. 

Simulations allow system designers to ensure that the problems or activities being 

studied resemble those that learners experience outside of the simulation [1] and they 



allow for the gradual increase in the complexity and ecological validity of tasks [21]. 

This means that learners can begin their learning activities in a simpler environment 

that is safe and progress towards more realistic situations, enabling the use of van 

Dam's spiral approach, where learners encounter a topic multiple times at increasing 

levels of sophistication [22]. This can help learners transfer their developing skills 

into the real world. Additionally, the use of simulations accessible on different tech-

nologies can shift learner dependence on experts to technology whereby learner use of 

the technology can help learners gain a sense of independence and begin to develop 

the skills required to expand and extend their interactions to the real world [23]. We 

illustrate this trajectory through a discussion of a mobile game that was designed to 

help children with autism spectrum disorder learn to recognize emotions. 

5.1  EYEdentify: An Educational Game for Emotion Recognition 

EYEdentify is a mobile application for the Android platform that is designed to de-

velop the emotion recognition skills of children with ASD since these are lacking. 

Previous technologies that have tried to teach this skill to children with ASD have 

primarily focused on the use of videos to model emotions for the learner [24]. Current 

research focuses on social skill development through the use of interventions that use 

a video series to develop social skills by exploiting the relationship between facial 

expressions and emotion [4, 25]. Emotion recognition research suggests the most 

important features of the face necessary to correctly identify emotions are the eyes 

and the mouth [26]. Considering research on social skill development and advance-

ments in portable technology, a mobile application that can support anytime-

anywhere support to children with this deficit is timely. 

EYEdentify is a game that uses a basic learner model to provide a flexible inter-

vention in the form of an engaging game. It has an open learner model that can show 

the child's progress to parents, caregivers, teachers, and specialists. The first version 

of this application incorporates four emotions (i.e., happy, sad, frustrated, and con-

fused) into a matching game that progresses through different levels (Fig. 1). There 

are three types of images that are used in this game to help scaffold the child’s learn-

ing: cartoon robot faces, real faces that are superimposed on robot faces, and photo-

graphs of actual faces. The cartoon robot faces are designed to emphasize the eyes 

and mouth. The superimposed faces are designed to activate the child’s knowledge of 

focusing on the eyes and mouth to correctly identify the displayed emotions while 

maintaining the scaffold of the robot head. The photograph of an individual making a 

particular expression is used to activate the knowledge from the previously superim-

posed images to correctly identify the emotions. Difficulty increases with respect to 

the type of emotion that is incorporated into game play and the types of images that 

are used. Positive feedback is provided to the child throughout the game to encourage 

continuous play. The game also has a calming event that is triggered by the accel-

erometer when the mobile device is shaken aggressively. The calming event increases 

the volume of the music that is being played and prompts the child to count to ten. 

The child is then asked whether or not s/he wants to continue playing the game.  



The mobile application provides the ability to customize game play by incorporat-

ing personalized feedback and images. Users can customize feedback by typing a 

comment and recording an audio message before adding this feedback to the sched-

ule. Image customization uses the front camera of the device to capture individuals 

parroting the facial expression represented on the robot prompt. As children progress 

through the levels, they are rewarded with parts to assemble their own robot.  

The current version focuses on developing emotion recognition skills for four of 

the fifteen basic emotions identified by Golan et al. [25]. The addition of the remain-

ing eleven emotions could be used to extend game play. Currently, the mobile appli-

cation is functional; however, more emotions are being incorporated and iOS versions 

are being developed before releasing EYEdentify on Google Play and the App Store.   

5.2 Expanding EYEdentify to Include a Simulated Learning Environment 

The expansion of EYEdentify to include a simulated learning environment draws on 

Csikszentmihalyi's definition of flow and research on gaming. Flow is described as 

the experience of being fully engaged in an activity where an individual is “so in-

volved…that nothing else seems to matter” [27]. This is derived from activities where 

a person’s skills are matched to the challenges encountered [27]. For learners, this 

means that they will be in a mental state that keeps them motivated to stay involved in 

a particular activity. Research in gaming and game design incorporates these psycho-

logical underpinnings whereby elements of a game seek to cultivate and support the 

player’s active engagement and enhanced motivation [28]. In educational games, 

these elements are employed to scaffold learning just-in-time and provide instructors 

with the ability to adapt the system to the specific needs of the learner [29].  

EYEdentify currently provides a matching game with rewards that are self-

contained within the mobile application. Preliminary trials indicate that it keeps learn-

ers involved in the activity of identifying emotions for long periods of time. These 

 

Fig. 1. The gameplay screen with the correct responses identified (surrounded in green). 



trials parallel the findings of research that used a video intervention program known 

as “The Transporters” to develop the social skills of children with ASD [30].  

EYEdentify’s game play can be expanded into simulated learning environments to 

move players beyond the acquisition of emotion recognition skills toward the devel-

opment of social skills. In creating game-based simulations for learners to use, the 

capacity to scaffold their learning within game play and support the development of 

transferable skills to the real-world increases.  

There are several ways to expand game play into a simulated learning environ-

ment. All possibilities would require the mastery of basic emotion recognition and 

could involve levels of progressive difficulty that incorporates these emotions into 

depictions of social situations. The front camera of the mobile device could be used to 

scaffold the recognition of emotions by way of augmented reality, as could the recent 

introduction of Google glass. Avatars that represent individuals from the learner’s 

day-to-day life could be used by learners to practice particular social situations. Addi-

tionally, game play could incorporate depictions of situations that model different 

social interactions. This could then be incorporated with a Sims-like environment 

where learners would have to identify the emotion of the character that they are inter-

acting with and demonstrate the appropriate behaviour or emotional response. Specif-

ic to keeping learners engaged, the addition of an emotion recognition system that can 

detect the learner’s emotion from the front camera and keep track of their emotion 

when playing the game to determine that learner’s level of engagement would be 

useful.  Through the development of these possibilities, EYEdentify has the potential 

to enhance learners’ emotion recognition and social skill development in a way that 

enables the learner to transfer these skills to their day-to-day encounters.  

6  Conclusion 

The use of simulated learners and learning environments within special education 

contexts holds great potential for improving the quality and applicability of ITS use 

by members of this population. Simulated learners can be used to test learning materi-

als, learning methods, and ITS to ensure their appropriateness for the members of this 

population, who have highly variable needs. The use of simulated learners and learn-

ing environments can be further exploited for teacher training. In addition to this use, 

simulated learning environments can be used to help learners who have been classi-

fied as having special needs to transfer their knowledge and skills to their everyday 

lives. The potential for members of this population to use simulated learning envi-

ronments was illustrated through an example of an educational game, EYEdentify, 

that is used to help children with autism spectrum disorder improve their ability to 

recognize emotions. The described potential expansions of this game show how dif-

ferent approaches to simulated learning environments and the use of augmented reali-

ty can be used to help learners transition between the simulated world and the one 

they encounter every day.  
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Abstract. We briefly describe three approaches to simulating students to devel-
op and improve intelligent tutoring systems.  We review recent work with simu-
lated student data based on simple probabilistic models that provides important 
insight into practical decisions made in the deployment of Cognitive Tutor 
software, focusing specifically on aspects of mastery learning in Bayesian 
Knowledge Tracing and learning curve analysis to improve cognitive (skill) 
models.  We provide a new simulation approach that builds on earlier efforts to 
better visualize aggregate learning curves. 

Keywords: Knowledge tracing, learning curves, student modeling, Cognitive 
Tutor, simulation, simulated students, mastery learning 

1 Introduction 

There are at least three general approaches to simulating students for the purposes 
of improving cognitive (skill) models and other features of intelligent tutoring sys-
tems (ITSs).  One approach, generally connoted in discussions of “simulated” stu-
dents or learners, employs aspects of cognitive theory to simulate students’ learning 
and progression through ITS problems (e.g., via machine learning or computational 
agents like SimStudent [2]).  Another class of simulations makes use of relatively 
simple probabilistic models to generate response data (i.e., Bayesian Knowledge 
Tracing [BKT] [1]) intended to represent a (simulated) student’s evolving perfor-
mance over many practice attempts. Third, there are data-driven approaches that do 
not easily fit into either of the first two categories.   

In this work, we explicate and provide examples of each approach and briefly de-
scribe Carnegie Learning’s Cognitive Tutors (CTs) [3]. We then focus on the second 
approach and review recent work on simulations of student learning with simple 
probabilistic models. These simulation studies provide novel insights into a variety of 
features of CTs and their practical deployment.  



 CTs implement mastery learning; mathematics content is adaptively presented to 
students based upon whether the tutor has judged that a student has mastered particu-
lar skills.  Mastery is assessed according to whether the tutor judges that the probabil-
ity that a student has mastered a particular skill exceeds a set threshold. We review a 
simulation study that provides for best and worst-case analyses (when “ground truth” 
characteristics of simulated learner populations are known) of tutor skill mastery 
judgment and efficient student practice (i.e., adaptively providing students with op-
portunities to practice only those skills they have not mastered). This study not only 
provides justification for the traditionally used 95% probability threshold, but it also 
illuminates how the threshold for skill mastery can function as a “tunable” parameter, 
demonstrating the practical import of such simulation studies.     

Finally, learning curves provide a visual representation of student performance on 
opportunities to practice purported skills in an ITS. These representations can be used 
to analyze whether a domain has been appropriately atomized into skills.  If opportu-
nities correspond to practice for a single skill, we expect to see a gradual increase in 
the proportion of correct responses as students get more practice opportunities.  If, for 
example, the proportion of students responding correctly to an opportunity drastically 
decreases after three practice opportunities, it seems unlikely that the opportunities 
genuinely correspond to one particular skill. Turning to the third, data-driven ap-
proach to simulating students, we provide a new method to visualize aggregate learn-
ing curves to better drive improvements in cognitive (skill) models used in CTs, This 
approach extends recent work that explores several problems for utilizing learning 
curves aggregated over many students to determine whether practice opportunities 
correspond to a single skill. 

2 Cognitive Tutors  

CTs are ITSs for mathematics curricula used by hundreds of thousands of K-12 
and undergraduate students every year.  Based on cognitive models that decompose 
problem solving into constituent knowledge components (KCs) or skills, CT imple-
ments BKT to track student skill knowledge.  When the system’s estimate of a stu-
dent’s knowledge of any particular skill exceeds a set threshold, the student is judged 
to have mastered that skill. Based on the CT’s judgment of skill mastery, problems 
that emphasize different skills are adaptively presented so that the student may focus 
on those skills most in need of practice. 

3 Three Approaches to Simulating Learners 

There are at least three general simulation methods used to model student or learn-
er performance.  One simulation strategy, based on cognitive theories such as ACT-R 
[4], explicitly models cognitive problem-solving processes to produce rich agent-
based simulated students. The SimStudent project ([2], [5]), for example, has been 
developed as a part of a suite of authoring tools to develop curricula for CTs, called 
Cognitive Tutor Authoring Tools (CTAT) [6]. SimStudent learns production rules 



from problem-solving demonstrations (e.g., an author providing simple demonstra-
tions of problem solutions or via ITS log data). These human-interpretable production 
rules correspond to KCs that comprise cognitive models vital to CTs.  SimStudent 
aims to simplify development of new CT material by automating the discovery of KC 
models in new domains via a bottom-up search for skills that potentially explain the 
demonstrations. 

Second, there are numerous probabilistic methods that model task performance as a 
function of practice, according to various task and learner-specific parameters.  One 
may instantiate numerous such models, with varying parameters, and sample from the 
resulting probability distributions to obtain simulated performance data for an entire 
hypothetical learner population. 

One common example is a Hidden Markov Model (HMM) with two latent and two 
observable states, that can serve as a generative BKT model, using parameters speci-
fied according to expert knowledge or inferred by a data-driven estimation procedure.  
Two hidden nodes in the HMM represent “known” and “unknown” student 
knowledge states.  In practice, of course, student knowledge is latent.  Simulated stu-
dents are assigned to a knowledge state according to BKT’s parameter for the proba-
bility of initial knowledge, P(L0), and those in the “unknown” state transition to the 
“known” state according to the BKT parameter for the probability of learning or 
transfer, P(T).  Simulated, observed responses are then sampled according to BKT 
parameters that represent the probability of student guessing, P(G) (i.e., responding 
correctly when in the unknown state) and slipping, P(S) (i.e., responding incorrectly 
when in the known state), depending upon the state of student knowledge at each 
practice opportunity. 

Contrary to her real-world epistemological position, simulations generally allow an 
investigator to access the student’s knowledge state at each simulated practice oppor-
tunity.  This allows for comparisons between the “ground truth” of skill mastery and 
any estimate derived from resulting simulated behavior.  Clearly, richer cognitive 
agents, such as SimStudent, provide a more complete picture of the student’s cogni-
tive state at any point. 

Simpler probabilistic models represent student knowledge of a skill with a single 
state variable, so they correspondingly scale better to larger scale simulations of 
whole populations. While a probabilistic model only requires a reasonable distribution 
over initial parameters, richer cognitive models may require training on a great deal of 
detailed, behavioral or demonstration data.  Nevertheless, cognitive model-based 
simulations allow us to investigate issues like timing (i.e., response latency), sensitivi-
ty to input characteristics, and error patterns in learner responses. 

There are many cases in which a relatively simple probabilistic model may be of 
utility, despite its impoverished nature.  A simplistic representation of student 
knowledge provides an ideal situation to test the performance and characteristics of 
inference methods using data from a known generating process and parameters.  One 
might, for example, compare the point at which simulated students acquire knowledge 
of a skill to the point at which the CT judges the student to have mastered the skill.  
The approach thus allows for students of “best” and “worst” case scenarios with re-
spect to the relationship between how the CT models students and the actual make up 



of (simulated) student populations.  We can better understand the dynamics of the 
student sub-populations we inevitably face in practice by simulating data from diverse 
sub-populations, the make up of which we can specify or randomize in various ways.  
Furthermore, we can simulate student performance (sometimes augmenting available 
empirical data) both with and without mastery learning (i.e., students being removed 
from a population because they have mastered a skill) on learning curves constructed 
from aggregate data. 

Previous work [7] explored a third, data-driven simulation method that “replays” 
empirical student performance data through CT in order to estimate the impact of a 
change in BKT parameters in a more substantive way. For each KC that occurred in a 
given problem, we sampled the next observed response on that KC from the sequence 
actually observed from a real student.  These responses would then drive updates to 
CT’s cognitive model, knowledge tracing, and the problem-selection mechanism.  If 
more data were required than were observed for a given student, further observations 
were sampled from a BKT model initialized to the state inferred from the student’s 
actions thus far.  By repeating this process for all students in the observed data set, we 
could obtain estimates of the number of problems students would be expected to 
complete if a change to the cognitive model were implemented. 

This method has the advantage of preserving characteristics of real student data ra-
ther than resorting to a theoretical model of student performance.  However, it does 
make several assumptions about the reproducibility of that behavior under the hy-
pothesized changes.  Specifically, it assumes that the observed sequence of cor-
rect/incorrect responses would not change even given a different selection of prob-
lems, potentially emphasizing different KCs.  This assumption may be justified if we 
believe we have complete coverage of all KCs relevant to the task in question in the 
cognitive model and that all KCs are truly independent of each other. 

While simulation methods based on rich cognitive theory and data-driven re-play 
of empirical data provide many opportunities for future research, we focus in this 
paper on simple, probabilistic simulations in the context of the BKT framework.  

