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Preface 
Educators and researchers have long recognized the importance of formative 

feedback for learning. Formative feedback helps learners understand where they are in 
a learning process, what the goal is, and how to reach that goal. While experimental 
and observational research has illuminated many aspects of feedback, modern 
interactive learning environments provide new tools to understand feedback and its 
relation to various learning outcomes. 

Specifically, as learners use tutoring systems, educational games, simulations, and 
other interactive learning environments, these systems store extensive data that record 
the learner’s usage traces. The data can be modeled, mined and analyzed to address 
questions including when is feedback effective, what kinds of feedback are effective, 
and whether there are individual differences in seeking and using feedback. Such an 
empirical approach can be valuable on its own, and it may be especially powerful when 
combined with theory, experimentation or design-based research. The findings create 
an opportunity to improve feedback in educational technologies and to advance the 
learning sciences. 

The FFILE workshop aims to advance and encourage research on using data to 
understand and improve feedback and interactive learning environments. The 
organizers hope to facilitate the exchange of ideas and the growth of the community of 
researchers who are interested in these topics. As evidenced by the publications in this 
volume, using data to understand and improve feedback is important and timely. The 
papers cover a variety of topics, including rubric-based automated assessment of 
student drawings of chemical reactions (Rafferty et al.), IRT-based modeling of the 
effect of feedback on analogical reasoning in children (Stevenson et al.), and an 
assessment technique for student responses that relies on student participation (Jordan 
et al.). 

Each submission to the workshop was reviewed by three members of a Program 
Committee, which included the co-chairs and representatives of academia, industry and 
independent research institutions. The co-chairs thank the Program Committee for 
diligent reviewing and service. 

The co-chairs also thank Erin Walker and Chee-Kit Looi, the AIED 2013 Tutorial 
and Workshop Chairs, and Andrew Olney and Phil Pavlik, the AIED 2013 Local 
Arrangements Chairs, for their tireless assistance in helping us organize the workshop. 

The workshop will include talks, posters, demos, and interactive activities. The 
organizers hope that the workshop will be of interest to the wider AIED community. 

 
 
 
 
 

June, 2013 
Ilya Goldin, Taylor Martin, Ryan Baker, Vincent Aleven, Tiffany Barnes 
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ABSTRACT
Generative educational assessments such as essays or draw-
ings allow students to express their ideas. They provide
more insight into student knowledge than most multiple-
choice items. Formative guidance on generative items can
help students engage deeply with material by encouraging
students to e↵ectively revise their work. Generative items
promote scientific inquiry by eliciting a variety of responses
and allowing for multiple correct answers, but they can be
di�cult to automatically evaluate. We explore how to de-
sign and deliver automated formative guidance on generative
items requiring precollege students to draw the arrangement
of atoms before and after a chemical reaction. The auto-
mated guidance is based on a rubric that captures increas-
ing complexity in student ideas. Findings suggest that the
automated guidance is as e↵ective at promoting learning as
teacher-generated guidance, measured both by immediate
improvement on the revised item and pre- to post-test im-
provement on a near-transfer item. Immediate and delayed
delivery of automated guidance are equally e↵ective for pro-
moting learning. These studies demonstrate that embedding
automated guidance for chemistry drawings in online curric-
ula can help students refine their understanding. Providing
automated guidance can also reduce the time teachers spend
evaluating student work, creating more time for facilitating
inquiry or attending to the needs of individual students.

Keywords
formative feedback | automatic assessment | chemistry edu-
cation

1. INTRODUCTION
One of the promises of computer assisted education is the
ability to provide timely guidance to students that is adapted

to their particular mistakes. Such adaptive formative feed-
back is provided by human tutors [18], and has been shown
to be an important principle in designing computerized tu-
tors [1, 2]. This guidance can sca↵old student understanding
and address common errors that lead di↵erent students to
express the same incorrect response. While the majority
of computerized tutors provide formative feedback in some
form [11, 26], this guidance is often limited to selection tasks
or numeric answers. These kinds of answers are easy to eval-
uate yet may encourage students to recall facts rather than
distinguish and integrate ideas.

Generative tasks, in contrast, elicit students’ range of ideas
and encourage them to use evidence to sort out ideas in or-
der to create a coherent explanation. Mintzes, Wandersee,
and Novak point to the fact that generative assessments can
provide a fuller picture of students’ conceptual understand-
ing and drive students towards “making meaning” rather
than memorizing facts [19]. Generative tasks are di�cult
to evaluate due to the variety of responses and possibilities
for multiple ways to express the correct answer. Evaluating
student work is time consuming and requires content exper-
tise. Subsequently it is often not possible for teachers to
provide detailed guidance to all students [5].

In this paper, we explore how automated formative guidance
on student-generated drawings can improve students’ con-
ceptual understanding of chemical reactions. By constrain-
ing students to use virtual atom stamps, rather than drawing
the atoms themselves, we limited the degree to which stu-
dent drawings could vary while still allowing for expression
of di↵erent conceptual views. We designed an algorithm to
automatically evaluate students’ conceptual views, and pro-
vided targeted guidance to improve understanding.

We begin by reviewing some of the relevant literature on
formative feedback as well as the theoretical framework,
knowledge integration, in which our work is grounded. We
then describe the drawing tasks that students completed as
part of an inquiry-based activity concerning global climate
change and the highly accurate automated scoring system
we developed. We demonstrate how the automated guid-
ance a↵ects student learning through two classroom stud-
ies: one explores the e↵ect of automated guidance compared



to teacher-generated guidance, and the other investigates
whether immediate or delayed automated guidance is more
e↵ective.

2. BACKGROUND
There has been a great deal of work on the design and use
of formative feedback. We briefly overview some of the most
relevant literature on formative feedback for science learn-
ing, as well as the knowledge integration framework, which
is the pedagogical theory underlying the design of our as-
sessment and guidance.

2.1 Formative Feedback
Formative assessment can help teachers to recognize stu-
dents’ level of understanding and adapt instruction. Ruiz-
Primo and Furtak [21] found that teachers’ informal use
of this type of assessment was related to their students’
performance on embedded assessment activities, suggesting
that this monitoring can indeed help teachers boost student
learning. Guidance based on these assessments provides a
way to help students to improve their understanding and
recognize gaps or inconsistencies in their ideas [10].

While formative assessment and guidance can be helpful for
learning, it is di�cult to determine how to design this guid-
ance for generative and open-ended tasks. These tasks fa-
cilitate a variety of student responses, and the best form
of guidance for promoting learning and conceptual under-
standing based on students’ current knowledge is unclear.
Some work has had success at automatically scoring student-
generated short answers (e.g., [3],[13]), leading to the poten-
tial for conceptual guidance based on these scores. In the sci-
ence domain, automated feedback has also been e↵ective at
driving student learning when creating and revising concept
maps [24]. For inquiry learning, there has been significant
interest in how to e↵ectively sca↵old student learning using
technology [20]. While often not aimed directly at guidance,
machine learning techniques have been employed to auto-
matically recognize e↵ective inquiry learning skills [22]. Our
work adds to this body of literature on formative feedback
in open-ended science tasks by demonstrating that drawing
tasks in which students pictorially represent scientific ideas
are amenable to automatic evaluation. We test how di↵erent
ways of providing guidance a↵ect student learning.