4 Substantive Measures of Efficient Student Practice 

Before we discuss how the BKT mastery threshold probability functions as a “tun-
able” parameter in an ITS like the CT, we provide “substantive” quantification of 
goodness of fit of cognitive/skill models for CTs beyond mere RMSE of prediction 
(i.e., beyond the extent to which models can predict whether students will respond 
correctly to particular practice opportunities) [8-11].  New error or goodness of fit 
measures are countenanced in terms of efficient student practice, based on the number 
of practice opportunities (i.e., “over-practice” or “under-practice”) we might expect a 
student to experience in a CT. Over-practice refers to the continued presentation of 
new practice opportunities, despite the student’s mastery or knowledge of the relevant 
KC.1 Student “under-practice” instances are those in which a student has yet to 
                                                             
1 One exception is an experimental study [11] that reports increased efficiency by deploying 

parameters estimated using a data mining method called Learning Factors Analysis (LFA).  



achieve knowledge of a KC, and yet the mastery learning system has judged the stu-
dent as having mastered it, ending the presentation of further learning opportunities.  
From estimates of expected under- and over-practice, one can calculate other mean-
ingful measures of students gains and losses, such as time saved or wasted.   

Some of this work [8, 9] uses empirical data to estimate the extent of under-
practice and over-practice we might expect students to experience.  Specifically, the 
expected numbers of practice opportunities it takes a student to reach mastery when 
parameters are individualized per student are compared to the expected practice when 
a single (population) set of parameters is used to assess all students.  One individuali-
zation scheme used to study under and over-practice estimates all four BKT parame-
ters, per student, from response data over all relevant skills (i.e., each student receives 
one individualized quadruple of BKT parameters for all KCs) [8].  Another approach 
[9] only individualizes P(T) for each student based on both per-student and per-skill 
components estimated from observed data [12].  Both individualization schemes pro-
vide for substantive gains (compared to using a set of population parameters to assess 
all students’ progress to mastery) in the efficiency of practice (i.e., fewer expected 
under and over-practice opportunities) as well as better prediction performance 
judged, in the standard way, by a metric like RMSE. 

5 Idealized Performance of Mastery Learning Assessment  

Now we address how BKT performs with respect to efficiency of practice in ideal-
ized cases in which the composition of student (sub-) populations is known.  Simula-
tion studies can shed light on how BKT performs when mastery learning parameters 
used by the CT run-time system exactly match those of the generating model (i.e., the 
best case), and in worst cases in which student parameters either maximally differ 
from mastery learning parameters or vary at random for each student. 

Recent work addresses these issues by adopting a probabilistic simulation regime 
[10].  Since we can track the point at which a simulated student acquires knowledge 
of a skill, we are able to compare this to the opportunity at which the mastery learning 
system first judges it to be acquired.  Simulations were run for fourteen skills, a subset 
of those found by [13] to be representative of a substantial portion of skills in de-
ployed CT curricula, across thousands of virtual students.   

Even in idealized, best case scenarios (i.e., when parameters used to assess skill 
mastery perfectly match simulated student data-generating parameters), for most 
skills and a large number of students, we expect there to be one to four “lagged” prac-
tice opportunities between the point at which simulated students transition to mastery 
and the point at which the BKT run-time system judges mastery.  That is, in general, 
even when a student population is modeled “perfectly,” and given the traditional set-
ting of the probability threshold for mastery at 95%, most students should be expected 
to see at least a few opportunities beyond the point of skill acquisition. That some 
“over-practice” may be inevitable provides a relevant context within which to consid-
                                                                                                                                                  

Efficiency is operationalized as decreased time required to work through material in the Ge-
ometry CT without decreasing overall learning. 



er empirically driven results of [8, 9]. Although a certain amount of lag may be inher-
ent in the nature of BKT, we seek to establish a range for the “acceptable” lag, and to 
better appraise efficiency of practice [10]. 

6 Mastery Learning Threshold as a “Tunable” Parameter 

In addition to lagged opportunities and over-practice, situations in which students 
under-practice skills are important to consider.  Given the possibly inevitable lag be-
tween skill acquisition and mastery judgment, simulations [10] have also been used to 
explore how the mastery probability threshold might be “tuned” to influence the 
trade-off of over-practice and under-practice experienced by students in mastery 
learning systems like CTs. 

  Pre-mature mastery judgments can lead, for example, to students being moved 
along by the CT to problems that emphasize new KCs without having mastered pre-
requisite KCs.  Other things held equal, simulations in [10] provide that pre-mature 
mastery judgment is more likely to occur in worst-case scenarios, when mastery-
learning parameters do not match parameters for sub-populations of simulated stu-
dents.   

Simulations in [10] also establish that the mastery-learning threshold can function 
as a tuning parameter, partially governing the trade-off between the expected propor-
tion of students pre-maturely judged to have reached skill mastery and the number of 
over-practice opportunities they are likely to experience.  As the threshold probability 
is increased, the proportion of students assessed as having pre-maturely mastered 
skills decreases while the proportion of those that are exposed to practice opportuni-
ties after skill acquisition increases (along with the number of lagged and over-
practice opportunities, i.e., those beyond a calculated acceptable lag they experience). 

The results of [10] show that the traditionally used 95% threshold seems to provide 
for a “conservative” tutor that is more likely to present opportunities after skill acqui-
sition rather than under-practice.  Depending upon course design and practice re-
gimes, the mastery-learning threshold might be manipulated to important, practical 
effect.  For example, pre-mature mastery judgments might be acceptable in larger 
numbers when there is a mixed-practice regime that will allow students to practice 
KCs later in the curriculum. 

7 Using Simulations to Illuminate Learning in Learning Curves 

Learning curves provide a visual representation of student performance over op-
portunities to practice skills.  For each (purported) skill, we construct a learning curve 
by plotting opportunities (i.e., 1st, opportunity, 2nd opportunity, and so on) on the x-
axis and the proportion of students that provide correct responses at each opportunity 
on the y-axis. Aggregated over real-world student practice opportunity data, such 



curves provide means by which to visually2 inspect whether opportunities genuinely 
correspond to practice of one particular skill.  If opportunities correspond to one par-
ticular skill, we expect a gradual increase in the proportion of students that respond 
correctly with increasing practice.  Generally, for well-modeled skills (and a variety 
of other cognitive tasks), it is thought that such a plot should correspond roughly to a 
power law function (i.e., the power law of practice [14]), though this point is not 
without controversy [15].  Recent research [16-17] demonstrates how some aggregate 
learning curves can distort the picture of student learning. Aggregate learning curves 
may, for example, appear to show no learning, when, in fact all students are learning 
at different rates.  Others may provide for a small rise in probability of correct re-
sponse initially but then “drop,” as if students were forgetting, even when individual 
students are consistently mastering their skills. 

The learning curve of Fig. 1 illustrates aspects of both problems, with a relatively 
flat portion, followed by a drop, after a small increase in probability correct from its 
initial value.  The red line, representing the size of the student population at each op-
portunity, illustrates that BKT is determining that students are mastering the skill 
relatively quickly. 

 
Fig. 1. Empirical Learning Curve for Skill “Select form of one with numerator of one”; the blue 

line represents empirical data plotted as percentage of correct responses, and the black line 
represents a fitted power function.  The red line provides the size of the student population. 

Two ways to re-visualize problematic, aggregated learning curves have been suggest-
ed [16].  One is to provide multiple learning curves (on the same plot) for individual 
                                                             
2 Developers at Carnegie Learning also deploy several data-driven heuristics (that correspond to 

various visual features of learning curves) to analyze our large portfolio of KCs (i.e., several 
thousand KCs over several mathematics CT curricula) and observed student data to draw at-
tention to those KCs that may require revision in our deployed cognitive models. 
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“segments” of students based upon how many opportunities students, in observed 
data, take to reach the mastery learning threshold for a skill.  Such segmented learning 
curves are provided with the same x-axis and y-axis as standard learning curves (i.e., 
practice opportunity count on the x-axis and, e.g., percentage of student correct re-
sponse on the y-axis).   

The second approach suggested by [16] has the analyst plot “mastery-aligned” 
learning curves.  In such learning curves, students are also segmented according to the 
number of opportunities required to reach mastery, but the end-point of the x-axis 
corresponds to the opportunity at which students’ reach mastery (m) and moving left 
along the x-axis corresponds to the opportunity before mastery (m-1), the second to 
last opportunity before mastery (m-2), and so on.   

Further work [17] provides a mathematical explanation, along with proof-of-
concept simulation studies based on HMMs, for the dynamics of aggregate learning 
curves to explain how both mastery learning itself and differing student sub-
populations, when aggregated, can contribute to learning curves that do not show 
learning (or manifest other peculiar, possible deceptive, phenomena like “negative” 
learning). 

We illustrate an alternative to [16] by providing a method that relies on probabilis-
tic simulation to construct aggregate learning curves that better represent learning in 
empirical student data.  Specifically, we “pad” empirical data for student skill oppor-
tunities with simulated data to mask the effects of attrition due to mastery learning 
and possibly “reveal” student learning.  Student opportunity data are generated with 
the same parameters used to track student progress and the probability of student 
knowledge estimated at the point at which the student crossed the mastery threshold.  
Such simulations provide us data after a student no longer receives practice opportu-
nities for a particular skill because they have been judged as having achieved mastery. 

For the aggregate learning curve of Fig. 1, the “padded” learning curve is Fig. 2.  
The fitted power-law slope parameter decreases from -0.042 to -0.363 (indicating 
more learning), and the goodness-of-fit of the power law function (R2) increases from 
0.0571 to 0.875.  We apply the method to 166 skills identified3 by [16] as possibly 
problematic in the Cognitive Tutor Algebra I (CTAI) curriculum.  We find an im-
provement (i.e., power-fit parameter decreases from above -0.1 to below -0.1, a crite-
rion deployed by [16]) for 98 skills (59%).  While this method provides an improved 
visualization and understanding of fewer skills than the disaggregation procedures 
suggested by [16], this seems to provide evidence of the great extent to which mastery 
learning attrition obfuscates evidence for student learning. 

 Importantly, our simulation method does not eliminate the early dip in the learning 
curve at opportunity 3 when little attrition has yet to take place, but only masks the 
effects of attrition due to mastery learning.  Such an approach focuses largely on a 
better representation or visualization of the “tail” of aggregate learning curves.  This 
                                                             
3  These skills were chosen because the over-whelming majority of students are judged to 

eventually master them (i.e., CT “thinks” the students are learning); they are not pre-
mastered (i.e., P(L0) < 0.95); they do not show learning in their aggregate learning curve 
(i.e., power-law fit parameter > -0.1); aggregate learning curves for these skills do not have 
multiple maxima; and we have data for at least 250 students for these skills [16]. 



allows us to focus on other features of the learning curve that may indicate ill-
modeled KCs in a cognitive model, software bugs, and other possible problems. 

 

 
Fig. 2. Simulation-Padded Learning Curve for Skill “Select form of one with numerator of one”   

8 Summary 

We briefly reviewed several methods for simulating learners.  We focused on ways 
in which simple probabilistic models, in contrast to methods that rely on rich cogni-
tive theory, can be used to generate student performance data to help drive practical 
decision-making about CT deployment, focusing first on the mastery threshold proba-
bility of BKT as a tunable parameter to determine aspects of efficient practice.  Then 
we introduced a new method for visualizing aggregate learning curves that relies on 
both empirical and simulated data that helps to mask the bias introduced by mastery 
learning attrition.  Future work will further explore these methods, new simulation 
regimes, and their practical import. 
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Abstract. Simulation modelling helps designers to keep track of many
possible behaviours in a complex environment. Having a technique to
simulate the effect of peer impact on learning allows designers to test the
social effects of their educational software. We implement an agent-based
simulation model based on the ecological approach (EA) architecture [9].
The model considers learner attributes, learning object attributes and
two styles of peer impact to explore the effects when learners are either
positively or negatively impacted by high achieving peers. In this study,
we observe different patterns of behaviour based on the style of peer
impact and by limiting simulated learners’ access to information (the
EA metadata). Gaining understanding of these patterns will inform our
future work on recommending sequences of learning objects (LOs).

Keywords: simulated learning environments, simulated learners, eco-
logical approach, instructional planning

1 Introduction

Before taking an action in a learning environment, it is important for an intel-
ligent tutoring system (ITS) to have some way of estimating the likelihood that
the action will be successful, i.e. that it will benefit the learner(s) involved. To
compute such an estimate, there are many dimensions to consider such as: the
nature of the content being learned, the pedagogical style of the environment,
learning goals, individual learner characteristics, and social factors such as how a
learner’s own performance can be influenced by knowledge of peer performance.
Such complexity is often managed through the use of models.

Simulation modelling can be used by instructional developers for testing their
systems; this was identified by VanLehn, Ohlsson and Nason [11] in a survey of
possible uses of simulated students. One example is SimStudent by Matsuda et
al. [8] which can be used by designers to explore through simulation the effects of
various decisions on cognitive tutor design. Whether a model is used “internally”
(by an ITS to compute the next action) or “externally” (to evaluate a system de-
sign), a challenge remains: How does the model estimate the amount of learning
that occurs when a learner interacts with a Learning Object (LO)? In particu-
lar, we wanted to explore the impact on learning when learner performance is
influenced by the performance of peers. Some learners may become encouraged



when observing high peer achievement and perform even better than they would
have otherwise. Other learners might become discouraged in the same situa-
tion and perform even worse. Having a technique to simulate the effects of peer
performance would allow instructional developers to test social effects of their
designs. In this paper, we use simulation to explore the behaviours exhibited by
two different reactions to peer impact.

We describe our approach in Section 2, followed by the simulation study in
Section 3. It is possible to simulate many different kinds of educational software
in the ecological approach (EA) architecture [5], and then test the simulation
under various conditions to get insight into issues the designer is interested in.
Because our model is implemented in the EA architecture, our approach for mod-
elling peer impact can be used across many different styles of learning systems.
The data to feed our simulation is synthetic, but could, itself, be modelled on
data extracted from actual learner behaviour [5]. We follow with a description
of ongoing research that uses simulation for testing and developing a method for
recommending sequences of LOs, and conclude with a discussion of our findings.

2 Model Structure

In another paper [5], we have argued that it is not necessary to model every
detail of the learning process, but that systems can be tested in a simulation
that captures only the most relevant characteristics for a given purpose. There-
fore, we take an approach that lets an instructional developer choose different
dimensions – such as attributes of the learning objects, aspects of the pedagogi-
cal environment, attributes of the learner – and assign weights to each dimension
according to the priorities of the developer. This section describes the structure
of the simulation model so as to provide background for the experiment around
peer impact, described in Section 3.

The EA architecture [9] provides a way to record metadata about learner
interactions with LOs. As learners interact with LOs, any information that is
known about the learner at the time of the interaction can be saved as metadata
and associated with the LO. The EA assumes that each learner is represented by
a learner model that contains static attributes (characteristics) as well as other
data gathered as they interact with the LOs (episodic).

We developed an agent-based simulation model with very simple abstractions
of learners and LOs. Each learner agent has an attribute, aptitude-of-learner, a
number between (0,1), which we use to model the range of aptitudes (low to high)
different learners have for a given subject matter. In our model, this attribute is
assigned at the start of the simulation and does not change, but in future work we
plan to create more sophisticated simulations where this attribute is not static.
The simulated LOs have an attribute to represent difficulty level, which is also a
number between (0,1) where higher values represent more difficult material. The
simulated LOs are arranged into a random directed acyclic graph to represent
prerequisite relationships between the LOs.



The model execution revolves around an atomic action: the learner’s interac-
tion with a LO. This action might occur hundreds or thousands of times during
a simulation run, thus creating a multitude of EA metadata from which mea-
surements can be taken. In related work [5], we introduce the term evaluation
function to describe the function that computes the degree of success as result
of an interaction between a learner and a LO. We will use the term P[learned] to
describe the value that is generated by the evaluation function, i.e. the “proba-
bility that the learner learned the LO”, or the “system’s belief that the learner
knows the LO”. The P[learned] value is included as part of the EA metadata
that is associated with LOs after learners interact with them.

Our evaluation function is a weighted sum, where each term deals with a
dimension of learning to be considered. Each dimension of learning is calculated
with a mini function. For example, suppose LearnerA were a novice with aptitude-
of-learner=0.1. Next, suppose LOX were a fairly easy LO, which implies a high
probability of success. We use a mini function, difficulty-of-LO, to translate the
LO difficulty attribute into a high probability value, giving difficulty-of-LO=0.8.
Suppose we also wish to take into account that the likelihood of the learner
learning the LO is higher if the learner has already viewed prerequisite LOs.
Prerequisite information is given in the LO attributes. Our simulation model
has a function for hasPrerequisites which searches through the EA metadata to
discover whether the learner has indeed viewed the prerequisites and returns
1.0 if the answer is yes and 0.0 otherwise. If we want these dimensions to have
approximately equal weights, then we can define the evaluation function below
and obtain P[learned] as follows:

(w)(aptitude-of-learner) + (w)(difficulty-of-LO) + (w)(hasPrerequisites)

= (0.33)(0.1) + (0.33)(0.8) + (0.34)(1.0) = 0.637

If, on the other hand, we wish to give the aptitude a higher weight, such
as 60%, then the new value could be (0.6)(0.1) + (0.2)(0.8) + (0.2)(1.0), or
0.42. As expected, giving greater weight to this learner’s low aptitude decreases
the P[learned] somewhat. More dimensions can be incorporated so long as the
weights sum to 1.0. The evaluation function, implemented as a weighted sum,
will provide an estimated likelihood the LO has been learned between (0,1),
making it easy to compare averages of such P[learned] values between simu-
lation runs. However, we caution against comparing two simulation runs with
different evaluation functions (i.e. different weights or dimensions) because that
would be like comparing two numbers with different units of measure.

The independent variables in our experiment are the aptitude-of-learner val-
ues, the difficulty level values, the directed acyclic graph giving prerequisite re-
lationships between LOs, as well as a dimension called peer-impact, which is
explained in the next section.



3 Experiment

Our experiment is intended to explore through simulation the effects of peer
impact on learning. We motivate the experiment by visiting literature around
how peers can impact each other’s scores.

Students are impacted by their peers even in their ordinary lives. A study
was performed by Hanushek et al. [6] to clarify the impacts of peer group char-
acteristics on achievement in the context of family and school factors, race and
socio-economic status. Results suggested that students benefitted from higher
achieving schoolmates. In contrast, the American Academy of Pediatrics warned
that Facebook pages can make some children feel badly because they see them-
selves as being inferior to their peers [10]. This effect is due to the nature of
Facebook, where most users will censor their posts and only share the most pos-
itive information about themselves, skewing the view of reality. Along the same
lines, Daniel et al. [3] found in a study that learners will usually only participate
in online learning activities if they have trust in their peers or some degree of
self confidence.

Others have used simulations to study peer effects. Mao et al. [7] used a
simulation model to study the impact of social factors in a course where students
shared learning materials with each other. The output of Mao et al.’s model was
a comparison of the amount of sharing connected to status levels: gold, silver,
bronze, common. Populations fluctuated as users began at the common status
and gradually transitioned between levels. The paper concluded that simulation
models can be useful for developing and improving incentive mechanisms in
virtual communities. In a different study, Zhang et al. [12] studied the fluctuation
of a population of learners through various activities: registration, activation,
action and adaptation. The authors found that learners who participated the
most were also the ones most sensitive to changes in the community and had
the most fluctuations.

This research, and other research, shows that a learner’s score can be im-
pacted by peer performance. We decided to explore this issue by creating a
notion of “peer impact”, where learners respond differently from one another
according to how well other learners are doing in mastering the LOs. This takes
the form of a new dimension in our evaluation function called peer-impact. Like
the other dimensions we discussed in Section 2 (aptitude-of-learner, difficulty-of-
LO, hasPrerequisites), this is a function that produces a value between (0,1) to
represent a positive or negative impact on P[learned]. In our experiment, we use
the following Equation 1 to compute P[learned] each time a learner visits a LO.

.25(apt-of-learner) + .25(diff-of-LO) + .25(hasPrereq) + .25(peer-impact) (1)

We created two styles of peer impact called reinforcing and balancing which
refer to a comparison between an individual learner’s average P[learned] on
the LOs they have viewed so far, compared to the average P[learned] of all
learner agents, which we call “class average”. The information to compute these



P[learned] averages is obtained from the EA metadata. Each learner is given
one of these styles at the start of the simulation and it remains fixed. Future
work could explore more sophisticated learner agents where this attribute is not
static.

The reinforcing style means that the learner’s score is “attracted” to the class
average P[learned]. That is, when the class average is higher than their own, the
peer impact function for a reinforcing learner produces a value close to 1; thus
the learner will perform even better than they would have otherwise. This is a
positive feedback loop, because as the learner performs better so does the class
average thus further encouraging the learner to do better. If the class average is
lower than their own, then the peer-impact function gives a value close to zero;
thus the learner will do even worse than they would have otherwise.

Balancing is the opposite. In this case, a learner’s score is “repelled” from
the class average P[learned]. That is, when the class average is higher than the
individual’s average P[learned], then their score will be pulled down lower than
it would have been otherwise. This is a negative feedback loop because when
the class average is high, the learner’s average goes in the other direction. When
the class average is low, then the learner’s score will be boosted higher than it
would have otherwise. In Figure 1, we show the peer-impact function (the values
0.2 and 0.8 were chosen as thresholds to allow clear effects of the two types of
learner to emerge).

if currentLearner BALANCING

if class average is HIGHER than mine

set peerImpact == randomNumBetween(0.0,0.2)

if class average is LOWER than mine

set peerImpact == randomNumBetween(0.8,1.0)

if currentLearner REINFORCING

if class average is HIGHER than mine

set peerImpact == randomNumBetween(0.8,1.0)

if class average is LOWER than mine

set peerImpact == randomNumBetween(0.0,0.2)

Fig. 1. Function to generate peer-impact for a given learner at a given time in the
simulation

The dependent variable in our experiment is the P[learned] values generated
by the simulation; we gain insight into whether the peer impact has a posi-
tive or negative effect by observing the relative P[learned] values. We varied
this experiment under six conditions. We varied the proportions of balancing
and reinforcing styles: mostly balancing, mostly reinforcing, and fifty-fifty. For
instance, if the model is set to mostly balancing, when new learners are initial-
ized, they have a high chance of being assigned the balancing personality and
a low chance of being assigned the reinforcing personality. These three propor-



tions were each run under two difficulty levels: one with mostly easy LOs and
high aptitude learners, and the other with mostly difficult LOs and low aptitude
learners. These six conditions were hand picked to be representative samples on
a curve of possible population mixes that should provide some insight about the
effect of these two kinds of personality on the learning environment. We ran each
of the six conditions 5 times because our model is stochastic; it produces slightly
different results each time even under the same starting conditions.

A typical result is shown in Figure 2 (fifty-fifty, high difficulty with low apti-
tude learners). Each line represents the average P[learned] of different portions
of the simulated learner population: the lightest thin line for all learners, black
thin line for the learners who were assigned the reinforcing personality, and the
dark grey thin line for the learners who were assigned the balancing personality.
Normally, our simulation model would be used to evaluate a particular instruc-
tional planning technique, but because this experiment is intended to illuminate
peer impact, the order in which LOs are consumed isn’t important. Therefore,
the simulated learners, of which there are 80, visited random LOs, of which there
are 100.

Fig. 2. Typical result

At the start of the simulations, the class average starts at zero. The balancing
simulated learners had higher scores in this state because this is the behaviour
defined in the evaluation function – that balancing learners do well when the class
average is lower than their individual average. The learning gradually increases
for both groups as the simulated learners visit more and more LOs. Although
the results seem low overall – P[learned] only reaching short of 0.3 – this is due
to the number of LOs (100) created in the simulation and the time it would
take for learners to visit them all. We ran the simulation again with only 30
LOs and observed the same patterns, but with a steeper slope; the average
P[learned] reached around 0.5. This raises interesting questions about whether
the amount of time required to learn a set of LOs should actually be represented
with a linear function. In reality, learners would get tired or lose interest or
change their learning goals. Future work could compare instructional plans with
learners having different levels of stamina.



The thick lines in Figures 2 and 3 represent subsets of the balancing and
reinforcing personalities whose behaviour we wish to discuss in this experiment.
Simulated learners do not have access to the actual class average, but com-
pute the average based on what other simulated learners have allowed them to
perceive about their performance. Based on Daniel et al.’s [3] results that confi-
dent learners are more likely to share their success, simulated learners with high
P[learned] values shared their EA metadata, while those with lower P[learned]
values did not. This creates a suppression effect, where each simulated learner
has access to different information in the computation of how others are doing,
depending on which other learners have suppressed information at the time they
are computing the average.

The thick grey line shows only the balancing learners with low aptitudes while
the thick black line shows only the reinforcing learners with high aptitudes. At
the start of the simulation, the thick black line is below the thick grey line: it is
perhaps surprising that a group of simulated learners with high aptitudes would
have overall lower scores than a group of simulated learners with low aptitudes.
We highlight this because it shows that different parts of the evaluation function
– peer-impact, aptitude-of-learner etc. – can dominate at different times. In this
case, high aptitude can be dominated by peer impact for reinforcing personalities
when the class average is low.

In Figure 3, we observe another interesting phenomenon by injecting 80 more
simulated learners halfway though the experiment, a somewhat contrived situa-
tion, although one that might happen in the real world if, say, two classes merged
partway through a course, or if two study groups in an online course were mashed
together, or due to the openness of many online courses (e.g. MOOCs) when new
learners can join any time. Under most of the experimental conditions we tried,
such as the typical result in Figure 2, although the influx of new learners caused
the class average to drop (as expected, because each new learner starts with an
average P[learned] of zero), there was no apparent change in the relative rank-
ing of the groups of learners being measured. That is, if the balancing learners
had the highest average before the influx, this continued afterward. However, in
about a third of the runs with low difficulty LOs and high aptitude learners, the
influx of learners caused a phase shift: now the thick black line jumps above the
thick grey line (see Figure 3). This makes sense: the balancing learners who tend
to do more poorly when the class average drops, do just that. The influx also
creates a situation where there are now learners with high averages intermin-
gled with learners with zero averages; this creates a different environment than
the starting condition where everyone started at zero. Different environmental
conditions cause the model to exhibit different behaviour. With the suppression
effect deactivated, all learners have access to the same information. In this con-
dition, we observed that the thick grey line overlapped with the thick black line
and there was no apparent phase shift (i.e. no lines crossing over).

Even though the observed patterns are merely a result of the evaluation
function implementation – that is, the model is simply doing what it was pro-
grammed to do – it helps system designers to keep track of the different possible



Fig. 3. Condition showing phase shift

behaviours as they try to design systems to support learning in all of these
conditions: low or high aptitude learners, easy or difficult material, peer effects,
prerequisites and many other possible dimensions, with each behaving differently
in different situations. Without simulation, it is unlikely we would have made
our observations about the phase shift as well as the observation about the high
aptitude reinforcing learners having lower scores than low aptitude balancing
learners. These observations reveal the specific circumstances that instructional
developers should address in order to maximize the expected learning. For ex-
ample, the system could be programmed to intervene when it detects that the
current class average will push a learner’s expected outcome in an undesirable
direction. When the class average is higher than an individual’s average, the
scores of other learners should be displayed more prominently for the balancing
learners but not for the reinforcing learners.

Through this experiment, we have also shown that simulations can be used to
test unexpected situations. Future experiments could test for influxes of new LOs
instead of new learners. Other variations could look at adding or removing LOs to
impact the difficulty level of the course or the level of expertise of peer learners.
When we injected a herd of simulated learners, we observed some surprising
results. But, by examining the underlying dynamic behaviour as the simulation
proceeded, we could actually explain why these results happened, thus gaining
more intuition about learning that would help to better inform an experiment
that might be carried out with real learners.

4 Other Research Directions

In ongoing work, we are also developing a technique for recommending sequences
of LOs. Instructional planners have been built that explore different kinds of se-
quencing such as sequencing things of the same type, like “lessons” or even
sequencing several types of activities, like presentations and assessments [1].
Our method involves using the EA metadata to identify “trails” of LOs. We are
investigating the use of user-based and item-based approaches to generate recom-



mendations of these trails using Apache Mahout 1. Using information captured
in the EA metadata, we create metrics for giving sequences a score to reflect the
quality of the sequence, for example does P[learned] increase or decrease over the
sequence. We are also exploring changes to the evaluation function to favour se-
quences that suggest coherence, such as trails that give learners a view of the big
picture before going into the details. Sequences with high scores are then used
as a basis for recommending sequences to other learners. Our study will examine
whether learners receiving sequence recommendations see any improvement over
learners receiving one LO recommendation at a time.

Other work in simulating recommender systems for learning systems has
been done by Drachsler et al. [4]; but the main difference is that this work did
not involve sequences, peer impact or the EA architecture. Champaign [2] uses
the ecological approach architecture to use the experiences of past learners to
suggest sequences of LOs for future learners while also studying the impact of
peer ratings, which are not the same as our peer impact because our peer impact
is linked to the evaluation function.

Even with the simplistic models of learners and LOs we have presented so
far, the peer impact experiment demonstrates the combinatorics of the various
features is already becoming too complex to rely on human intuition; this is one
of the main reasons for simulation modelling.

5 Conclusion

We created simulated learners whose overall learning was influenced by one
of two styles of peer impact. Our study demonstrated that different patterns
emerge when when simulated learners change their own behaviour based on the
behaviour of the group and when these learners have limited access to informa-
tion due to others’ ability to suppress their EA metadata. In some conditions, a
phase shift occurred from the initial situation where the class average is zero to a
new situation with some learners having relatively high averages. The simulated
learners prior to the influx had higher averages because they had the opportu-
nity to visit LOs before the arrival of the new simulated learners. One style of
peer impact is not universally better or worse than another, but each has ad-
vantages in different circumstances. It is important for instructional developers
to understand such patterns. In future work, the use of simulations with the EA
architecture will shed more light on peer impact and will allow us to also factor
in the effects of different kinds of sequence recommendations.

The EA metadata make it easy to look deeply into the underlying dynamics
and identify the conditions that create such behaviours. The EA metadata also
allow us to change the inputs of the simulation and take measurements, as we
did to compare the P[learned] averages between learners with different styles of
peer impact. By using the EA architecture for the simulation studies, the later
construction of a real learning system is made easier if the real system also uses

1 http://mahout.apache.org/



the EA architecture. That is, if the real system also stores information about a
learner’s interaction with a LO as metadata associated with the LO, then esti-
mating the likelihood of success for a real learner follows the same methods used
by developers to estimate the success of simulated learners.
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Abstract: User modeling in AIED has been extended in the past decades to 
include affective and motivational aspects of learner’s interaction in intelligent 
tutoring systems. An issue in such systems is researchers’ ability to understand 
and detect students’ cognitive and meta-cognitive processes while they learn. In 
order to study those factors, various detectors have been created that classify 
episodes in log data as gaming, high/low effort on task, robust learning, etc. 
When simulating students’ learning processes in an ITS, a question remains as 
to how to create those detectors, and how reliable their simulation of the user’s 
learning processes can be. In this article, we present our method for creating a 
detector of shallow modeling practices within a meta-tutor instructional system. 
The detector was defined using HCI (human-computer interaction) task model-
ing as well as a coding scheme defined by human coders from past users’ 
screen recordings of software use. The detector produced classifications of stu-
dent behavior that were highly similar to classifications produced by human 
coders with a kappa of .925. 