2.2 Knowledge Integration
The drawing tasks we examine are part of a chemical re-
actions unit [7] built in the Web-based Science Inquiry En-
vironment (WISE) [16]. This environment is based on the
theory of knowledge integration [15]. Knowledge integra-
tion is based on constructivist ideas that focus on building
on students’ prior knowledge and helping them to connect
new concepts with this knowledge, even if some of this prior
knowledge is non-normative (e.g.,[27]). Knowledge integra-
tion consists of four main processes: eliciting existing stu-
dent ideas, adding new ideas, distinguishing ideas, and sort-
ing ideas into cohesive understandings [14]. Within WISE,
these processes are targeted by activities within an inquiry-
based learning module. Each module is organized around a
central topic, such as understanding climate change, and the
activities may include answering multiple choice or short an-
swer questions, watching a visualization, or creating a draw-
ing to illustrate a scientific phenomenon. For instance, the

chemical reactions unit contains visualizations of how en-
ergy from the sun is reflected by the Earth and transformed
into heat energy. This visualization may add to students’
existing ideas as well as help them to see cases that are not
accounted for by these existing ideas. Later in the unit, stu-
dents’ understanding is challenged through the introduction
of new concepts, such as pollution, into both the visualiza-
tion and the general investigation of why climate change
occurs. This adds new ideas to the student’s existing model
and prompts revision of the student’s ideas to form a more
complete understanding. The knowledge integration frame-
work has been the building block for a number of WISE
units, and has also been revised and used for pedagogical
design in other settings [8, 25].

In the context of knowledge integration, generative tasks
elicit students’ existing ideas and help them to clarify and
distinguish their ideas from one another. Through this pro-
cess, they may form more cohesive conceptual understand-
ings. For example, a student might make a drawing or
write a textual explanation of the visualization she observed.
This prompts her to pull out individual ideas and consider
how to connect what she saw in the visualization with her
prior knowledge. Formative guidance can assist students by
prompting them to revise their ideas and evaluate their con-
sistency with normative scientific ideas, which may be artic-
ulated or referred to in the feedback [17]. When this guid-
ance is based on students’ own ideas, as articulated in their
initial response to the activity, it can directly help students
to develop criteria for distinguishing between normative and
non-normative ideas and push students to integrate ideas
rather than holding separate, conflicting conceptions [16].

3. DRAWING CHEMICAL REACTIONS
We focus our investigation of formative feedback on stu-
dents’ drawings of chemical reactions. These drawings show
students’ particulate understanding of how atoms are rear-
ranged in a reaction. Past work has shown that learning mul-
tiple models of chemical reactions and providing students
with ways of visualizing the particles involved in the reac-
tions can help to strengthen student understanding [9, 23].
The drawing tasks are part of a WISE unit entitled Chemical
Reactions: How Can We Help Slow Climate Change?, which
focuses on students’ understanding of chemical reactions [7].
As shown in Figure 1(a), these drawing tasks ask students
to draw the arrangement of atoms before and after a chem-
ical reaction; one of the tasks focuses on the combustion of
methane while the other involves the combustion of ethane.
The WISE Draw screen provides students with “stamps” for
each atom; for instance, the methane reaction problem in-
cludes stamps for oxygen, carbon, and hydrogen. Students
must choose how many of each atom to add to their draw-
ing and arrange the atoms to reflect how they are grouped
into molecules. Students then create a new frame in their
drawing to show the products of the reaction. The drawings
enable students to articulate their ideas about chemical re-
actions and to work with a di↵erent model of these reactions
than the typical equation based format.

Both the methane and ethane tasks ask the student to show
the combustion of oxygen and a hydrocarbon, resulting in
the products carbon dioxide and water. In the methane
drawing, students are asked to draw two methane molecules



(a) (b)

Figure 1: The WISE drawing environment. (a) A screenshot of a student drawing. Students place atom
stamps on the central canvas to show the molecules at the beginning and end of a chemical reaction. On the
right side of the screen, the two frames that the student has created are shown. (b) The student drawing
canvas with automated guidance. The student has submitted her drawing, and a pop up box appears with
adaptive textual feedback to help her develop her conceptual understanding of chemical reactions.

and as many oxygen molecules as are required for complete
combustion of the methane. This item thus requires students
to reason about how many oxygen molecules each methane
molecule reacts with. For the ethane drawing, students
are told to illustrate ten oxygen molecules and two ethane
molecules as the reactants, and then to rearrange them to
form the products. This leaves three oxygen molecules that
are unchanged by the reaction.

4. PROVIDING GUIDANCE ON STUDENT
DRAWINGS

Since the drawing tasks assess important conceptual ideas
about chemical reactions and students frequently make er-
rors on these tasks, they are a natural target for providing
students with formative feedback. Our goal is to provide
conceptual guidance that targets errors that the student has
made. This requires detecting errors in the drawing and cre-
ating guidance for each category of conceptual errors.

4.1 Evaluating Student Drawings
To evaluate student drawings, we created an algorithm that
processes each drawing and assigns it a score. We used a de-
velopment set of 98 drawings from past students, half from
each item, to determine the most common errors and to tune
the parameters of the scoring algorithm. Of these 98 draw-
ings, 45% were correct, as marked by a human evaluator.

Examination of the student drawings showed many similar
errors across students. We grouped these errors into con-
ceptual categories, shown in Table 1. Category 0 includes
drawings that do not have two frames, one for the reac-
tants and one for the products. In some cases, this may be
due to di�culties using the drawing interface. Category 1
corresponds to lack of conservation of mass. Student draw-
ings with this error have di↵erent atoms in the reactant and
product frames. Category 2 corresponds to drawings that
conserve mass, but have incorrect reactants. This may be
due to having the wrong number of molecules, or to hav-
ing atoms incorrectly arranged into molecules. Category 3

refers to drawings that have correct reactants, but incor-
rect products. For instance, a student might combust only
one methane molecule, incorrectly leaving one methane and
two oxygen molecules in the products. Category 4 includes
drawings that are nearly correct, but where molecules are
overlapping; for example, four oxygen atoms might be ar-
ranged in a square, rather than arranged in two distinct
groups. Finally, Category 5 includes correct drawings.

In order to facilitate feedback across a variety of chemi-
cal reaction drawings, we separated the scorer into a scor-
ing algorithm and a specification file. The scoring algo-
rithm maps the drawing into one of the six categories de-
scribed above, drawing information from the specification
file to determine the correct configuration of atoms into
molecules and what molecules are correct for each frame.
In the methane case, for example, the specification file lists
four allowed molecules: oxygen, methane, carbon dioxide,
and water. Each molecule is defined by the atoms that it in-
cludes and how these atoms touch one another. For instance,
the specification file indicates that carbon dioxide includes
one carbon and two oxygen atoms, and each oxygen atom
must touch the carbon atom. The specification file also lists
the correct reactants and products for the given reaction.
While this level of expressivity was su�cient for our tasks,
which have a single correct set of molecules that should be
present in each frame, the specification file and scorer could
easily be extended to specify non-unique correct answers,
such as requiring that the products should have twice as
many of one molecule as another.

Student drawings are saved as SVG strings, an XML-based
vector image format, which facilitates automatic processing.
Each string indicates how many frames exist, what stamps
are in each frame, and the location of each stamp. The
specification file lists how stamps (image files) correspond to
atoms, so the string e↵ectively indicates the location of each
atom in the drawing. The automated scoring algorithm has
three stages: pre-processing, identifying molecule groupings,



Criteria 0 1 2 3 4 5
Two frames X X X X X
Conserves atoms X X X X
Correct reactants X X X
Correct products X X
Groupings clear X
Rate in dev. set 11% 19% 16% 5% 3% 45%

Table 1: The scoring rubric. Each level adds an ad-
ditional criterion that must be met. The bottom
row indicates the proportion of drawings in the de-
velopment set with each score.

and assigning a numerical score. Pre-processing removes
stamps that are outside of the viewable image area, often
due to a student dragging a stamp o↵screen rather than
deleting it. This stage also removes duplicate stamps that
have identical or almost identical center locations; this can
occur when a student double-clicks to place a stamp. The
pre-processing steps thus makes the SVG string correspond
more closely to the image as a viewer would perceive it.

After pre-processing, atom stamps are grouped into molecules,
and the frames are annotated with the atoms and molecules
that they contain. Atoms are part of the same molecule if
they are visually grouped. This is indicated by the atoms
directly touching, with atoms in one molecule not touching
atoms in another molecule. Small spaces between the atoms
in a molecule and small amounts of overlap are ignored by
our algorithm due to our focus on conceptual errors; these
issues are more likely to be due to the constraints of the
medium than evidence of student misunderstanding.