Keywords: intelligent tutoring system, shallow learning, robust learning, hu-
man-computer interaction, task modeling 

1 Introduction 

Advances in student modeling in the past two decades enabled the detection of 
various cognitive [3, 4, 8, 11, 13, 16, 17], meta-cognitive [1,6], and affective [2, 9] 
processes during learning based on classification of episodes in log data. Steps have 
been taken toward detecting when learning occurs [4] and to predict how much of the 
acquired knowledge students can apply to other situations [5, 6]. However, an obsta-
cle in such research is how to gain an understanding of the user’s cognitive or meta-
cognitive processes while learning. While some of the indicators used in the literature 



are common to any intelligent tutoring system, others are closely linked to the activi-
ties and pedagogical goals of a specific application. The adaptation of such indicators 
to the design of a new system often necessitates a detailed analysis of the new domain 
and how the tutoring system guides learners to acquire its skills and knowledge. In 
particular, an issue within this process is the ability to reach common ground between 
learner scientists that perform an analysis of learners (meta-)cognitive actions at a 
high level - via video or log analysis of student’s past actions for example – and the 
definition of the indicators by software engineers, related to how the system was im-
plemented, that can be used to simulate such processes in agreement with the con-
straints and functionalities of software. We view the specificity of detectors as un-
avoidable, so the best solution is to develop good methods for analyzing the new tu-
toring system and designing the detectors.  This short article describes our method 
and its application to out project, AMT. In the AMT project, a choice was made to use 
HCI (human computer interaction) task modeling - a method for formally represent-
ing human activity, and by extension, the behavior of an interactive system -, as well 
as video coding schemes from human coders, to develop the detectors. The detectors 
aim to evaluate student’s use of shallow and deep modeling practices with and with-
out being guided by a meta-tutor, on the domain of dynamic systems modeling. 

In Section 2, the AMT learning environment, for which the detectors were created, 
is introduced. In a third section, the task model of the user’s activity in AMT is de-
scribed. Next, the process of defining a coding scheme for the detector with human 
coders is presented, followed by the definition of the different classifications that 
define the value, the implementation and empirical evaluation of the detector. The 
final section summarizes the uses of task modeling within this work, and how it could 
be applied in future to other applications. 

2 AMT software: a meta-tutor to teach deep modeling of 
dynamic systems. 

AMT software teaches students how to create and test a model of a dynamic sys-
tem. In our modeling language, a model is a directed graph with one type of link, as 
illustrated in Figure 1.  Each node represents both a variable and the computation that 
determines the variable’s value.  There are three types of nodes.  

• A fixed value node represents a constant value that is directly specified in the prob-
lem.  A fixed value node has a diamond shape and never contains incoming links. 

• An accumulator node accumulates the values of its inputs.  That is, its current 
value is the sum of its previous value plus or minus its inputs.  An accumulator 
node has a rectangular shape and always has at least one incoming link. 

• A function node’s value is an algebraic function of its inputs.  A function node has 
a circular shape and at least one incoming link. 



The students’ learning objective is to draw a model representing a situation that is 
described in the form of a relatively short text.  In the example of Figure 1, the de-
scription of the problem was “ Rust destroys steel and can spread quickly. Suppose 
you take a large sheet of steel, such as one that might be used as the roof of the box-
car on a train, and you put it outside in the weather. Suppose it starts with a spot of 
rust that is 10 square inches in area. However, each week the rust spot gets bigger, as 
it grows by 30%. Therefore at the end of the first week, the rust spot is 13 square 
inches in area.” and the objective of the problem was to “Graph the size of the rust 
spot over 10 weeks.” 

The student constructs the model node by node, by filling in all information within 
each node in the form of four interactive tabs (description, plan, inputs, and calcula-
tions). During construction, students can use the Check button to evaluate the correct-
ness of the current tab, or the Solve it for me button to ask the system to fill out the tab 
automatically.  

The instruction is divided into three phases: (1) an introduction phase where stu-
dents learn basic concepts of dynamic system model construction and how to use the 
interface; (2) a training phase where students are guided by a tutor and a meta-tutor to 
create several models; and (3) a transfer phase where all scaffolding is removed from 
soft-ware and students are free to model as they wish.  The tutor gives feedback and 
corrections on domain mistakes.  

The meta-tutor requires students to follow a goal-reduction problem solving strat-
egy, the Target Node Strategy [18]. The basic idea is to focus on one node at a time 
(the target node) and completely define it before working on any other node.  This 
process decomposes the whole problem of modeling a system into a series of atomic 
modeling problems, one per node.  Like Pyrenees [2], it teaches students that if they 
just master this one difficult but small skill, then the rest of the problem solving will 
be straight-forward.  In addition, the meta-tutor complains if students appear to be 
guessing too much or giving up too early, just as the Help Tutor did [3].  

While students learn, their motivation, attention to details, and modeling depth can 
fluctuate. To assess students, the project needed detectors that detect shallow and 
deep modeling practices both with and without the meta-tutor. The measure should be 
usable in the transfer phase of the experiment as a dependent variable, because deep 

     
Fig. 1.   The left image is the example of model, with gray callouts added to explain the 
contents of nodes. The right image is the example of a node editor. 



modeling is the skill/knowledge that AMT teaches.  The depth measure should also 
apply to student’s behavior during the training phase so that we can check whether the 
instructional manipulations done during that phase have their intended effects (i.e., 
the measure serves as a manipulation check).  The detector should further operate in 
real time (i.e., it doesn’t require to know future actions or states in order to interpret 
the current action) so that it can be eventually be used by the system itself to condi-
tion its behavior. 

3 Task Modeling: analysis of user’s actions on software 

A task model is a formal representation of the user’s activity. It is represented by a 
hierarchical task tree to express all sub-activity that enables the user to perform the 
planned activity. The tasks need to be achieved in a specific order, defined in the task 
tree by the ordering operators. In AMT, every modeling activity follows the same 
procedure involving the same help features, task flow, and meta-tutor interventions. 
With a single task model of a prototypical modeling task, it is therefore possible to 
account for all of the user’s activity in software. Due to the complexity of the final 
model, only one sub-activity will be described in this paper, illustrated in Figure 2. 
Only part of the model is deployed in the figure, and some subtasks will not be de-
tailed here. In this part of the model the sub-activity the learner wishes to perform is 
to create a new node for the dynamic system s/he is currently modeling. We will first 
describe the task tree, and then insert the iterations and conditions that enable a formal 
verification of the flow of the task within the task model. 

Figure 2: Sub-task “Creating a Node” in the AMT activity task model using K-MADe 

 
 



Short description of the sub-task to model: 
In order for a node to be created, the description tab of the node editor needs to be 

completed by selecting a node description, which corresponds to a valid quantity in 
the system to model. Each node is unique and cannot be created more than once. The 
user can engage in the task only if at least one node still needs to be created for the 
model to be complete. 
Task tree and order of the tasks: 

At the top level of the task tree “Creating a node”, the learner can either attempt to 
create the node (task 1) or give up on the creation (task 2). The second task is repre-
sented in software by the user closing the node editor window, and can be done at any 
time during the task. The task “Creating a node” is over when a good description has 
been found and validated. The system can then try to initialize the selection and create 
the node.  

In the first level of the task “Attempting”, the learner first needs to select a node 
description (task 1.1), i.e.: what quantity the node will represent. S/he is then allowed 
to finish the creation of the node by validating the selection (task 1.2).  

In order to select a node description, the user first needs to choose a node descrip-
tion (task 1.1.1) among the set of node descriptions offered by the system. This proc-
ess involves the user choosing mentally one description (task 1.1.1.1), exploring the 
help features offered by software (task 1.1.1.2) and exploring the set of node descrip-
tions displayed (task 1.1.1.3). S/he can then select the node (task 1.1.2). This subtask 
is not described in Figure 1 for a lack of space. 

In order to validate the selection, the learner can choose to go back to the descrip-
tion of the problem to verify the correctness of his solution according to the problem 
to be simulated (task 1.2.1), and then has to validate the selection (task 1.2.1.2). When 
the user checks the validity of the selection, it can either be performed by checking 
the solution against the set of nodes still remaining to be modeled (task 1.2.1.2.1) or 
asking software to produce the solution (task 1.2.1.2.2). The user is allowed to ask for 
the solution only when a description has been checked at least once. 

Now that the different actions of the learner are defined, the iterations and condi-
tions will help represent the flow of the activity on the subtask “Selecting a node de-
scription” (task 1.1). 
Iterative and Optional tasks 

• Task 1.1 is iterative: it is possible to make several selections before trying 
to finish the description by validating. 

• Task 1.1.1.2 is optional: The learner is not forced to explore the help fea-
tures to choose a description, this is merely a choice on the learner’s part. 

• The main task, “creating a node”, is iterative until the node is created or 
the activity is abandoned. The later is represented in the task model by an 
interruptible task: the learner can stop his/her creation of node activity any 
time by choosing to close the node editor window. 

Conditions on tasks: 
• Main task 1 has a pre-condition attached to it: the software only allows the 

user to engage in a creation of a new node if there is at least one node re-



lated to the modeling of the dynamic system that still remains to be cre-
ated. 

A first task model was created to represent learner’s activity on software without 
the presence of the meta-tutor. This corresponds to the first version of software, which 
was evaluated against the interface including the meta-tutor in [18]. This second soft-
ware interface includes a text-based agent that intervenes as the students engage in 
modeling to help them achieve deeper modeling behaviors, by applying constraints to 
the user’s actions and giving meta-cognitive feedback. The meta-tutor was therefore 
added to the task model under the type “system” and the model was completed to 
include the constraints and interventions of the meta-tutor. 

The final task model produced represented all possible actions of the learner on 
software in order to model a dynamic system. Next, a study of these actions, which 
led to the definition of the depth detectors, is detailed. 

4 Detecting when students are modeling using shallow practices 

The task model developed with K-MADe was used to define the episode structure.  
The first step in creating a coding scheme is to define a unit of measurement for the 
user’s modeling actions. The task model clearly highlighted the different sub-
activities the learner could engage in, referred to as goals. All goals are interruptible 
tasks in favor to accessing the help features1 or abandoning the completion of the 
current goal for a new one. After a brainstorming session where researchers studied 
how students’ actions fell in line with those goals, the following unit of depth, called 
“segment”, was defined. This established the unit of coding to be used in the next 
phase.  

Screen videos representing the learners’ use of the AMT software with and without 
the meta-tutor were recorded during an experimental study described in [6]. These 
videos were studied to determine how much shallow vs. deep modeling occurred and 
the contexts, which tended to produce each type. A coding system was then created 
for video recordings of the learners’ behavior. Three iterations of design for this cod-
ing scheme were performed, ending with a coding scheme that reached a multi-rater 
pairwise kappa of .902. The final coding scheme mapped learners’ behavior to six 
classifications, which were implemented as the following depth detectors[AIED short 
paper] 

 
• GOOD_METHOD: The students followed a deep method in their model-
ing.  They used the help tools appropriately, including the one for planning 
each part of the model. 
• VERIFY_INFO: Before checking their step for correctness, students 
looked back at the problem description, the information provided by the in-
struction slides, or the meta-tutor agent. 

                                                             
1 It is to be noted that two help systems are available to users: (1) referring back to the instruc-

tions always available for viewing, and (2) looking at the problem situation where all details 
of the dynamic system to model are described. 



• SINGLE_ANSWER:  The student’s initial response for this step was cor-
rect, and the student did not change it.  
• SEVERAL_ANSWERS: The student made more than one attempt at 
completing the step.  This includes guessing and gaming the system: 

o The user guessed the answer, either by clicking on the correct an-
swer by mistake or luck, or by entering a loop of click and guessing to find 
the answer. 

o The user “games the system” by using the immediate feedback 
given to guess the answer: series of checks on wrong answers that help de-
duce the right answer. 
• UNDO_GOOD_WORK: This action suggests a modeling misconception 
on the students’ part. One example is when students try to run the model 
when not all of the nodes are fully defined. 
• GIVEUP: The student gave up on finding how to do a step and clicked on 
the “give up” button. 

Another detector was defined as a linear function of the six episode detectors.  It 
was intended to measure the overall depth of the students’ modeling, therefore provid-
ing an outcome measure in the transfer phase in future experimental studies.  It con-
sidered two measures (GOOD_ANSWER, VERIFY_INFO) to indicate deep model-
ing, one measure (SINGLE_ANSWER) to be neutral, and three measures 
(SEVERAL_ANSWERS, UNDO_GOOD_WORK, and GIVE_UP) to indicate shal-
low modeling. 

Once the coding scheme reached a sufficient level of agreement between coders, 
the task model was used to adapt the coding to students’ actions on the software. The 
episodes that were coded for depth by human analysts in the sample video were ana-
lyzed by creating scenarios from the task model within K-MADe.  The validation of 
six detectors’ implementation involved three human coders, who watched a sample of 
50 episodes, paying attention to the depth of modeling exhibited by the student’s ac-
tions, and chose the classification that best represented the depth of the learner model-
ing at the time of the detected value.  A multi-rater and pairwise kappa was then per-
formed, reaching a level of inter-reliance of .925. 

5 The different uses of the Task Model 

The task modeling language K-MAD and its task model creation and simulation 
environment, K-MADe [7] were chosen for the following reasons: the environment 
enables the creation and replay of scenarios of student’s actions, a set of functionali-
ties not described here enable a formal verification of the model. Additionally the 
associated simulation environment ProtoTask [14] allows non-specialists in task mod-
eling to visualize the flow of the task model, via scenarios in a clear and simple man-
ner.  

The use of K-MAD helped in the creation of the detectors and are a first step in of-
fering an alternative technique to simulated learners, by tackling the following prob-
lems: 



• Breaching the gap between learner scientists’ understanding of how the 
learning process works and programmers’ definition of the application 
flow, functionalities, and indicators. 

• Enabling a formal validation of software flow, understandable by all. 
• Using simulated learners scenarios to define the detectors. 

A researcher in educational technology - expert in teaching modeling and part of the 
AMT project - and an HCI practitioner, realized the task model. The former was an 
expert on how AMT software was designed in terms of pedagogical content and task 
flow. His expertise focused in particular on the actions the students were al-
lowed/incited/forbidden to do within software at each moment of the modeling task. 
The HCI practitioner was not familiar with intelligent tutoring systems or meta-tutors. 
She was involved in the creation of the task model in a consulting capacity, in regards 
to her expertise in task modeling of interactive systems.  

The task model could be defined at the level of the user’s planning of actions and 
system flow, with iterations and conditions alone. However, the objects in K-MADe 
enable us to represent the constraints of the learner’s actions concretely and to apply a 
formal verification of task flow. It was therefore possible to represent the set of de-
scriptions as either valid or invalid, to detect when a node has been checked and the 
result of that check, and to add constraints on the checking procedure such as to avoid 
node duplication. This enabled a formal verification of software flow prior to validate 
its fidelity to learner scientists’ ideas about possible actions on software and the un-
derlying processes involved. 