Algorithmically, the grouping of atoms into molecules is
computed via depth-first search and by solving a constraint
satisfaction problem [28]. Depth-first search computes the
connected components of the drawing, where a component is
connected if all images in that component are within ✏ of at
least one other image in the component; given small ✏ > 0,
atoms can be in the same molecule but not directly touch.
Components are then matched to molecules, where a match
is valid if the identity of the atoms in the specification and in
the drawing are the same and if the touching relations given
in the problem specification are satisfied; this is implemented
as constraint satisfaction. If one connected component can
only be recognized as consisting of several molecules, the
drawing is marked as having overlapping molecules unless
the overlap is less than some constant. Again, this constant
allows us to ignore small amounts of overlap.

Based on the annotations of the molecules and atoms in
each frame, the numerical score for the drawing is computed
based on the rubric in Table 1. For instance, if the number
of atoms of each type changes between the first and second
frames, the drawing is given a score of 1. If the drawing
conserves mass but reactants are not correct, the drawing
is given a score of 2, regardless of whether the products
are correct. A score of 4 is given only if all atoms in the
frames are correct, and the scorer recognized that the correct
molecules were present but overlapping.

We evaluated the accuracy of the algorithm on both the

development set and on pilot data from 251 student draw-
ings. In both cases, the drawings were scored by a trained
human scorer, and these scores were compared to the auto-
mated scores. On the development set, the automated score
matched the human score on 97% of the drawings. Accu-
racy was very similar for the pilot data, which was not used
in the creation of the scorer: automated scores matched the
human score on 96% of the drawings.

4.2 Creating Guidance from Scores
Given that the scoring algorithm is quite accurate, we can
provide guidance based on the conceptual understanding
that the student has displayed in the drawing. For each
of the six possible scores, we designed a textual feedback
message to help students revise their drawing. We chose to
use textual feedback to facilitate a comparison between au-
tomated and teacher-generated guidance. The WISE plat-
form supports teacher guidance by allowing teachers to view
student work and type comments to each student group.

The textual feedback was designed to promote knowledge in-
tegration by recognizing students’ normative ideas and help-
ing them to refine and revise their non-normative ideas [16].
Drawings that were scored as having some conceptual er-
ror (scores 0-4) all received textual feedback of a similar
format. First, a correct feature of the drawing was recog-
nized, anchoring the guidance with students’ prior knowl-
edge. For example, a student who received a score of 2
would be praised for conserving mass, since this is the con-
ceptual feature that bumped the student from a score of 1
to 2. The textual feedback then posed a question targeting
the student’s conceptual di�culty, such as identifying what
molecules should be present in the reactant frame; this elic-
its student ideas about the topic of di�culty. Finally, the
feedback directed students to a relevant step earlier in the
unit, and encouraged them to review the material in that
step and then to revise their drawing. This promotes adding
new ideas and distinguishing normative and non-normative
ideas. The feedback for a score of 1 is shown in Figure 1(b).

5. STUDY 1: EFFECTIVENESS OF AUTO-
MATED GUIDANCE

To test the e↵ectiveness of our automated guidance sys-
tem, we compared student learning when given automated
or teacher-generated guidance. In this study, automated
guidance was provided to students upon request, taking ad-
vantage of the fact that automation facilitates immediate
feedback. Based on evaluation of the existing student draw-
ings, we believed the automated scorer would have relatively
high accuracy, but the guidance it can provide is still less
specific than that which teachers can provide. The teachers
could adjust guidance for individual students, while there
were only six di↵erent automated feedback messages that
a student might receive. Since prior work has had mixed
results concerning whether specific or general feedback is
more helpful(e.g., [6],[12]), it is not clear whether the lack of
specificity in the automated guidance will be a disadvantage.

5.1 Methods
5.1.1 Participants
A total of 263 students used the WISE unit and completed
both the pre- and post-tests.



 
 
 
Two N2 molecules and seven H2 molecules in a CLOSED container react according to 
the balanced equation:  

N2 + 3H2 ! 2NH3 
The box on the left shows the container BEFORE the reaction. The box on the right shows 
Sasha's drawing of the container AFTER the reaction. 
 

 
Give as many reasons as you can why Sasha's drawing is INCORRECT. 

 
Figure 1: Pretest-posttest critique item 

 
 To examine the effect of the automated and teacher feedback on different learners, we 
divided the students into low and high prior knowledge groups using their average knowledge 
integration scores on the initial drawing (omitting students who earned a perfect score on both 
initial drawings). For low prior knowledge students (scores less than 3), AF students had greater 
gains than TF students. For high prior knowledge students, TF students had greater gains than 
AF students. These relationships held for both the methane and ethane tasks, though they did not 
reach statistical significance. An analysis of variance (ANOVA) on the revision scores found an 
interaction (Figure 2) between prior knowledge level (high/low) and treatment condition that 
approached significance [F(1,85)=3.61, p=0.06, !2=.03]. The interaction indicates that the 
automated feedback was more effective for low prior knowledge learners, while the teacher 
feedback was more effective for high prior knowledge learners. 

We conjecture that the reason for this observed interaction is that the conceptual guidance 
provided by our automated feedback effectively addressed large gaps in the understanding of low 
prior knowledge students. These students had more difficulty incorporating the terse, generic, or 
procedural feedback many received from their teacher. On the other hand, concise feedback from 
teachers effectively targeted the smaller knowledge gaps held by higher prior knowledge 
students, who may have needed only a gentle nudge in the right direction. The detail of the 
automated feedback may have been extraneous or distracting for these students. Our findings 
recall the “expertise-reversal” effect (Kalyuga, 2007), where instructional designs that are 
effective for novices lose their effectiveness for learners with more expertise. This effect has 
been observed in other studies on automated feedback (Salden, Aleven, Schwonke, & Renkl, 
2010; VanLehn, et al., 2003). 
 
 

BEFORE Reaction
AFTER Reaction
(Sasha's drawing)

Figure 2: Item from the pre- and post-test related to
drawing chemical reactions. Students are asked to
examine Sasha’s drawing and explain why the draw-
ing is incorrect. The drawing task is similar to those
in the unit, but asks students to evaluate rather than
generate the drawing and requires integrating the
equation and the drawing.

5.1.2 Study design
Students were assigned on a full-class basis to receive ei-
ther automated or teacher-generated guidance. Two teach-
ers from the same public middle school participated in the
study, using the WISE activity in their eighth grade physical
science classes. The activity took approximately five hours,
spread over multiple class periods. The first teacher had 139
students in five classes; three of these classes received auto-
mated guidance and two received teacher guidance. The sec-
ond teacher had 124 students, also spread over five classes;
again, three of the classes were assigned automated guidance
and two were assigned teacher guidance. This led to 155 stu-
dents in the automated condition and 108 students in the
teacher guidance condition. Students used WISE in groups
of between one and three students; there were 71 groups in
the automated condition and 58 in the teacher condition,
although a small number of students in these groups did not
complete the pre-test or the post-test.

All students experienced the same activities in the WISE
unit except for the draw steps. On the two draw steps,
all students received the same instructions, except that stu-
dents in the automated condition were told to click the“Sub-
mit” button when they wished to receive feedback. When
students clicked this button, they were warned that they
only had two chances to receive feedback and to confirm
that they wanted to proceed. After confirming, a pop-up
box with the textual feedback appeared, as in Figure 1(b).
Students could close the feedback or re-open it to view their
existing feedback at any time.

Students in the teacher-generated guidance condition did
submit their work. Instead, teachers provided feedback to
these students using the WISE Grading Tool after the stu-
dents made a drawing. When students signed in to the activ-
ity the following day, they were informed that they had re-
ceived feedback, and teachers also reminded the students to
revise their drawings based on the comments. This condition
was intended to mirror how teachers usually give feedback
to student work in WISE. Due to time constraints, students
in this condition received only one round of feedback.

Students in all conditions completed a pre- and post-test
assessment. Both assessments contained the same items.
As shown in Figure 2, one of these items asked students to
examine a drawing of a chemical reaction and to explain
why the drawing was incorrect. This item addresses some
of the same conceptual skills as the drawing tasks in the
unit, and thus can be used as a transfer measure of student
learning from the draw activities. Unlike the WISE unit,
these assessments were completed by students individually.

5.2 Results
Overall, students improved their drawings by 0.9 points af-
ter receiving guidance, as computed via the automated al-
gorithm. An analysis of variance of student scores on the
drawing items with factors for revision that received feed-
back versus final revision and feedback condition, as well as
a random factor for student group, showed that there was
a main e↵ect of revision (F (1, 142) = 68.8, p < .001), in-
dicating the improvement was significant. However, there
was not a main e↵ect of condition: improvement was nearly
identical for students who received automated guidance and
those who received teacher guidance, and both groups had
similar initial scores.

While amount of improvement on the drawing items is sim-
ilar for both conditions, one might be concerned that stu-
dents in the automated guidance condition have an advan-
tage on this metric since their feedback is directly based on
the scoring rubric. Comparison of the proportion of groups
revised an incorrect drawing to be correct suggests that this
is unlikely to be the case: 27% of groups who were initially
incorrect revised their drawing to be correct in the auto-
mated condition, compared to 30% in the teacher-feedback
condition. Thus, comparable number of students were able
to completely correct their work in both conditions.

The improvement from pre- to post-test of student answers
on the item concerning evaluation of another student’s draw-
ing provides another way of comparing student learning across
conditions (see Figure 2). Student answers on this item were
evaluated using the rubric in Table 2. This rubric gives
higher scores to student answers that include more correct
ideas and that connect conceptual ideas with features from
the drawing, consistent with the knowledge integration fo-
cus on creating a cohesive conceptual understanding. While
some of these concepts, such as conservation of mass, were
addressed in the drawing items in the unit, the item asks stu-
dents to go beyond the initial drawing tasks by articulating
the connections between the drawing and the equation for
the chemical reaction. Students in both conditions improved
significantly on this item from pre- to post-test: an aver-
age of 0.37 points for students in the automated condition
(t(154) = 4.63, p < .005) and an average of 0.27 points for
students in the teacher-feedback condition (t(107) = 2.93,
p < .01). An analysis of variance showed that there was
no main e↵ect of feedback type on amount of improvement.
Like the results of the improvement in drawings, this sug-
gests that the automated feedback is as helpful for student
learning as the teacher-generated feedback.

Inspection of the teacher comments revealed that one teacher
gave substantially more detailed and conceptually focused
comments than the other. This teacher used a relatively



Score Criteria
1 Blank or no scientific ideas.
2 Invalid scientific ideas or only correct ideas

about products, failing to explain why the prod-
ucts are incorrect.

3 Incomplete scientific ideas: isolated ideas about
too few hydrogen in Sasha’s drawing or about
product identity, without connecting to con-
cepts.

4 One complete statement linking a feature of
Sasha’s drawing with why it is incorrect.

5 Identification of at least two errors, with com-
plete statements linking the features of Sasha’s
drawing with why they are incorrect.

Table 2: The knowledge integration scoring rubric
for the pre- and post-test item.

small number of comments for all students, customizing these
comments slightly on a case by case base, and each one
tended to focus on a particular conceptual issue. For ex-
ample, one comment was “You have only made one frame to
represent the products and reactants. Your first frame should
be for the reactants. A second frame should be made for the
products. Follow the directions on the top of the page.” This
comment combines procedural elements connecting to the
student drawing with conceptual ideas. In contrast, the sec-
ond teacher tended to give short comments that were solely
procedural or solely conceptual. These comments commonly
directed students to read the directions or stated a concept
in isolation, such as the comment ‘Conservation of mass?”.
These comments may have been too terse to help students
connect concepts with their drawings.

Due to these di↵erences in comments, we analyzed how ef-
fective the feedback was at helping students based on what
type of feedback they received as well as which teacher they
had in the teacher-feedback condition. An analysis of vari-
ance on the amount of improvement in drawing scores from
initial feedback to final revision, with a factor for feedback
type (automated, Teacher 1, or Teacher 2) and a random fac-
tor for student group, showed that feedback condition did
have an e↵ect on amount of improvement (F (2, 127) = 4.4,
p < .05). As shown in Figure 3, students who received more
cohesive guidance (Teacher 1) improved more than students
in the other conditions, and students who received auto-
mated guidance improved more than students who received
terse guidance (Teacher 2). Note that this is not an overall
di↵erence between response to guidance based on whether
students were in a class with Teacher 1 versus Teacher 2: stu-
dents in the automated condition showed similar improve-
ment across teachers. While this interaction was not signif-
icant for the pre- to post-test improvement, the same trend
held: students who received feedback from Teacher 1 im-
proved an average of 0.37 points, students in the automated
condition improved 0.35 points, and students who received
feedback from Teacher 2 improved 0.12 points.

6. STUDY 2: TIMING OF GUIDANCE
The previous study showed that automated guidance is com-
parable to teacher-generated guidance in helping students to
revise their drawing and improving post-test scores. How-
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Figure 3: Improvement on drawing scores based on
type of feedback received. Error bars indicate one
standard error.

ever, the two types of guidance were not administered under
the same timing schedule: automated guidance was given to
students when they asked for it, while teacher guidance was
given to students at a fixed delay. We hypothesized that
immediate guidance would be more engaging and motivat-
ing to students, but delayed guidance might boost reten-
tion by allowing students to space their studying of the con-
cepts. Students who are frustrated with the problem may
also benefit from a chance to do other activities before re-
ceiving guidance. To explore these issues, we conducted a
new study in which all students received automated guid-
ance, but some were given the guidance immediately, just
as in the automated condition in Study 1, while others re-
ceived the guidance at a delay, following the same pattern
as the teacher guidance in Study 1.

6.1 Methods
6.1.1 Participants
A total of 88 students used the WISE unit and completed
both the pre- and post-tests.

6.1.2 Study design
Students were assigned to the immediate or delayed guid-
ance conditions on a full-class basis. All classes were taught
by the same teacher in a public high school. He used the
activity in his four ninth grade basic chemistry classes. Two
classes were assigned to the immediate guidance condition,
and two were assigned to the delayed guidance condition.
As in Study 1, students completed the activity in groups of
one to three students; there were 30 groups in the immediate
condition and 27 groups in the delayed condition.

The immediate guidance condition in this study was iden-
tical to the automated condition in Study 1. The delayed
guidance was provided to students after they had completed
their initial drawings, and was added to the grading tool
overnight. When students signed into the activity the follow-
ing day, they were informed that they had new feedback and
shown the textual comments. In both cases, the comments
students received were based on the score of their drawing,



and the text was identical to that of Study 1. Students in
the immediate guidance condition could submit their draw-
ing up to two times; due to time constraints, students in the
delayed condition received only a single round of feedback.

The pre- and post-test had the same items as in Study 1
and were again completed by students individually.

6.2 Results
Students showed similar improvements in their drawings across
conditions. Students in the immediate condition improved
their drawing scores by an average of 0.65 points, while stu-
dents in the delayed condition improved their drawing scores
by an average of 0.81 points. A repeated-measures analysis
of variance including factors for revision (initial versus final)
and guidance condition showed that there was a main e↵ect
of revision (F (1, 65) = 25.2, p < .001), but no significant
e↵ect of condition.