Once the model was constructed, the use of ProtoTask to visualize software flow 
and follow learners’ possible sets of actions allowed by software enabled the ability to 
simulate learners by creating scenarios of use that could be played and replayed at 
will, focusing on the cognitive and meta-cognitive levels of learner’s experience on 
software. In the process of creating our detectors, a video analysis of learner’s past 
actions was performed. The model could be used to check the possible actions of 
users with what the designer of the system wanted to offer as functionalities and soft-
ware flow. During this analysis, the task model could be used once again to define 
scenarios that simulated learner’s pertinent behaviors using ProtoTask. Once those 
scenarios were formed, the task analyst came back to the original K-MAD modeling 
language and studied the similarities and contrasts between scenarios to define the 
rules that govern the detection of shallow and deep modeling practices within AMT. 
Once the task model identified points of detection of such practices, it became easy 
for programmers to go back to software and implement the rules. 

6 Conclusion and Future Work 

In this paper, a method to create a detector of deep modeling within a meta-tutor 
using HCI task modeling and video coding schemes was described. The main out-
come of this process was the creation of detectors inferring the depth of students’ 
modeling practices while they learn on a meta-tutoring system, reaching a multi-rater 
and pairwise kappa score of .925. We believe the use of the task model to define shal-



low and deep modeling practices by helping to create the detectors to be of value for 
any simulated learning environments, in particular for indicators that a common to all 
learning tasks present in a tutoring system. 

In interdisciplinary teams, the design of indicators can lead to communication is-
sues due to misunderstandings and a lack of common ground between analysis made 
at a high level of learners’ cognitive and meta-cognitive processes, and the representa-
tion of those behaviors within software.  In particular, video-coding processes can 
become costly when the coders’ understanding of the details of how the system works 
differs from how the system actually works. Our experience using K-MADe and Pro-
toTask highlighted an ease in this project in gaining a better view of the tutoring sys-
tem and the detection of deep modeling within the interface. In particular, the use of 
ProtoTask by the non-specialists in task modeling helped clarify issues of task flow 
and the definition of the set of user’s actions at each moment of interaction.  

A limitation of the method is the applicability to different types of tutoring sys-
tems. In AMT, a single task model was able to represent the entirety of a users’ learn-
ing activity. In tutoring systems that teach a set of skills through different pedagogical 
approaches for diverse types of learning tasks, the creation of such task models might 
prove more costly and may not be completely adapted to the creation of detectors that 
need to be adapted to each task specifically.  
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Toward a reflective SimStudent: Using
experience to avoid generalization errors
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Abstract. Simulated learner systems are used for many purposes rang-
ing from computational models of learning to teachable agents. To sup-
port these varying applications, some simulated learner systems have
relied heavily on machine learning to achieve the necessary generality.
However, these efforts have resulted in simulated learners that sometimes
make generalization errors that the humans they model never make. In
this paper, we discuss an approach to reducing these kinds of generaliza-
tion errors by having the simulated learner system reflect before acting.
During these reflections, the system uses background knowledge to recog-
nize implausible actions as incorrect without having to receive external
feedback. The result of this metacognitive approach is a system that
avoids implausible errors and requires less instruction. We discuss this
approach in the context of SimStudent, a computational model of human
learning that acquires a production rule model from demonstrations.

Keywords: simulated learners, metacognition, cognitive modeling, rep-
resentation learning, grammar induction, generalization error

1 Introduction

Simulated learning systems can be used for a wide range of tasks, such as mod-
eling how humans learn, as teachable agents, and as a means to automate the
construction of models that can be used in cognitive tutors. In an effort to re-
duce the amount of developer effort needed to deploy simulated learners for these
tasks, researchers have been relying increasingly on the use of machine learning
algorithms. However, by increasing the generality of these systems through ma-
chine learning approaches, these systems become more susceptible to making
unrealistic generalization errors.

When using simulated learners to model human learning, we desire systems
that predict student’s errors as well as their correct behavior. Unrealistic general-
ization errors, in the context of these systems, are errors that the system predicts
humans will make, but that they never actually make. If a system is prone to
making these kinds of errors, then it becomes difficult to draw conclusions from
the predictions the simulated learners makes for novel tasks.



These generalization errors also complicate the use of simulated learners as
teachable agents because they result in a system that produces non-human be-
havior. When human students are teaching a simulated learner in a peer-tutoring
scenario and it makes errors that humans never make, then it decreases the au-
thenticity of the experience. This inauthenticity might effect the social dynamics
of the learning-by-teaching scenario possibly making the teachable agent less ef-
fective.

Finally, generalization errors also have negative effects when using simulated
learners to automatically build cognitive tutors. For this purpose, simulated
learners have been used to author production rule models via interactive demon-
strations of the solutions to the problems the system will tutor. This approach
may decrease the amount of work required to build a cognitive tutor and allow
subject-matter experts to author tutors directly, without an AI developer. In
this paradigm, SimStudent’s errors are useful to the extent that they correspond
with typical student errors; in these cases, the resulting production rules can
be added to the tutor’s bug library. However, if the errors are unrealistic, the
author must waste time identifying and deleting these nonsensical production
rules.

In this paper, we propose an approach that uses background knowledge to
mitigate unrealistic generalization errors with no changes to the underlying al-
gorithms and which should increase the effectiveness of the underlying learning
mechanisms. Before presenting this approach in section 4, we first review Sim-
Student, the simulated learning system that provides the context for this work
(section 2) and introduce a motivating example of a nonsensical generalization
error SimStudent currently makes (section 3). After presenting this approach,
we present some initial results and discuss conclusions and future work.

2 The SimStudent Architecture

The simulated learner system that we focus on in this paper is SimStudent, a
system that induces production rule models from demonstration and problem
solving. The SimStudent system is used primarily for three tasks: to model and
predict human learning, to author cognitive tutors, and to function as a teachable
peer-agent.

In order to understand how SimStudent works and the situations in which
it makes unrealistic generalization errors, we will review the types of knowl-
edge used by SimStudent, how this knowledge is represented, and the learning
mechanisms SimStudent uses to acquire this knowledge from experience.

2.1 Knowledge and Representation

There are three kinds of knowledge in SimStudent: primitive operator function
knowledge, conceptual knowledge, and procedural knowledge. The first kind of
knowledge is hand-constructed and consists of the low-level functions for ma-
nipulating data available to the system (i.e., adding two values, appending two



strings together, etc.). One example of a low-level function is SkillAdd, which
accepts two arguments, each of type arithmetic expression, and returns the sum
of these two expressions as a single arithmetic expression. These functions con-
stitute SimStudent’s background knowledge. Depending on the task SimStudent
is being used for, different kinds of background knowledge may be appropriate.

Head Body Prob

Expression ← Number Variable 0.95
Expression ← Minus Variable 0.05
Variable ← x 1.0
Minus ← - 1.0
Number ← 0 0.1

...
Number ← 9 0.1

Fig. 1. A simple probabilistic context-free grammar and example parses of two expres-
sions using this grammar.

The second kind of knowledge is conceptual, or representational, knowledge,
which is encoded as a probabilistic context-free grammar. It is automatically
acquired by SimStudent and is used to interpret the interface and information
in it. Figure 1 shows a simple example of the conceptual knowledge SimStudent
might possess about expressions for an algebra domain. This knowledge enables
SimStudent to automatically extract plausible “chunks” from the input, such as
the coefficient or term in an equation, which can subsequently be manipulated
by primitive operator functions or procedural rules. Furthermore, this knowledge
can be used to determine the likelihood that a given example was produced by
the grammar.

If (current-row ’output-cell ’row) then (write-text ’output-cell
(cell-in-row ’row 1 ’left-side) → (append “divide” ’coefficient)).
(is-left-child-of ’left-side ’coefficient)

Fig. 2. An example production rule for division.

The final kind of knowledge is procedural knowledge, which represents the
skills that we desire students to learn. This knowledge is encoded as production
rules, which contain conditions under which the rules apply and what to do
under those conditions. Figure 2 shows an example of a production rule signifying
that when the left side of the equation’s parse tree has a left child (here called
coefficient), then enter “divide <the coefficient>” into the output cell.



2.2 Learning Mechanisms

Fig. 3. A diagram of the SimStudent learning mechanisms and how they interact.

Of the three kinds of knowledge manipulated by the SimStudent system, two
are learned automatically: the conceptual and procedural knowledge. To acquire
these two kinds of knowledge the system employs four learning mechanisms: what
learning, where learning, when learning, and how learning. The what learning
is used to acquire the conceptual knowledge whereas the where, when, and how
learning are used to acquire the procedural knowledge. Figure 3 shows how these
four learning mechanisms interact. Before SimStudent is used, the what learning
is run to acquire the conceptual knowledge. When SimStudent encounters a
situation where it does not know how to act, which is common initially, it requests
a demonstration from the author (the tutor developer or student tutor). This
demonstration is comprised of four parts:

• Focus of attention: the set of relevant interface elements (e.g., the left and
right hand sides of an equation);

• Selection: the interface element to manipulate (e.g., the output cell);

• Action: the action taken in the selection (e.g., update the text value); and,

• Input: the argument to the action (e.g, the text string used to update the
selection).

Every time the system sees a new demonstration or gets corrective feedback on
its performance, it learns or modifies a production rule. Production rule learning
is done in three parts: 1) how learning attempts to explain the demonstration
and produce the shortest sequence of primitive operator functions that replicates
the demonstrated steps and ones like it, 2) where learning identifies a generalized
path to relevant elements in the tutor interface that can be used as arguments
to the function sequence, and 3) when learning identifies the conditions under
which the learned production rule produces correct actions. We will now review
each of these learning mechanisms.



What This mechanism operates off-line to acquire a probabilistic context-free
grammar from only positive examples. This task can be defined as:

• Given: a set of examples of correct input;

• Find: a probabilistic context-free grammar with the maximal likelihood of
producing the examples.

This task is performed using a grammar induction approach outlined by Li et
al. [1], which uses a greedy approach to hypothesize the grammar structure and
Expectation Maximization to estimate the grammar parameters.

Whenever a demonstration is given to SimStudent, it augments the provided
information with the most likely parse trees of the content of each element in
the focus of attention. This additional information is used by SimStudent in
the subsequent learning mechanisms to extract deep feature knowledge from the
content (e.g., to recognize and extract the coefficient of a term in an equation).
The parse trees make this deep feature information directly accessible to Sim-
Student through the nodes in the parse tree (e.g., the left child of the parse tree
for “3x” in Figure 1 corresponds to the coefficient).

How This is the first of three mechanisms executed in response to a demon-
stration. The how learning task can be defined as:

• Given: a set of demonstrations consisting of the state of the relevant inter-
face elements and the parse trees of the contents of these elements as well
as the resulting input for each state;

• Find: a sequence of primitive functions that when applied to each state
produces the corresponding input.

This task is performed by exhaustively applying the primitive operator functions
over all nodes in the focus of attention parse trees until the input is produced.
The iterative-deepening depth-first search strategy is used to find the shortest
sequence of functions that explains the data [1]. If no sequence exists, then a
special functions is created that takes the states and produces the corresponding
inputs.

Where This learning mechanism identifies the path to the relevant tutor inter-
face elements. The tutor interface elements are specified by a hierarchical tree
structure (a table is comprised of rows which each contain cells). During inter-
active instruction, the relevant interface elements are specified by the author
teaching SimStudent. For each relevant element, SimStudent generates a parse
tree for the contents. The relevant portions of these parse trees are defined as
those that are utilized by the operator function sequence acquired through the
how learning. The task of learning a general path to this relevant information
can be defined as:

• Given: a hierarchical representations of the interface elements and their
parse trees, the function sequence from the how learner, and a set of elements
that have been identified as relevant;



• Find: a list of paths through the representation hierarchy to all of the rele-
vant elements and the relevant portions of their parse trees.

The SimStudent approach to this task is to conduct specific-to-general learning
over the set of relevant interface elements and parse trees [1]. Returning to the
table examples, if the first cell in the first row of the table is always relevant,
then a path to that specific cell will be returned. However, if all of the elements
in the row are specified as relevant, then the entire row will be returned. After
the location to the relevant elements has been identified, the system utilizes
the function sequence to identify the relevant portions of the parse trees for
each element. This same specific-to-general learning is then conducted over these
relevant parse trees (within each element).

When This final mechanism identifies the conditions when the learned produc-
tion rule is applicable. This task is defined as:

• Given: a set of positive and negative examples, each consisting of a set of
features and their associated label;

• Find: a set of conditions over the features that separate the positive and
negative examples.

As specified, this is a supervised learning task. The features used by SimStudent
to represent each example are predicates that are automatically generated from
the relevant portions of the parse trees. For example, there exists an “is-left-
child-of” predicate, which says that a particular argument is the left child of a
given node in one of the parse trees. This type of feature enables the retrieval
of equations, terms, coefficients, and variables. Given the feature descriptions of
each example, the positive and negative labels come from the user instructing
the SimStudent system. The first positive example is the initial demonstration.
Subsequent examples are generated when SimStudent tries to use the learned
rules to solve novel problems and receives yes/no feedback from the author.
To derive the set of conditions given the examples, SimStudent uses the FOIL
algorithm [2], which uses information theory to perform a general-to-specific
exploration of the space of hypothetical conditions.

These four learning mechanisms result in a simulated learning system that
accepts user demonstrations and feedback and automatically acquires probabilis-
tic context-free grammar rules and production rules. The system requires little
background knowledge; for each task only the primitive functions need to be
defined by the developer. However, the cost of this generality is a system that
sometimes makes unrealistic generalization errors.

3 An example of an unrealistic generalization error

To explore the types of generalization errors that SimStudent makes, we turn
to the algebra domain. One of the skills that students learn in this domain is
how to proceed when given a problem of the form < Symbol >< V ariable >=<



Symbol > (e.g., 3x = 6). The skill that we desire the student to learn in this
situation is to specify that their next step is to divide both sides by the coefficient
of the term on the left side of the equation (the production rule from Figure 2).

Fig. 4. SimStudent requesting a demonstration in an algebra tutor interface after the
author has just entered “divide 3.”

When SimStudent is first presented with a problem of this form, such as
3x = 6, it will inform the author that it does not know how to proceed and
ask for a demonstration. The author might demonstrate to SimStudent that the
cells containing the left and right hand sides of the equation are relevant to the
problem (by double-clicking on these cells) and update the next step interface
element with “divide 3” (see Figure 4).

After receiving this demonstration, SimStudent parses the contents of the
focus of attention (The first parse tree in Figure 1 shows an example of what
the left hand of the equation might look like). Next, it employs the how learning
mechanism, which searches for a sequence of functions that when applied to
the nodes in the parse tree produce the input. In this example, it might learn
to append the left child of the parse tree (for the left side of the equation) to
the word “divide” and place it into the tutor interface (the then part of the
production rule in Figure 2). Using the locations of the relevant elements (the
left child of the parse tree), SimStudent then learns a general path through
the representation hierarchy to the relevant elements and the relevant portions
of the parse trees for these elements. Finally, SimStudent runs FOIL over the
relevant information to learn the conditions under which the learned behavior is
applicable. This results in the if portion of the production rule in Figure 2.

The learned production rule is more general than the single demonstration it
was learned from; it is applicable for many equations, such as 4x = 12 or 2x = 8.
However, when SimStudent is presented with a subtly different example that
utilizes the same skill, −x = 2, it results in the mistaken generation of the input
“divide -” (instead of “divide -1”). This is because in this situation the left child
of the parse tree on the left hand side of the equation is a minus sign instead of
the coefficient (see the second parse tree in Figure 1). In a review of problems
of the form −x =< Constant > in the ‘Self Explanation CWCTC Winter 2008
(CL)’ dataset accessed via DataShop [3], none of the human student made this
error– therefore it is an example of unrealistic generalization error.