In Study 1, we collapsed across the two drawing items as stu-
dents showed similar improvements across items. However,
in this study, there was a trend towards greater improvement
on the ethane item for students in the delayed condition ver-
sus the immediate condition, while both types of guidance
resulted in similar improvement on the methane item. A
repeated measures analysis of variance on the amount of
improvement with factors for guidance condition and item
showed that the interaction between the two factors was
marginally significant (F (1, 52) = 3.44, p = .0695). One
reason for this interaction may simply be the placement
of these items in the unit: ethane occurs after methane,
late in Activity 3 of the WISE unit. Students in the im-
mediate condition may be rushing through the ethane item
in order to finish, while students in the delayed condition
come back to the items on a later day. Yet, other factors
could also contribute to this di↵erence, such as frustration
in low-performing students due to the repeated interactive
sequences or some item-specific factor.

On the post-test item asking students to evaluate Sasha’s
drawing, students showed small improvements from their
pre-test scores, with an average improvement of 0.19 points.
A repeated measures analysis of variance with factors for
pre- versus post-test and feedback condition showed that
both main e↵ects were significant (pre- versus post test:
F (1, 86) = 4.58, p < .05; condition: F (1, 86) = 4.12, p <
.05). Closer examination revealed relatively little improve-
ment for students in the delayed condition (an average of
0.073 points) compared to an improvement of 0.30 points for
students in the immediate condition; by chance, students in
the delayed condition also began with higher pre-test scores,
although their initial drawing scores were similar.

Overall, this study suggests that immediate and delayed
guidance have similar e↵ects on student revision, and im-
mediate guidance may be more helpful for retention and
transfer based on the pre- to post-test improvement. Given
the di↵erence in e↵ectiveness between the two conditions
for improvement on the methane and ethane items, we plan
to investigate whether changing the placement of the items
within the activities reduces the di↵erences between imme-
diate and delayed guidance. More broadly, we will explore
whether students might be helped by di↵erent guidance tim-

ing for some types of drawing items versus others.

7. DISCUSSION
Formative guidance can help students to improve their un-
derstanding of a topic and focus their e↵orts on the mate-
rial that is most critical given their current knowledge. We
investigated how to provide this guidance in the context of
constrained drawing tasks. These tasks allow students to ar-
ticulate their ideas, including misunderstandings, more fully
than multiple choice questions, but are harder to evaluate
automatically and too time consuming for teachers to evalu-
ate in many classrooms. We found that by constraining the
space of feedback to target six levels of conceptual under-
standing, we could classify the drawings automatically and
help students to improve their understanding. We now turn
to some possible next steps for providing formative guidance
on drawing items using our automated scoring algorithm.

In our initial studies, we focused on textual feedback in or-
der to compare automated and teacher-generated guidance.
However, one of the benefits of a computer-based system is
the ability to give other types of guidance, such as interac-
tive activities or guidance that combines text and images.
These types of guidance might be more engaging for stu-
dents, and provide more help for those students who are less
motivated or struggle to understand the text-based concep-
tual feedback. We are currently exploring guidance in the
form of interactive activities that place students in the role
of evaluating a drawing rather than generating it, just as in
the post-test assessment item. The specific activity provided
is based on the score of the student’s initial drawing.

Another area that we would like to explore in future work
is whether more specific or detailed guidance might be help-
ful for some students. We have observed that some students
find it challenging to connect the text-based conceptual feed-
back with their own drawings. While some level of di�culty
is desirable in order to push students to make connections
and revise their understanding [4], guidance that is incom-
prehensible to students is unlikely to help them learn. The
automated scoring algorithm provides the potential to scaf-
fold students in their attempt to uncover what is wrong.
For instance, if the student has incorrectly grouped some
atoms, the algorithm could show the student only the rel-
evant portion of the screen and ask them to explain why
that portion was incorrect. This would still prompt students
to reflect on their drawings and understanding, but would
more closely connect the guidance to their own work. Cre-
ating connections between the drawings and the chemistry
concepts was common in the guidance of the more e↵ective
teacher, suggesting that strengthening these connections in
the automated guidance would promote student learning.

The issue of timing and agency when giving feedback re-
mains another useful area for exploration. In Study 2, we
compared immediate feedback versus delayed feedback for
students, where feedback timing was independent of draw-
ing quality. To better understand how timing of guidance
a↵ects learning, we hope to conduct experiments in which
timing is based on the score of the current drawing or partic-
ular characteristics of students’ previous work. These cus-
tomizations may also allow some students to choose when
they would like guidance (as in the immediate condition in



Study 2) while automatically providing guidance to others.

Automatically scoring generative tasks in computerized tu-
tors can be di�cult, but is usually a prerequisite of providing
adaptive formative feedback on the tasks. In this work, we
created an automated scorer for a particular type of con-
strained yet generative drawing task. This scorer is easily
customized to evaluate new drawing items that follow the
same pattern as those in the unit, and is able to detect com-
mon conceptual errors that students make. Drawing on the
knowledge integration pattern, we developed textual guid-
ance for these conceptual errors. Our studies show that
that this automated guidance results in comparable learn-
ing as guidance given by a teacher. The automated scorer
facilitates experimentation with di↵erent types of formative
feedback, allowing us to test hypotheses about what types
of guidance are most e↵ective for promoting understanding
in open-ended science activities.
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ABSTRACT 
Traditional studies of intelligent tutoring systems have focused on 
their use in the classroom. Few have explored the advantage of 
using ITS as a web-based homework (WBH) system, providing 
correctness-only feedback to students. A second underappreciated 
aspect of WBH is that teachers can use the data to more efficiently 
review homework. Universities across the world are employing 
these WBH systems but there are no known comparisons of this in 
K12. In this work we randomly assigned 63 thirteen and fourteen 
year olds to either a traditional homework condition (TH) 
involving practice without feedback or a WBH condition that 
added correctness feedback at the end of a problem and the ability 
to try again. All students used ASSISTments, an ITS, to do their 
homework but we ablated all of the intelligent tutoring aspects of 
hints, feedback messages, and mastery learning as appropriate to 
the two practice conditions. We found that students learned 
reliably more in the WBH condition with an effect size of 0.56. 
Additionally, teacher use of the homework data lead to a more 
robust and systematic review of the homework. While the 
resulting increase in learning was not significantly different than 
the TH review, the combination of immediate feedback and 
teacher use of the data provided by WBH resulted in increased 
learning compared to traditional homework practices. Future work 
will further examine modifications to WBH to further improve 
learning from homework and the role of WBH in formative 
assessment.  

Keywords 
Intelligent tutoring system, immediate feedback, homework, 
effect size, formative assessment 

1. INTRODUCTION 
Several studies have shown the effectiveness of intelligent 
tutoring systems when used in the classroom [9 & 11], reporting 
effect sizes up to 0.78. However, very few studies have explored 
the effectiveness of ITS when used as homework. Cooper et al. 
[3] highlight the point that poorly conceived homework does not 
help learning. Therefore it was very encouraging when Van Lehn 
et al. [12] presented favorable results when ANDES, an ITS, was 
used in this fashion. Yet, most systems are not currently designed 
to be used for nightly homework. Computer aided instruction 
(CAI), which gives all students the same questions with 
immediate end-of-question feedback is more applicable than 
complex ITS for nightly homework as teachers can easily build 
the content from textbook questions or worksheets. Kulik and 
Kulik’s [5] meta-analysis reviewed CAI and reported an effect 
size of 0.3 for simple computer based immediate feedback 
systems. However, these studies were not in the context of 
homework use and did not focus on how teachers use the data to 
respond to student performance. Web-based homework systems 
(WBH) like WebAssign (www.webassign.com) are commonly 
used in higher ed. These systems are similar to web based 
computer aided instruction (CAI), providing students immediate 

feedback and reports to teachers.  While VanLehn et al. [12] 
reported on three such systems used at the higher ed level for 
physics, there are no studies that we know of at the K12 level that 
allow this contrast.   
 
Despite the relatively low effect sizes reported in Kulik and Kulik 
[5], WBH holds promise for improving learning from homework 
by tailoring practice to individual performance. Doing so enables 
individuals to get corrective feedback so they can focus on areas 
where they are not successful. Shute [8] reviews the plethora of 
studies and theoretical frameworks developed around 
understanding the role of feedback for student learning. However, 
teacher use of the feedback was not a focus.  Black and William 
[1] have focused on formative assessments, with an eye on 
informing the teacher and giving feedback to students. The 
cognitive science literature suggests that letting students practice 
the wrong skill repeatedly on their homework is detrimental to 
learning.  In this study we look to measure the effect on learning 
by comparing simple WBH to a traditional homework (TH) 
condition representing the type of practice that millions of 
students perform every night in America and probably around the 
world.  Additionally, we explore how the teacher can use the data 
to modify and improve instruction.  
 

The current study employed ASSISTments.org, an intelligent 
tutoring system that is capable of scaffolding questions, mastery 
learning, and hint and feedback messages [9].  However, for this 
study, we ablated those features creating an “end-of-problem-
correctness-only” feedback system for homework in the WBH 
condition. The system was also used for the TH condition by 
further removing the correctness feedback thus emulating 
traditional paper and pencil homework assignments. 
ASSISTments is currently used by thousands of middle and high 
school students for nightly homework. Many teachers enter the 
textbook homework problems and answers into ASSISTments so 
their students can receive immediate feedback on the homework 
and the teachers can then access item reports detailing student 
performance. This allows for focused classroom review. In the 
current study we were also interested in examining the effects of 
teacher review of homework performance based on information 
derived from the ASSISTments system under each of the two 
different homework conditions.  The goal was to estimate the 
additional effects of teacher-mediated homework review and 
feedback following each of the two homework practice conditions 
– TH and WBH – and also study differences in how teachers 
might approach homework review given variation in student 
performance following each type of homework practice. 

2. EXPERIMENTAL DESIGN 
Participants were 63 seventh grade students, who were currently 
enrolled in an eighth grade math class, in a suburban middle 
school in Massachusetts. They completed the activities included 
in the study as part of their regular math class and homework. 
Students were assigned to conditions by blocking on prior 



knowledge. This was done by ranking students based on their 
overall performance in ASSISTments prior to the start of the 
study. Matched pairs of students were randomly assigned to either 
the TH (n=33) or WBH (n=30) condition.  

The study began with a pre-test that was administered at the start 
of class.  This pretest and all the rest of the materials for this study 
are archived via WebCite so others can see the exact materials, 
videos and anonymous data at tinyurl.com/AIED2013 [4].  This 
test consisted of five questions, each referring to a specific 
concept relating to negative exponents.  Students were then given 
instruction on the current topic.  That night, all students completed 
their homework using ASSISTments (see Kelly, 2012 to 
experience exactly what students did).  The assignment was 
designed with three similar questions in a row or triplets.  There 
were five triplets and five additional challenge questions that were 
added to maintain ecological validity for a total of twenty 
questions. Each triplet was morphologically similar to the 
questions on the pre-test.  

Students in the WBH condition were given correctness-only 
feedback at the end of the problem.  Specifically, they were told if 
their answer was correct or incorrect.  See Kelly [4] to see what 
these materials looked like and to be able to “play student” in 
either condition.  If a student answered a question incorrectly, 
he/she was given unlimited opportunities to self-correct, or he/she 
could press the “show me the last hint” button to be given the 
answer. It is important to emphasize that this button did not 
provide a hint; instead it provided the correct response, which was 
required to proceed to the next question. 
Students in the TH condition completed their homework using 
ASSISTments but were simply told that their answer was 
recorded but were not told if it was correct of not (it says “Answer 
recorded”).  It is important to note that students in both conditions 
saw the exact same questions and both groups had to access a 
computer outside of school hours.  The difference was the 
feedback received and the ability for students in the WBH 
condition to try multiple times before requesting the answer. 

The following day all students took PostTest1. This test consisted 
of five questions that were morphologically similar to the pre-test. 
The purpose of this post-test was to determine the benefit of 
feedback while doing their homework. At that point, students in 
the WBH condition left the room and completed an unrelated 
assignment.  To mimic a common homework review practice, 
students in the TH condition were given the answers to the 
homework, time to check their work and the opportunity to ask 
questions.  This process was videotaped and can be seen in Kelly 
(2012).  After all of the questions were answered (approximately 
seven minutes) students in the TH condition left the room to 
complete the unrelated assignment and students in the WBH 
condition returned to class. The teacher used the item report, 
generated by ASSISTments to review the homework. Common 
wrong answers and obvious misconceptions guided the 
discussion.  This process was videoed and can be seen at Kelly 
[4].  The next day, all students took PostTest2. This test was very 
similar to the other assessments as it consisted of five 
morphologically similar questions.  This post-test can be found at 
Kelly [4].  The purpose of this test was to measure the value-
added by the different in-class review methods.  

3. RESULTS 
Several scores were derived from the data collected by the 
ASSISTments system.  Student’s HW Average was calculated 
based on the number of questions answered correctly on the first 

attempt divided by the total number of questions on the 
assignment (20). Partial Credit HW Score accounted for the 
multiple attempts allowed in the WBH condition. Students were 
given full credit for answers, provided they did not ask the system 
for the response. The score was calculated by dividing the number 
of questions answered without being given the answer by the 
number of total questions on the homework assignment (20). 
Time Spent was calculated using the problem log data generated 
in ASSISTments and is reported in minutes. Times per action are 
truncated at five minutes.  Recall that the homework assignment 
was constructed using triplets. Learning Gains within the triplets 
were computed by adding the points earned on the third question 
in each triplet and subtracting the sum of the points earned on the 
first question in each triplet.   

3.1 Learning Gains From Homework 
One student, who was absent for the lesson, was excluded from 
the analysis (n=63). A t-test comparing the pre-test scores 
revealed that students were balanced at the start of the study 
(t(61)=0.29, p=0.78). However, an ANCOVA showed that 
students in the WBH condition reliably outperformed those in the 
TH condition on both PostTest1 (F(1,60)=4.14, p=0.046) and 
PostTest2 (F(1,60)=5.92, p=0.018) when controlling for pre-test 
score.  See Table 1 for means and standard deviations.  If the 
difference was reliable a Hedge corrected effect size was 
computed using CEM [2]. The effect sizes do not take into 
account pretest.  The key result for posttest2 of 0.56 effect size 
had a confidence interval of between 0.07 and 1.08. 
 
A comparison of HW Average shows that students scored 
similarly (F(1,60)=0.004, p=0.95). An ANCOVA reveled that 
when calculating homework performance using the Partial Credit 
HW Score, students in the WBH condition performed reliably 
better than those in the TH condition (F(1,60)=17.58, p<0.0001). 
This suggests that with unlimited attempts, students are able to 
self-correct, allowing them to outperform their counterparts.  
Similarly, comparing Learning Gains revealed that students with 
correctness feedback and unlimited attempts to self-correct 
learned reliably more while doing their homework 
(F(1,60)=45.72, p<0.0001). 
 
Table 1: Means, standard deviations (in parenthesis), and 
effect size for each measure by condition. *Notes a reliable 
difference. 

 TH WBH p-value Effect 
Size 

Pre-Test 9% (17) 7% (14) 0.78 NA 

PostTest1 58% (27) 69% (21) 0.046* 0.52 

PostTest2 68% (26) 81% (22) 0.018* 0.56 

HW Average 61% (20) 60% (15) 0.95 NA 

Partial Credit 
HW Score 

61% (20) 81% (18) 0.0001* 1.04 

Time Spent 
(mins) 

22.7 (9.6) 23.2(6.2) 0.96 NA 

Learning Gains   0.03 (0.9) 1.73(1.1) 0.0001* 2.21 

A review of the item report further describes this difference in 
learning gains.  As expected, students in the TH condition 
continued to repeat the same mistake each time the question was 
encountered resulting in three consecutive wrong responses.  
Conversely, students in the WBH condition may have repeated the 



mistake once or twice but rarely three times in a row, accounting 
for the learning. While this behavior appears in four out of the 
five triplets, triplet 1 was analyzed in depth to explain this finding. 
See Table 2 for an in depth review of Triplet 1 and Figure 1 to see 
how the teacher observed this finding using the item report. 
2: An in depth review of Triplet 1.  