4 Reflecting before Acting

One reason that humans do not make this error is that they have a “sense” for
what are reasonable output actions and they (subconsciously) reflect on actions
before taking them. When a student is faced with the problem −x = 2 they may
mentally produce the output “divide -,” but realize that a “-” by itself is not
mathematically grammatical because they have never seen an instance where
this has occurred. This might lead them to consider a different action or to ask
for help.

To reproduce this type of behavior, we modified SimStudent to utilize its
conceptual knowledge, the probabilistic context-free grammar trained on exam-
ple inputs (described as “what” learning in section 2). The acquired grammar is
used to recognize when a potential output is not grammatical (when it cannot
be parsed) and automatically flag the situation as a negative example. In other
words, the system supervises itself and provides negative feedback (which the
when learner uses) to improve its learning.

Now, when SimStudent is presented with a problem and finds an applicable
rule, it simulates the execution of the rule and constructs a probabilistic parse
of the value generated by the rule. If the value cannot be parsed by the current
grammar (there is a 0% probability that the grammar produced the value),
then SimStudent flags the trace as a negative instance and re-runs the when
learning, which refines the conditions of the rule so that it no longer applies
in the erroneous situation. If SimStudent has no other applicable rules, then it
request a demonstration from the author, exactly like a human student.

5 Initial Results

To evaluate the effectiveness of this metacognitive loop, we have tested the prob-
abilistic parser’s ability to separate correct from incorrect actions based on the
parse probability defined by the probabilistic context-free grammar. Table 1
shows five problems where SimStudent might make unrealistic errors. The first
three are problems where SimStudent might induce a rule for dividing by the
symbol before the variable instead of the coefficient. The last two problems cor-
respond to inducing a rule retrieving the symbol after the variable and division
sign instead of the entire denominator. On all five problems, the probabilistic
grammar was capable of identifying the correct from the incorrect actions.

These results suggest that this approach is capable of identifying these kinds
of errors. In general, this approach will be effective at identifying errors that re-
sult in non-grammatical output, where grammatical is defined by the probabilis-
tic context-free grammar. This is effective because the rules are learned specific-
to-general on a substantial amount of positive example inputs. By bringing this
previous experience to bare, SimStudent can avoid nonsensical generalization
errors and produce its own negative feedback, which enhances the effectiveness
of its other learning mechanisms (more self-labeled examples for the when learn-
ing). Furthermore, this requires no additional work from an author and should
reduce the amount of required author feedback.



Table 1. Five examples of problems where SimStudent might make the generalization
error of retrieving the character before the variable or after the variable and the division
sign, the corresponding correct and incorrect actions, the validity of these actions, and
the parse probability of the actions.

Example Possible Action Valid Parse Probability

−x = 2
divide − No 0.00%
divide −1 Yes 19.64%

(−2)x = 6
divide ) No 0.00%

divide (−2) Yes 0.09%

3(x + 1) = 6
divide ( No 0.00%
divide 3 Yes 27.90%

x/(−3) = 3
multiply ( No 0.00%

multiply (−3) Yes 0.09%

x/− 5 = 1
multiply − No 0.00%
multiply −5 Yes 19.64%

This task of verifying the output could alternatively be viewed as apply-
ing constraints to SimStudent’s output and learning from constraint violations.
Viewed this way, our work is related to the work on constraint-based tutor-
ing systems [4]. In our case, there is only one constraint, “the output must be
grammatical” where grammatical is defined as the probability of the output be-
ing produced by the grammar must be greater than 0%. We use a threshold of
greater than 0% to signify grammatical, but one could imagine using a different
threshold (e.g., greater than 0.05%). Thus, this constraint could be viewed as
a probabilistic constraint that is automatically acquired from positive training
examples.

6 Conclusion and Future work

In this paper, we outlined a novel approach to detecting and learning from unre-
alistic generalization errors that can be employed by simulated learner systems.
The implications of this approach are threefold: (1) its use will result in mod-
els of learning that more closely aligns with human data, (2) teachable agents
using this approach will be more realistic for the students using them, and (3)
developers can produce cognitive tutor models with less work.

While this approach shows promise, it clearly has some shortcomings that
should be remedied in future work. First, a more in-depth analysis of the align-
ment between SimStudent and human students is necessary. Previous work [5, 6]
has looked at the human errors that SimStudent is capable of predicting, but a
more detailed analysis of the unrealistic generalization errors, or errors that Sim-
Student makes that human students do not, would be useful. This would serve
as a baseline to evaluate the SimStudent model and to evaluate the effectiveness
of this approach.



A second direction for future work is to compare this approach to other ap-
proaches that might reduce these errors. We could imagine a system that has
additional condition knowledge for the operator functions so that it would not
generalize to situations where the function sequence would not be applicable
(such as trying to divide by a symbol instead of a number). It would also be
interesting to explore how reflection might facilitate the acquisition of this ad-
ditional condition knowledge for the operator functions.

Finally, we are interested in applying this approach in other more complex
and open-ended domains such as in RumbleBlocks, an educational game that
teaches K-3 children about the relationships between the concepts of stability,
low center of mass, wide base, and symmetry. We have been exploring how prob-
abilistic grammars can be used to learn conceptual knowledge in RumbleBlocks
[7] and we believe that this approach should scale up to this more complex
domain.
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1 Introduction

Models of student knowledge have occupied a significant portion of the liter-
ature in the area of Educational Data Mining1. In the context of Intelligent
Tutoring Systems, these models are designed for the purpose of improving pre-
diction of student knowledge and improving prediction of skill mastery. New
models or model modifications need to be justified by marked improvement
in evaluation results compared to prior-art. The standard evaluation has been
to forecast student responses with an N-fold student level cross-validation and
compare the results of prediction to the prior-art model using a chosen error
or accuracy metric. The hypothesis of this often employed methodology is that
improved performance prediction, given a chosen evaluation metric, translates
to improved knowledge and mastery prediction. Since knowledge is a latent, the
estimation of knowledge cannot be validated directly. If knowledge were directly
observable, would we find that models with better prediction of performance also
estimate knowledge more accurately? Which evaluation metrics of performance
would best correlate with improvements in knowledge estimation? In this paper
we investigate the relationship between performance prediction and knowledge
estimation with a series of simulation studies. The studies allow for observation
of the ground truth knowledge states of simulated students. With this informa-
tion we correlate the accuracy of estimating the moment of learning (mastery)
with a host of error metrics calculated based on performance.

2 Bayesian Knowledge Tracing

Among the various models of knowledge, a model called Bayesian Knowledge
Tracing [2] has been a central focus among many investigators. The focus on
this model has been in part motivated by its use in practice in the Cognitive Tu-
tors [4], used by over 600,000 students, and by its grounding in widely adopted
cognitive science frameworks for knowledge acquisition. For our experiments we
will be employing the most frequently used basic Bayesian Knowledge Tracing

1 A session during the main proceedings of EDM 2012 was dedicated to papers on
Knowledge Tracing, a frequently used approach to modeling student knowledge.



model for both simulation and evaluation; however, there are implications be-
yond BKT models. Knowledge Tracing is a simple Hidden Markov Model of
Knowledge defined by four parameters; two performance parameters and two
knowledge parameters. The performance parameters, guess and slip, are the
emission parameters in an HMM which respectively correspond to the proba-
bility that a student answers correct even if she is in the negative knowledge
state (guess) and the probability that she answers incorrectly even if she is in
the positive knowledge state (slip). The knowledge parameters, prior and learn
rate, are the probability that a student knows the skill before answering any
questions and the probability that, if the student is in the negative knowledge
state, she will transition to the positive state at any given opportunity.

3 Related Work

There has been a limited amount of prior work focusing on detecting the moment
of learning. We were able to track one relevant publication by Baker and col-
leagues [1]. They investigated detection of moment of learning in student data by
modifying BKT structure. Another relevant result was published by [5]. They
looked at scoring student model fits on simulated data and found a disparity
between rankings of two frequently used metrics: root mean squared error and
area under ROC curve. In this work we would like to address the question of
the quality of detecting the moment of learning and investigate the problem of
choosing a goodness-of-fit metric for that purpose.

4 Data

Our simulation dataset consisted of 1,000 simulated students and 100 skills with
30 questions per skill. Every student answered all 30 questions for each of the
100 skills. In the BKT simulation model we included no dependencies between
skills and also no student specific parameters; therefore, the data can be thought
of as either being produced by 1,000 students total or a new 1,000 students for
every skill. Programmatically, data for each skill is stored in a separate file. Each
row in each file represents one students data for that skill. The data stored from
the simulation contains the students ground truth binary state of knowledge
(mastered or not) at each of the 30 opportunities to answer (first 30 columns)
and also the students correctness of responses to the 30 questions (stored in the
second set of 30 columns).

In addition to the simulated data files containing student knowledge states
and observed responses, we had corresponding files containing inferences of
knowledge states and predictions of responses made with 16 different param-
eter sets resulting in 1,600 prediction files. Details of the parameter selection for
simulation and prediction are discussed in the next section.



5 Methodology

5.1 Simulation

We generated 1,000 students knowledge and performance for 100 skills. Skills are
defined by a set of four knowledge tracing parameters which the skill data is gen-
erated from. The 100 sets of four parameters were selected at random, uniformly
sampling from the following constrained ranges for the parameters; prior between
0.01-0.80, learn rate between 0.01-0.60, and guess and slip between 0.05-0.40. Af-
ter the 100 sets of parameters were selected, simulated data was produced by
specifying a Dynamic Bayesian Network representation of Knowledge Tracing
with a time slice length of 30. This representation, defined in Kevin Murphys
Bayes Net Toolbox, with a particular parameter set fixed in the conditional
probability tables, was then sampled 1,000 times, representing each simulated
student. The sample Dynamic Belief Network function in BNT for simulation is
a simple one; a random number between 0 and 1 is generated, if the number is
equal to or lower than the prior parameter, the simulated student begins in the
negative (not learned) state at time slice 1. To generate the observed response at
this time slice, another random number is generated, if that number is greater
than the guess parameter, the observed response is incorrect. To determine if
the students knowledge state is positive (learned) at the next time slice; a ran-
dom number is generated, if that number is less than or equal to the learning
rate, then the students state is positive. With a positive state, the new random
number needs to be greater than the slip parameter in order to produce a cor-
rect response. This is repeated for 30 times to simulate 30 knowledge states and
observed responses per student.

5.2 Prediction

Typically, to predict student data, a hold-out strategy is used whereby a fraction
of the students and their data is used to find a good fitting set of parameters.
That good fitting set is then used to predict the fraction of students not used in
training. The research question of this paper did not involve parameter fitting
but rather required us to evaluate various models and observe how the models
prediction of performance corresponded to its inference of knowledge. To do this
we needed variation in models which we accomplished by choosing 16 candidate
parameter sets with which to predict student data from each of the 100 skills.
Since no training was involved, all data served as the test set. The top five sets
of parameters used in the Cognitive Tutors was used, as well as 10 randomly
generated parameters sets using the the same parameter constraints as the sim-
ulation, and, lastly, the ground truth parameter set for the skill was used to
predict. The the same 15 parameter sets were used to predict the 100 skills, only
the ground truth parameter set changed.

The prediction procedure is the same one used in all papers that use Knowl-
edge Tracing; the prior, guess and slip parameters dictate the probability of
correct on the first question. After the prediction is made, the correctness of



Table 1: Confusion Table
Actual

Correct Incorrect

Predicted
Correct True Topisitve(TP) False Positive (FP)

Incorrect False Negative (FN) True Negative (TN)

the first question is revealed to the KT algorithm, which incorporates this ob-
servation using Bayes Theorem to infer the likelihood that the knowledge was
known at that time. A learning rate transition function is applied and the pro-
cesses is repeated 30 times in total to create 30 predictions of knowledge and 30
predictions of correctness per student for a skill.

6 Metrics

The most common metrics used to evaluate prediction performance in the EDM
literature has been Area Under the Receiver Operator Curve (AUC) and Root
Mean Squared Error (RMSE). One of the goals of our experiment is to reveal
how indicative these measures are of the models accuracy in inferring knowledge.
While these are the most common metrics, many others have been used in ma-
chine learning to evaluate predictions. We utilize a suite of metrics to investigate
which metric is best at forecasting knowledge inference accuracy.

6.1 Model Performance

We selected a set of metrics in wide use today to score models when predicting
student performance and knowledge state. Below is a short description of them.

Confusion Table Metrics Confusion table (rf. Table 1) is a table widely used
in information retrieval and is a basis for a set of metrics capturing correctness
of a retrieval or classification algorithm. Rows and columns of the confusion
table denote the predicted and actual classes respectively and the cells in the
intersection contain the counts of cases. Refer to Table 1 for an illustration. Here
we illustrate a case for binary classification akin to the problem of binary clas-
sification of student performance (correct or incorrect) and state of knowledge
(known or unknown).

If prediction is not categorical, say a probability from [0, 1], it is customary
to round it: probabilities of 0.5 and greater become 1. For example, the cases
when prediction matches the reality are captured in True Positive cell and the
cases when the actually incorrect responses are marked as correct are captured
in False Positive cell. We will use the confusion table metrics below.



accuracy =
TP + TN

TP + FP + TN + FN
(1a)

precision =
TP

TP + FP
(1b)

recall =
TP

TP + FN
(1c)

F −measure = 2
precisionṙecall

precision + recall
(1d)

As opposed to the so-called point measures described above, there is also
a frequently used Area Under Receiver Operating Characteristic curve (AU-
ROC), which is a curve measure. The curve is produced by varying the rounding
threshold (0.5 for point measures) from 0 to 1 and computing and plotting False
Positive Rate (FPR) vs. True Positive Rate (TPR) (see below).

TPR =
TP

TP + FN
(2a)

FPR =
FP

FP + FN
(2b)

An area under resulting curve is the sought metric. An area of 0.5 is equivalent
to random chance for a binary classifier. An area greater than 0.5 is, thus, better
than chance. An exact AUC calculation can also be derived by enumerating
all possible pairs of predictions. The percentage of the pairs in which the true
positive prediction is higher is the AUC. This is the ability of the predictor to
discriminate between true and false.

Pseudo R2 R2 or percent variance explained is often used as a goodness of
fit metric in linear regression analysis. For with binary classification, there exist
several versions of R2 called pseudo R2. Applicable to our situation is Efrons
pseudo R2 (refer to Equation below).

R2 = 1−
∑N

i=1 yi − ŷi∑N
i=1 yi − ȳ

(3)

Where N is the number of data points, yi is the i-th component of the
observed variable, ȳi is the mean observed value, and ŷi the prediction of i-th
component of the observed variable.

Metrics Based on Log-Likelihood Likelihood functions are widely used in
machine learning and classification. Likelihood captures the probability of the
observing data given parameters of the model. In binary classification a natu-
ral log transformation of the likelihood function is often used (see below). Here



N is the total number of datapoints, yi is the i-th component of the depen-
dent variable, ŷi is the predicted value of the i-th component of the dependent
variable.

loglikelihood =

N∑
i=1

yi ln(ŷi) + (1− yi) ln(1− ŷi) (4)

In addition to log-likelihood itself, there are several metrics that use log-
likelihood as kernel component. For example, Akaike Information Criterion (AIC),
Akaike Information Criterion with correction for finite sample size (AICc), Bayesian
Information Criterion (BIC), and several others. These metrics introduce various
forms of penalty for the size of the model (number of parameters) and number
of datapoints in the sample in order to put overfitting models at disadvantage
when performing model selection. Here k is the number of model parameters, N
is the number of datapoints.