 WBH TH 

Got the first correct and the last one correct 
(already knew) 

8  17 

Got the first one wrong and last one correct 
(learned) 

18  4 

Got the first one correct and the last one wrong 
(unlearned?) 

1 2 

Got both the first one and the last one wrong 
(Failed to Learn)  

4 9 

Total 31  32  

 

The first thing that we want to point out is that students in the 
WBH condition had a significantly lower percentage correct on 
the first item. To demonstrate this finding an in depth review of 
triplet 1 is provided. Eight of these students requested the answer 
on the first question in triplet 1.  Presumably students in the WBH 
condition would use the hint button when they were not sure of 
the answer.  However, in the TH condition, there was no such 
button, therefore perhaps students were more likely to take other 
steps when they were confused.  These steps might have included 
looking at class notes, asking a parent or calling a friend for help. 
While there is no data to explain  

Additionally, when looking at students in the WBH condition that 
could demonstrate learning (they got the first one wrong), 18 out 
of 22 students (80% of students) demonstrated learning.  In one 
sense this learning benefit might be overestimated, as there were 
some interesting differences in response behavior between the 
conditions. Specifically, response time for the initial response 
shows that perhaps students’ approach the problems differently. 
We analyzed the time it took students to type in their first 
response on question 4, and found that students in the TH 
condition took longer (121 seconds) than students in the WBH 
condition (89 seconds). In fact, the TH condition had 34% of 
students take over two minutes to generate their first response 
while the WBH condition only had 17% of students take that long.  
This difference was not statistically significant.  We speculate that 
this is due to the fact that students in this condition knew they 
would have multiple attempts to correctly answer the question and 
that there was no penalty for answering incorrectly on the first 
attempt. This indicates that students in the WBH condition may 
have a higher percentage of incorrect first responses due to less 
thorough processing and would account for the higher number of 
students who seemingly already knew the material in the TH 
condition.  

The ability to attempt each question multiple times is unique to 
students in the WBH condition. We suggest that this feature may 
play an important role in the presented learning gains. While this 
specific feature was not empirically tested in this study, we can 
only speculate on its effect. However, it is important to note that 
students in the WBH condition had on average 49 attempts 
(standard deviation=24) to answer the 20-question homework 
assignment. The fewest attempts made by any student was 25 and 
the most was 140. The average number of  times the answer was 

requested was 4 was a standard deviation of 3.5. This suggests 
that students in the WBH condition took advantage of the ability 
to try questions multiple times to learn the material without 
requesting the correct answer.  
 

               
Figure 1: The item report for the control condition (on the 
left) and experimental condition (on the right) for triplet 1, 
showing the percent of students answering each question 
correctly, common wrong answers, the correct answer and 
several rows of student data. 

We were not expecting that correctness only feedback was going 
to be time efficient.  But in fact, students in both conditions spent 
the same amount of time to complete their homework 
(F(1,60)=0.002, p=0.96). However, it appears that the time spent 
was apportioned differently in the conditions. Specifically, the TH 
condition took longer to generate a first response, but the WBH 
condition took time making multiple attempts as well as 
requesting the answer. It seems that students in the TH group 
spend more time thinking about the problem but the WBH group 
can get the problem wrong, and then use their time to learn the 
content.    

3.2 Learning Gains from Homework Review 
To address the second research question of the effectiveness of 
using the data to support homework review, a paired t-test 
revealed that students in both conditions did reliably better on 
PostTest2 than on PostTest1 (t(62)=3.87, p<0.0001). However, an 
ANCOVA revealed that when accounting for PostTest1 scores, 
there is not a reliable difference by condition in the gains from 
PostTest1 to PostTest2 (F(1,60)=2.18, p=0.15).  This suggests that 
both methods of reviewing the homework lead to substantially 
improved learning. Interestingly, the results indicate that TH 
feedback, while students complete homework (69% PostTest1), is 
as effective as receiving no feedback and then having the teacher 
review of the homework (68% PostTest2). This suggests that to 
save time, teachers may not even need to review the homework if 
students have access to web-based homework systems.   

3.3 Observational Results 
In addition to examining the effects of immediate feedback on 
learning, this study explored the potential changes to the 
homework review process the following day in class.  In the 
traditional format of homework review, time must be spent first 
on checking answers and then the teacher responds to students’ 



questions.  However, we hypothesized that when teachers have 
access to the item report they are able to identify common 
misconceptions and address those ensuring that the time spent 
reviewing homework is meaningful.  

Remember, that when reviewing the homework, students were 
separated by condition.  The teacher recorded herself as she 
reviewed the homework with each group.  In the following section 
we attempt to characterize what happened in the video segments.   
As usual, the teacher reviewed the item report in the morning to 
determine which questions needed to be reviewed in class.  The 
item report (see Figure 1) shows individual student performance 
as well as class performance at the question level. Common 
wrong answers are also displayed for each question. Using this 
information, the teacher noted that triplet 1 showed a common 
misconception when multiplying powers with like bases.  While 
the item report shows that students learned from the feedback, the 
teacher still felt it was important to highlight and discuss the error 
in multiplying the bases of the powers together.  Therefore the 
teacher highlighted question 4.  

 
Figure 2: The item report for the WBH condition as viewed by 
the teacher. Note that class performance for each question and 
common wrong answers are provided along with individual 
student performance.  
This was especially important because in triplet 2, students 
incorrectly applied this concept.  Specifically, 39% of students 
initially got this type of question right (multiplying powers with 
coefficients and variables).  However, learning took place as 68% 
got the next similar question right.  It was therefore puzzling to 
see that on the third question in that triplet (question number 10), 
only 45% got the question right.  Upon investigating the question, 
the teacher was able to identify the misconception and therefore 
addressed it with the class.  Students learned in the prior triplet 
not to multiply the bases together.  However, in this problem 
(5a3)(5a-5) students didn’t realize that they should multiply the 

coefficients, 5 and 5 together. You can see in the video that the 
teacher highlights the difference between these types of problems.  

The third and fifth triplet showed adequate learning. Additionally, 
questions 1, 2, and 3 were introductory questions and performance 
was above 90% on each question, therefore the teacher did not 
feel the need to address any of these questions. Similarly, 
questions 7 and 20 were challenge questions and were therefore 
not discussed in class.  
However, the 4th triplet proved to be the most challenging and 
showed little learning. Therefore, the teacher chose to review the 
first question of the triplet (question number 14.) The teacher was 
able to identify the common mistakes, which were improperly 
subtracting the negative exponents as well as dividing the base.  
Because the next question had the poorest performance on the 
assignment, the teacher also chose to review question number 15 
and highlight the importance of subtracting negative exponents 
carefully. Performance on this triplet suggests that feedback alone 
wasn’t enough to cause learning. Teacher input and clarification 
was required.  
We designed the experiment with ecological validity in mind.  
That is to say, we wanted the teacher to naturally review the 
homework, giving students enough time to ask questions.  The 
hope was that approximately the same amount of time would be 
spent in each class and by each condition.  We were disappointed 
to find that the classes and conditions varied greatly in the amount 
of time spent going over the homework.  Half of the sections took 
over nine minutes to review the homework while two of the 
sections in the TH condition and one in the WBH condition spent 
substantially less time.  This is a threat to the validity of drawing 
statistical inferences, but given the desire to maintain realistic 
homework review conditions, these inconsistencies highlight 
important differences in the homework review methods.  We 
describe these differences in the following sections.  