AIC = −2loglikelihood + 2k (5a)

AICc = AIC +
2k(k + 1)

N − k − 1
(5b)

BIC = −2loglikelihood + k ln(N) (5c)

Since we are comparing models that are only different in the parameter values
and are doing so on the same dataset, we will not see difference in ranks assigned
by log-likelihood, AIC, AICc, and BIC metrics.

Capped Binomial Deviance In addition to log-likelihood and log-likelihood-
based metrics, we include the Capped Binomial Deviance (CBD). Capped bi-
nomial deviance is a version of the log-likelihood where prediction values are
mandated to be at least away from 0 and 1 values and uses a logarithm with
base 10 instead of natural logarithm. The is usually set to a small value of 0.001.

6.2 Moment of Learning

To capture the quality of detecting the moment of learning we devised a metric
based on mean absolute deviation (MAD). Namely, moment of learning MAD is
the average absolute difference of number of skill application opportunities be-
tween the moment when the internal state of the generating skill model switched
to learned state and the moment when the probability of the skill being in a
learned state reaches 0.95 (a traditionally used threshold in the area of intelli-
gent tutoring systems). A perfect model would have a moment of learning MAD
of 0. The larger the moment of learning MAD is the worse the model prediction
of model of learning is.



7 Experiments and Results

7.1 Experiment 1

Research question: Among accuracy metrics used for ranking various parameter
sets (models), which ones correlate best with accuracy of moment of learning
prediction?

7.2 Results

The Table 2 below contains the correlations of performance prediction value,
knowledge prediction value for all metrics, and moment of learning mean abso-
lute error. Since prediction of performance is most widely adopted as a standard
approach and the fact that we are trying to contrast it to the moment of learning
mean absolute error, we sorted the rows corresponding to various statistical met-
rics by the respective column. The first column lists the metric used to evaluate
the goodness of performance and knowledge prediction. The second column is the
correlation between knowledge and performance prediction using the particular
metric on both (this is the column the table is sorted by). The third column is
the correlation between the particular metric used to evaluate performance and
Mean Absolute Deviation (MAD) of Moment of Learning prediction. This is the
column which tells us if the metrics used to evaluate performance are correlated
with error in mastery / Moment of Learning prediction. The fourth column gives
correlations of Moment of Learning MAD and metric values for predicting inter-
nal knowledge state. This correlation captures agreement between identifying the
moment student learned a skill (this happens once per student-skill tuple) and
the correctness of identifying the skills knowledge state for the student across
all skill attempts.

7.3 Experiment 2

Hypothetically, the ground truth parameter sets should be the best at both
making predictions of performance and estimating knowledge. A good metric
should favor the ground truth parameters, therefore we ask: How often is the
ground truth model the best at prediction performance according to the various
metrics?

7.4 Results

The correlations of the performance and knowledge state prediction metrics from
prior section targeted the 15 model parameter combinations that were different
from the generating ground truth model parameters. Now, let us look at how
the ground truth model compares to the other 15 we tested with respect to the
statistical metrics we chose. Table 3, for each metric, gives the number of times
a ground truth model parameter set is the best with respect to a given metric,
and an average rank of the ground model parameter set as compared to the



Table 2: Metric correlations
Metric Correlation of per-

formance and knowl-
edge metric

Correlation of per-
formance metric and
Moment of Learning
MAD

Correlation of knowl-
edge metric and
Moment of Learning
MAD

recall 0.878 *** -0.954 *** -0.819 ***
F-measure 0.561 *** -0.839 *** -0.792 ***
accuracy 0.522 *** -0.802 *** -0.822 ***
precision 0.334 *** -0.797 *** -0.628 ***
RMSE 0.470 *** 0.754 *** 0.828 ***
AIC 0.375 *** 0.751 *** 0.702 ***
AICc 0.375 *** 0.751 *** 0.702 ***
BIC 0.375 *** 0.751 *** 0.702 ***
CBD 0.409 *** 0.751 *** 0.762 ***
log-likelihood 0.375 *** 0.751 *** 0.702 ***
pseudo R2 0.592 *** -0.236 * -0.296 **
AU ROC 0.335 *** -0.119 -0.652 ***

Note: with respect to correlations with moment of learning MAD, in some cases a
negative correlation is desirable (e.g., for accuracy), and for some cases a positive
correlation is desirable (e.g., for RMSE). This is due to the fact that the smaller the
moment of learning MAD the better, which is true for some metrics and the inverse
is true for others. The table is sorted while observing this phenomenon (effectively
sorting by the absolute value of the correlation coefficient).

Table 3: ground truth model rank vs. the other 15 models
Metric Ground truth model

has rank of 1
Mean rank of ground
truth model

AIC 88/100 1.82/16
AICc 88/100 1.82/16
BIC 88/100 1.82/16
CBD 88/100 1.82/16
log-likelihood 88/100 1.82/16
RMSE 88/100 1.82/16
pseudo R2 88/100 1.83/16
accuracy 33/100 2.52/16
F-measure 12/100 4.27/16
AU ROC 26/100 4.35/16
recall 0/100 6.65/16
precision 5/100 9.71/16

other 15 model. In each case we are aggregating across 100 different sets of 15
models plus one ground truth model. As we can see log-likelihood based models
and RMSE form a group of metrics that gives ground truth models a large edge
over the 15 reference models. Confusion table metrics, Area under ROC curve
and the pseudo R2 gibe a drastically smaller support for it.



7.5 Experiment 3

Ground truth parameters do not always predict the data the best, but often do
when using metrics like RMSE or log-likelihood. Do the parameter sets that are
not predicted well by ground truth share a common pattern? Does the relative
performance of ground truth correlate with high or low values of prior, learn,
guess or slip in the generating parameters?

7.6 Results

Seeing log-likelihood based and RMSE metrics score the ground truth model
at the same level of mean rank, we are wondering whether, across all 100 of
generating parameter sets, the data produced by the same sets of parameters is
equally hard to predict with ground truth model. For that we looked at whether
the BKT parameter values correlate with ranks ground truth model receives on
the moment of learning MAD metric.

First of all, moment of learning MAD metric ranked ground truth as best
only 33/100 times with an average rank of 2.53/16. Correlations of moment
of learning MAD ranks for ground truth models showed that theres a small
marginally significant effect of pInit probability on the moment of learning MAD
score (r = 0.18, p − val = 0.07). Guessing probability does not correlates with
moment of learning MAD (r = −.06, p− val = 0.55).

Probability of learning and slip probability, however, are very strongly related
to the moment of learning metric. The larger the learning rate of a simulated skill
is, the higher the rank of the ground truth model is (r = 0.68, p− val < 0.001).
Namely, the faster the skill is learned, the worse job ground truth model is doing.
In the case of pSlip, the relation is the opposite: the higher the guess rate is,
the higher rank moment of learning MAD assigns to the ground truth model
(r = −0.52, p− val < 0.001).

Both the pLearn and pSlip parameters are controlling the process of skills
transitioning into the learned state. Strong negative correlation of moment of
learning MAD and pSlip is quite logical. Higher pSlip results in more errors even
when the skill is mastered, as a result the transition to the learned state becomes
more blurred. In this situation the ground truth model has an edge over other
models. However, it is high to explain a high positive correlation of moment of
learning MAD and pLearn. Higher pLearn means more correct responses overall,
this should put ground truth model at an advantage. Additional investigation is
necessary to address this phenomenon.

8 Discussion

In our first experiment we found that three less commonly used accuracy metrics
showed the best correspondence to accuracy of moment of learning estimation.
These metrics were: recall, F-measure, and accuracy, with recall giving a very
high correlation of 0.954. Also noteworthy was the poor performance of AUC



with a correlation of -0.119. This was the worst correlation and suggests that
AUC should not be used to determine the relative goodness of models based
on prediction performance if the underlying goal is to rank models based on
knowledge estimation goodness. Metrics like recall and F-measure ought to be
adopted in place of AUC for these purposes.

We also found that ground truth model parameters did not always perform
the best and that RMSE and log-likelihood based metrics tended to predicted
ground truth being the best parameter set more than the others. AUC, recall,
F-measure, and precision, however, were among the worst. Therefore, if the un-
derlying goal of an analysis is to recover ground truth parameters (such as with
inferring pedagogical efficacy), RMSE and log-likelihood measures should be
used and the aforementioned accuracy metrics should be avoided. The exper-
iments 2 raised the question of why ground truth may not always predict the
best experiment 3 indicated that high learning rate and low slip in the generating
parameters can prove difficult for mastery prediction.

Overall detecting the moment of learning in the generated data by observing
a switch from a string of all 0s (unknown state) to the string of all 1s (known
state) is often not easy even when ground truth parameters are used. Especially
if guess and slip parameters are larger, several back-and-forths between known
and unknown state are common. In the area of ITS it is customary to wait till
three correct attempts in a row to be sure student has mastered the underlying
skill. In our case, when we assumed the moment of learning is the first time
when probability of knowing the skill crosses the 0.95 threshold. Following from
recent results on the lag with detecting the moment of learning that occurs in the
Bayesian Knowledge Tracing [3], in future, we will experiment with adjustments
to our computation of the moment of learning to compensate for this.
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Abstract. We investigate cognitive factors that are predictive of 

learning gains when students learn to solve equations by teaching a 

synthetic peer, called SimStudent. Previous empirical studies 

showed that prior knowledge is strongly predictive of post-test 

scores. However, in a recent study in the Philippines that replicated 

our previous study in the USA, there were students with low prior-

knowledge who tutored their SimStudent better than other equally 

low prior students.  In this paper, we analyze both process data (tu-

toring interactions) and outcome data (test scores) to understand 

what makes learning by teaching more effective. The results imply a 

presence of individual behavioral differences beyond the difference 

in the prior knowledge that might have affected SimStudent’s learn-

ing, which in turn had non-trivial influence on tutor learning.   

Keywords. Learning by teaching, teachable agent, SimStudent, Al-

gebra equations, prior knowledge 

1. Introduction  

Since the late 1990s, researchers have investigated intelligent tutoring 

systems with intelligent pedagogical agents (often called teachable agents) 

to study a promising type of learning where students learn by teaching [1-3]. 

These technologies allow researchers to conduct tightly controlled experi-

ments and to collect detailed process data representing interactions between 

students and teachable agents that together provide empirical evidence for 

the benefit of learning by teaching [4].  

Matsuda et al. (in print), for example, showed that students’ learning sig-

nificantly correlated with the learning of teachable agents. Biswas et al. [5] 
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studied whether students could learn to self-regulate their teaching activities 

and how the ability of self-regulation affects the tutor learning.  It is there-

fore of intellectual interest to uncover how the tutoring interaction affects 

students’ learning by teaching.  

In the current study, we use SimStudent, which is a teachable agent that 

helps students learn problem-solving skills by teaching [6]. It has been test-

ed and redesigned several times, resulting in insights regarding the effects of 

learning by teaching and related cognitive theories to explain when and how 

students learn by teaching. Previous studies showed that pre-test score were 

highly predictive of post-test scores when students learn equation solving by 

teaching SimStudent [7]. In general, when students do not have sufficient 

prior knowledge on the subject to teach, they are not able to teach correctly 

and appropriately hence the benefit of learning by teaching would be argua-

bly decreased.  

Nonetheless, there are some students with low prior knowledge who 

learned more than others by teaching SimStudent.  Among equally low-prior 

students, those who showed better performance on the post-test actually 

tutored their SimStudent better as well.  The difference in the learning gain 

among students with comparable prior-knowledge indicates a presence of 

effective interaction for learning by teaching that might bootstrap tutor 

learning even with insufficient prior knowledge.  

The goal of this paper is to investigate cognitive factors that affect tutor 

learning. The central research question is why some students (even with low 

prior knowledge) learned more than other students with comparable prior 

knowledge.  To address this research question, the current paper analyzes 

data from two classroom (in-vivo) studies conducted in the USA and the 

Philippines. The Philippines study was a replication of the USA study re-

ported earlier [8].  

In the rest of the paper, we first introduce a learning environment in 

which students learn to solve linear equations by teaching SimStudent. We 

will then introduce two classroom studies conducted in the USA and the 

Philippines followed by the results and discussions.  

2. Online Learning Environment with SimStudent  

This section provides a brief overview of SimStudent and the online 

learning environment, Artificial Peer Learning environment using 

SimStudent (APLUS), in which students learn to solve algebra equations by 

interactively teach SimStudent.  Technical details about SimStudent and 

APLUS can be found elsewhere [7] 

2.1. SimStudent 

SimStudent is a synthetic pedagogical agent that acts as a peer learner.  It 

learns procedural skills from examples.  That is, a student gives SimStudent 



a problem to solve. SimStudent then attempts to solve the problem one step 

at a time, occasionally asking the student about the correctness of each step.  

If SimStudent cannot perform a step correctly, it asks the student for a hint.  

To respond to this request, the student has to demonstrate the step. 

Students may not be able to provide the correct feedback and hints.  As 

SimStudent is unable to distinguish correct from incorrect feedback, it con-

tinues to try to generalize examples and generate production rules that rep-

resent the skills learned.  SimStudent is also capable of making incorrect 

inductions that would allow SimStudent to learn incorrect productions even 

when students teach SimStudent correctly.  SimStudent’s ability to model 

students’ incorrect learning is one of the unique characteristics of 

SimStudent as a teachable agent.  

2.2. APLUS: Artificial Peer Learning Environment using SimStudent 

Figure 1 shows an example screen shot of APLUS. In APLUS, students 

act as a tutor to teach SimStudent how to solve equations. SimStudent is 

named Stacy and visualized at the lower left corner of APLUS.  The tutoring 

interface allows the student and Stacy to solve problems collaboratively. In 

the figure, a student poses the problem 3x+6=15 for Stacy to solve.  Stacy 

enters “divide 3” and asks the student whether this is correct.  The student 

responds by clicking on the [Yes/No] button.  If the student gets stuck, she 

can consult the examples tabbed at the top of the screen.  

The student has the option of gauging how much Stacy has learned with 

the use of a quiz.  The student chooses when and how often to administer 

 
Fig 1. A screen shot of APLUS. SimStudent is visualzed with an avatar 

image and names Stacy. 



the quiz by clicking a button at the bottom of the interface.  The quiz inter-

face looks like the tutoring interface, however, when Stacy takes the quiz, 

she does so independently, without any feedback or intervention from the 

student.  At the end of the quiz, the student is presented with a quiz result.  

The quiz is divided into 4 sections, each with two equation problems.  

The quiz items were created from the mix of one-step, two-step, and target 

equations (i.e., the equations with variables on both sides).  

Stacy cannot progress to a section until she passes the previous section.  

The students were asked to tutor Stacy to be able to solve equations with 

variables on both sides. In the classroom studies, the students were informed 

that their goal was to help Stacy pass all four (4) sections of the quiz.   

3. Methods  

3.1. Participants 

The USA study took place in one high school in Pittsburgh, PA, under 

the supervision of the Pittsburgh Science of Learning Center [8]. There were 

eight Algebra I classes with an average of 20 students per class. A total of 

160 students with ages ranging from 14 to 15 participated in the study.   

The Philippines study took place in one high school in Manila, Philip-

pines, under the supervision of the co-authors from the University of the 

East and the Ateneo de Manila University.  We enlisted participation from 

five first year high school sections with an average of 40 students per class.  

There were 201 study participants in all with ages ranging from 11 to 15. 

The average age of the participants was 12.5 years.   

3.2. Structure of the study 

In both the USA and the Philippine studies, each participant was random-

ly assigned to one of two versions of SimStudent: an experimental condition 

in which Stacy prompted the participants to self-explain their tutoring deci-

sions and a control condition with no self-explanation prompts. The study 

was designed this way to investigate a particular research question on the 

effect of self-explanation for tutor learning [8], which is beyond the scope of 

the current paper. For three consecutive days, participants used their as-

signed version of SimStudent for one classroom period per day (42 minutes 

for the USA and 60 minutes for the Philippines study).   

3.3. Measures  

Students took pre- and post-test before and after the intervention.  The 

students also took a delayed-test two weeks after the post-test was adminis-

tered. Three versions of isomorphic tests were randomly used for pre-, post-, 

and delayed-tests to counterbalance the test differences.  Students had the 

entire class period to finish the tests. 



The tests are divided into five parts.  Of these five parts, three parts are to 

test procedural knowledge on how to solve equations (the Procedural Skill 

Test, or PST), whereas other two parts are to test conceptual knowledge 

about algebra equations (the Conceptual Knowledge Test, or CKT). 102 out 

of 160 USA participants took all three tests, whereas in the Philippines 146 

out of 201 participants took all three tests.   In the following analyses, unless 

otherwise indicated, only those students who took all three tests are includ-

ed.  

The system automatically logged all of the participants’ activities includ-

ing problems tutored, feedback provided, steps performed, examples re-

viewed, hints requested, and quiz attempts.  In the following analysis, we 

use these factors as process data.  

4. Results  

4.1. Overall Test Scores 

Table 1 shows mean test scores plus or minus SD for the pre, post, and 

delayed Procedural Skill Tests from two studies. To see how students’ test 

scores varied before and after teaching SimStudent, we conducted a two-

way repeated-measures ANOVA with condition as a between-subjects vari-

able and test-time (pre, post, and delayed) as a within-subjects variable. For 

the USA study, the repeated measure analysis revealed a weak trend for the 

main effect for test-time. A post-hoc analysis detected a difference from pre-

test to post-test [8]. In the Philippines study, the test-time was also the main 

effect, and the post-hoc analysis detected that delayed-test was significantly 

higher than pre-test; t(247.1) =  2.457, p < 0.05. This difference, however, 

was likely due to the classroom instruction that students were taking during 

the two-week interval between the intervention and the delayed test.  

Both in the USA and the Philippine studies, condition was not the main 

effect—the presence of self-explanation did not affect tutor learning with 

the version of APLUS and SimStudent used in two studies. 

 

Table 1: Mean test scores ± SD for pre, post, delayed procedural skill test for 

each study.  

 Pre-test Post-test Delayed-test 

Philippines (PH) 0.21±0.01 0.22±0.02 0.25±0.03 

USA (US) 0.68±0.04 0.71±0.05 0.69±0.06 

 

4.2. Impact of prior knowledge 

As shown in Table 1, there was a notable difference in the pre-test scores 

suggesting that USA students had higher level prior knowledge than Philip-

pine students; t(142.4) = -22.25, p < 0.001.  



To see how prior knowledge affected learning and if the impact of prior 

knowledge differ between two studies, we ran a regression analysis with 

post-test score as a dependent variable and study (US vs. PH) as a fixed 

factor using pre-test score as a covariate. The results showed that pre-test is 

a strong predictor of post-test; t(244) = 2.80, p < 0.01. There was also a 

strong interaction between pre-test and study; the regression coefficient 

(slope) differed significantly between two studies; bPH = 0.32 vs. bUS = 0.76; 

F(1,244) = 11.24, p < 0.001—suggesting that, in general, USA students 

gained (from pre- to post-test) more than Philippine students.  Figure 2 

shows the scatter plot for pre-test (x-axis) and post-test (y-axis) scores.  

USA students (red triangles) had steeper regression line than Philippine 

students. 

4.3. Quiz Results 

In the USA study, 36 out of 102(35%) students made their SimStudents 

pass all four quiz sections. In the Philippines study, no students passed all 

four sections. At the best, only 7 out of 146 (5%) of Philippine students had 

their SimStudents pass quiz section 2.  

In the Philippines study, there were 73 students who solved quiz item #1 

correctly. Of those 73 students, 68 students solved quiz item #2 correctly 

(hence by definition passing quiz section 1).  Of those 68, only 11 students 

passed quiz section 2 (i.e., solving the first four quiz items correctly). 

One possible explanation for the Philippine students’ poor performance 

on the quiz is that Philippine students have insufficient prior knowledge, as 

indicated by the 

low pre-test scores 

and the weak re-

gression slope. A 

number of factors 

may account for the 

difference prior 

knowledge, includ-

ing curricular and 

age differences. 

Still, some Phil-

ippine students 

managed to solve 

the first four quiz 

items (i.e., passing 

the quiz section 2), 

while others did 

not. Why might 

this be so? The 

next section ad-

dresses this issue.  

 
Fig. 2: Scatter plot of pre-test (x-axis) and post-test 

(y-axis) scores. US students had larger regression 

slope (0.76) than the PH students (0.32). 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Pre

P
o

s
t.

factor(Country)

PH

US



4.4. What makes learning by teaching more effective? 

To understand why some SimStudents performed better on the quiz than 

others, we have analyzed the process data. In this analysis, we grouped stu-

dents depending on the quiz sections their SimStudents passed. We call 

students whose SimStudents passed and failed quiz section x the “passing 

Sx” and “failing Sx” students, respectively. By definition, there were no 

passing S3 students in the Philippines study.   

Our focus in this particular analysis is to understand how some students 

managed to pass quiz sections in the Philippines study. Therefore, we only 

included Philippine students for this analysis unless otherwise noted.   

4.4.1. Accuracy of tutoring 

One cognitive factor that had a significant contribution to tutor learning 

in the past studies is the accuracy of tutoring—i.e., the accuracy of recogniz-

ing correct and incorrect steps made by SimStudent as well as the accuracy 

the steps demonstrated as hint.  

We thus compared the mean accuracy of passing/failing S1 and S2 stu-

dents. The result suggested that the accuracy of tutoring is a key for success 

on the quiz in the Philippines study as well. For S1: MPassing = .70 (SD = .14) 

vs. MFailing = .52 (SD = 0.16); t(119.3)=-6.89, p < 0.001.   For S2: MPassing = 

.75 (SD = 0.09) vs. MFailing = .59 (SD = 0.18); t(8.7)=-4.39, p < 0.01. 

Students’ prior knowledge should have affected tutoring accuracy.  There 

was actually a strong correlation between the prior knowledge (measured as 

the pre-test score on the Procedural Skill Test) and the accuracy of tutoring.  

There was also a study difference—USA students tutored more accurately 

than Philippine students.  The centered polynomial regression with the cen-

tered pre-test score (i.e., the difference from the mean) as the covariate 

(C.Pre) and the study (US vs. PH) as a fixed factor predicting the accuracy 

of tutoring (AT) revealed the following regression coefficients: AT = 0.62 + 

0.16*C.Pre + 0.18[if US]; r
2
=0.42, F(2, 235)=88.31, p<0.001; meaning that 

Philippine students at the average procedural skill pre-test tutored with a 

62% accuracy rate. USA students tutored 18% more accurately than Philip-

pine students in general. There was no study difference for the regression 

slope—suggesting that the prior knowledge affected the accuracy of tutoring 

equally in two studies.  

A further analysis that compared passing and failing S1 students revealed 

that the prior knowledge was not the dominant factor that affected the accu-

racy of tutoring. In the Philippines study, the average pre-test score of the 

Procedural Skill Test for passing S1 students (M=.21, SD=0.10) was not 

higher than failing S1 students (M=.20, SD=0.09). However, the average 

accuracy of tutoring was higher for passing S1 students (M=.70, SD=.14) 

than failing S1 students (M=.52, SD=0.17).  

As for the students’ learning, there was a weak trend on the average nor-

malized gain from pre- to post- favorable to passing S1 students (M=.05, 

SD=0.22) than failing S1 students (M=.01, SD=0.18); t(92.3)=-0.46, p=0.65. 



This indicates that the passing S1 students in the Philippines study learned 

more by teaching than the failing S1 students although where was no signif-

icant difference of the prior knowledge among them. There might have been 

difference in the way passing and failing S1 students tutored SimStudent. 

The next section shows the results on analyzing process data. 

4.4.2. Tutoring strategies 

Since quiz items were fixed, using quiz items for tutoring could be a 

good strategy to help SimStudent pass the quiz. Actually, in the USA study, 

passing S4 students showed a higher percentage of using quiz problems for 

tutoring (MUS = .95, SD = .11) than failing S4 students (MPH = .59, SD = 

.42); t(28) = -4.08, p < 0.001.  

Thus, we first investigated whether passing S1 and S2 students in the 

Philippines study used more quiz items for tutoring than failing S2 students.  

We found that only 47% (1826 out of 3898) problems tutored in the Philip-

pines study were the quiz items. Philippine students did not copy quiz items 

for tutoring as often as the successful (i.e., passing S4) USA students.  

If time on task were a crucial factor for learning by teaching, then stu-

dents who tutored on more problems should have learn more than those who 

tutored on fewer problems. To test this hypothesis, we first analyzed if pass-

ing S1 students simply tutored more problems than failing S1 students. The 

average number of problems tutored was 28.9±14.6 for passing S1 students 

and 20.9±12.2 for failing S1 students. The difference was not statistically 

significant. There was no notable difference in the number of problems tu-

tored between passing and failing S1 students. 

4.4.3. Resource usage 

Did passing S1 students self-learn the materials by using resources more 

than failing S1 students? When counting the number of times students re-

ferred to worked-out examples, there was actually a notable difference.  The 

passing S1 students referred to worked-out examples more than failing S1 

students; MPassing S1 (N=52) = 164±116 vs. MFailing S1 (N=79) = 106±94; 

t(93.19) = -3.00, p < 0.01.  

Furthermore, passing S1 students copied more example problems for tu-

toring than failing S1 students; MPassing S1 = 2.2 vs. MFailing S1 = 1.4; t(111.16) 

= -3.62, p < 0.001. Even when students did not actually understand how to 

solve equations, they could simply copy worked-out examples line by line to 

tutor SimStudent, which should have certainly affected SimStudent’s ability 

to pass the quiz.   

There was also a significant correlation between the number of example 

problems tutored and number of times example tab were clicked; r
2
=0.36, 

t(133)=8.67, p < 0.001—suggesting that Philippine students were actually 

switching between tutoring interface and example tabs frequently when they 

were copying example problems and their solutions for tutoring.  

4.4.4. Predictor of learning 



Since there were several factors that contributed SimStudent’s and stu-

dents’ learning found in the data, we conducted a regression analysis to see 

how certain factors contributed to the post-test score on the procedural skill 

test. The following variables were entered in the regression model: pre-test 

score on the Procedural Skill Test, total number of problems tutored, total 

number of quiz items tutored, total number of examples viewed, total num-

ber of example problems tutored, accuracy of tutoring, and study.  

The result showed that pre-test score, accuracy of tutoring (AT), and 

study were significant predictors of post-test score (PTS) on the Procedural 

Skill Test. When pre-test score was centered (C.Pre), the following regres-

sion coefficients were revealed: PST = 0.21 + 0.61*C.Pre + 0.23*AT + 

0.14[if US]; r
2
 = 0.77, F(3, 234)=267.7, p < 0.001.  Since pre-test and accu-

racy of tutoring are highly correlated, dropping accuracy of tutoring from 

the model also showed an equally good fit: PST = 0.34 + 0.63*C.Pre + 

0.34[if US]; r
2
 = 0.76, F(2, 245) = 399.3, p < 0.001. 

5. Discussions and Concluding Remarks 

We found that the prior knowledge had a strong influence on tutor learn-

ing—if students do not have sufficient prior knowledge for tutoring, they 

would not benefit from tutoring as much as students who have appropriate 

prior knowledge. The regression model mentioned in the results section 

shows that prior knowledge is the dominating predictor of post-test score for 

the Procedural Skill Test.  

Nonetheless, in the Philippines study, students who managed to have 

their SimStudent pass the first quiz section (i.e., the first two quiz problems) 

outperformed those who failed to do so on the post-test of the Procedural 

Skill Test (albeit the small effect size) even when there was no pre-test dif-

ference between passing and failing students. Students who tutored 

SimStudent better learned more. The same correlation between 

SimStudent’s and students’ learning was observed in previous studies [7].  

These results indicate that some students had actually learned how to tu-

tor better SimStudent via the actual tutoring interaction.  We found that, in 

the Philippines study, students who managed their SimStudent to pass the 

first two sections of the quiz copied worked-out examples more often than 

those who failed to pass the quiz. Furthermore, those passing students re-

viewed the worked-out examples more often than failing students. Further 

investigation would be necessary to understand how to better assist students 

with low prior knowledge to learn by teaching.  

Learning by teaching is a promising type of learning especially when 

combined with an advanced agent technologies. Yet, there are many to un-

derstand when and how students learn by teaching and how to best facilitate 

their learning with various individual differences.  



6. Acknowledgements 

The authors thank the Ateneo Laboratory for the Learning Sciences, 

Marc Lester Armenta, Regina Ira Antonette M. Geli, Victoria Keiser, Gabri-

el Jose G. Vitug, and Evelyn Yarzebinski. We thank the Department of Sci-

ence and Technology Philippine Council for Industry, Energy, and Emerg-

ing Technology Research and Development (PCIEERD) for the grant enti-

tled, "Development of Affect-Sensitive Interfaces" and the Engineering 

Research and Development for Technology (ERDT) program for the grant 

entitled, "Development of an Educational Data Mining Workbench." 

7. References 

1. Chin, D., et al., Preparing students for future learning with Teachable 

Agents. Educational Technology Research and Development, 2010. 

58(6): p. 649-669. 

2. Pareto, L., et al., A Teachable-Agent Arithmetic Game's Effects on 

Mathematics Understanding, Attitude and Self-efficacy, in Proceedings 

of the International Conference on Artificial Intelligence in Education, 

G. Biswas, et al., Editors. 2011, Springer: Heidelberg, Berlin. p. 247-

255. 

3. Uresti, J.A.R. and B. du Boulay, Expertise, Motivation and Teaching in 

Learning Companion Systems. International Journal of Artificial 

Intelligence in Education, 2004. 14(2): p. 193-231. 

4. Roscoe, R.D. and M.T.H. Chi, Understanding tutor learning: 

Knowledge-building and knowledge-telling in peer tutors' explanations 

and questions. Review of Educational Research, 2007. 77(4): p. 534-

574. 

5. Biswas, G., et al., Measuring Self-Regulated Learning Skills through 

Social Interactions in a teachable Agent Environment. Research and 

Practice in Technology Enhanced Learning, 2010: p. 123-152. 

6. Matsuda, N., et al., Learning by Teaching SimStudent – An Initial 

Classroom Baseline Study comparing with Cognitive Tutor, in 

Proceedings of the International Conference on Artificial Intelligence in 

Education, G. Biswas and S. Bull, Editors. 2011, Springer: Berlin, 

Heidelberg. p. 213-221. 

7. Matsuda, N., et al., Cognitive anatomy of tutor learning: Lessons 

learned with SimStudent. Journal of Educational Psychology, in print. 

8. Matsuda, N., et al., Studying the Effect of Tutor Learning using a 

Teachable Agent that asks the Student Tutor for Explanations, in 

Proceedings of the International Conference on Digital Game and 

Intelligent Toy Enhanced Learning (DIGITEL 2012), M. Sugimoto, et 

al., Editors. 2012, IEEE Computer Society: Los Alamitos, CA. p. 25-32. 


	AIED2013-wsformat
	1
	2
	3
	4
	5
	6
	7
	8