An observational analysis of the video recordings of the teacher 
reviewing the homework revealed that while the time spent in the 
WBH condition was often longer than the TH, it was also far 
more focused than in the TH.  Specifically, when students were in 
the TH condition, on average 1 minute passed before any 
meaningful discussion took place.  Whereas, when students were 
in the WBH condition, homework review began immediately with 
the teacher reviewing what she perceived to be the most important 
learning opportunities.  
 

 
Figure 3: Video of homework review for experimental 
condition. To watch the full video, go to: 
http://www.youtube.com/watch?feature=player_embedded&v 
=Jb6Szy4fZ2w 



Other notable differences in the type of review include the number 
of questions answered.  In the TH condition, 2 classes saw 3 
questions each and one saw 7.  However, in the WBH condition 
each class saw 4 targeted questions and 2 classes requested 1 
additional question. The variation in question types also is 
important to note.  The teacher was able to ensure that a variety of 
question types and mistakes were addressed whereas in the TH 
condition students tended to ask the same types of questions or 
even the same exact question that was already reviewed. 
Additionally, students in the TH condition also asked more 
general questions like “I think I may have gotten some of the 
multiplying ones wrong.” In one TH condition only multiplication 
questions were addressed when clearly division was also a 
weakness and similarly, another TH condition only asked 
questions about division.  This accounts for much of the 
variability in overall review time.  

 
Figure 4: Video of homework review for the control condition. 
To watch the video go to: 
http://www.youtube.com/watch?feature=player_embedded&v 
=tBhcuCnKVCY 

In listening to the comments made by students it appears that the 
discussion in the TH condition was not as structured as the WBH 
condition.  Not all students had their work and therefore couldn’t 
participate in the review.  One student said, “I forgot to write it 
down.”  Another said, “I left my work at home.”  Because 
students were asking questions and the teacher was answering 
them, we suspect that only the student who asked the question was 
truly engaged.  In fact, one student said, “I was still checking and 
couldn’t hear” which led to the teacher reviewing a question 
twice.  In the WBH condition, the teacher used the information in 
the report, such as percent correct and common wrong answers to 
engage the entire class in a discussion around misconceptions and 
the essential concepts from the previous question.   
Other notable differences include the completeness of the review. 
In the TH condition, the review was dominated by student 
directed questions.  This means that each class experienced a 
different review and the quality of that review was directly 
dependent on the engagement of the students.  Conversely, in the 
WBH condition, all 3 classes were presented with the same 4 
troublesome questions and common mistakes.  Additional 
questions were reviewed when asked (as in two sections) but the 
essential questions as determined by the data in the item report 
were covered in all three sections.  

3.4 Student Survey Results 
Following participation in this study, students were questioned 
about their opinions.  We want to acknowledge that students 
might have been telling the teacher what she wanted to hear:  the 

whole classroom of students had been using ASSISTments for 
months and the teacher had told them on multiple occasions why 
it’s good for them to get immediate feedback.  So with that caveat, 
we share the following results.  86% of students answered 
ASSISTments to the question “Do you prefer to do your 
homework on ASSISTments or a worksheet?”.  66% mistakenly 
think that it takes longer to complete their homework when using 
ASSISTments (we showed in this study that that was not the case) 
and 44% feel that they get frustrated when using ASSISTments to 
complete their homework.  However 73% say that their time is 
better spent using ASSISTments for their homework than a 
worksheet. When asked what students like best about 
ASSISTments, student responses included:  
“Being able to try again.”  
“That if you get stuck on a problem that it will give you the 
answer.” 
“You can redo your answer if you get it wrong and learn from 
your mistakes.” 
“How it tells you immediately that you are right or wrong.” 
“I like how I know if I'm right or wrong. This helps because often 
times when I get things wrong I just go back to my work and I see 
what I’m doing wrong which helps me when doing other 
problems.” 
“I like knowing if your right or wrong. it helps me learn from my 
mistakes because it makes me go back and keep trying until I get 
it right. I cant just move on when I feel like it. normally I would 
just try it a 1st time, and not go back and check, but assistmsnt 
makes me double Check my work.” 

“My favorite thing about ASSISTments is that it will tell you if 
you get the question wrong. PS--it doesn't help when it just says 
you get it wrong, it's helpful to see the steps so you can compare it 
to what your answer looked like.” 

“I like that you can tell what you did wrong and learn from it. 
That's it though. otherwise I would prefer a wkst [worksheet].” 
“I like how it is online and easy to access.” 

While the learning benefits are profound and students prefer a 
web-based system, there is a sense of frustration that must still be 
addressed.  Specifically, when asked what should be changed 
about ASSISTments, student responses included: 
“I would make the hint button give a hint and not just the answer.” 

“I would make it so the hints maybe give you another example or 
helpful information so instead of just getting the answer and not 
knowing how you got it you could actually learn from it.” 

“If you get it wrong more than 4 times you have to move on to the 
next question.” 
“I would change how long it takes you to type it in. it would be 
cool if you could just say the answer and it would enter it in. that 
probably won't happen, but it would be awesome.” 
“I would change it to having hints to tell you if you have a little 
mistake when you hit submit answer so you don't get it wrong 
because of that little mistake.” 
This feedback suggests that students appreciate the features of 
intelligent tutoring systems, including hints, worked examples and 
scaffolding. Therefore, future studies should explore adding 
additional feedback to determine if added AIED features improve 
learning or if maybe learning requires some levels of frustration.  
All of the survey results are made available without names, 
including students’ comments at 
http://www.webcitation.org/6DzciCGXm. 



4. DISCUSSION 
This papers’ contribution to the literature is exploring the 
potential use of ITS for homework support. Used as designed, ITS 
are somewhat cumbersome for teachers to use for homework as 
the content is not customizable. However, if ITS are simplified 
they could be used like web-based homework systems, providing 
correctness feedback to students and reports to teachers. This begs 
the question, is correctness only feedback enough to improve the 
efficacy of homework and what effect does teacher access to 
reports have on homework review? This randomized controlled 
study suggests that simple correctness-only feedback for 
homework substantially improves learning from homework.  The 
benefit of teachers having the data to do a more effective 
homework review was in the expected direction (but not reliable).  
But taken together (immediate feedback at night and an arguably 
smarter homework review driven by the data) the effect size of 
0.56 seems much closer to the effect of complex ITS. Of course 
the large 95% confidence interval of [0.07 to 1.08] tells us we 
need more studies.  
 
Future studies can explore features of other web-based homework 
systems like Kahn Academy to determine which aspects of the 
systems are particularly effective. Incrementally adding tutoring 
features to determine the effectiveness of each feature would also 
be valuable. Finally, the role of data in formative assessment 
should be further explored. In what way can teachers use the data 
to improve homework and review and instruction?  
Caveats: the participants in the current study were all advanced 
middle school students.  Therefore it would be necessary to 
replicate this study across a broader range of student abilities to 
determine if these effects are generalizable.  Additionally, the 
correctness feedback is confounded with the unlimited attempts 
provided on the homework assignment.  Therefore, it would be 
interesting to see if it’s simply the correctness feedback that 
contributes to learning or if the impact stems from the unlimited 
attempts to self-correct.  Finally, to address the secondary 
research question of the effectiveness of using that data and item 
report to enhance homework review, a more complicated research 
design would be required. Specifically, in the present study, the 
effect of the homework review was confounded with already 
improved learning that resulted from having correctness feedback.  
A two-by-two design where both immediate feedback and the 
factor of going over the homework with the data varies would be 
necessary. 

In this fast-paced educational world, it is important to ensure that 
time spent in class and on homework is as beneficial as possible.  
This study provides some strong evidence that web-based 
homework systems that provides correctness-only feedback are 
useful tools to improve learning without additional time.   
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ABSTRACT 
In this paper we study one feedback process which is adapted to 
ill-defined domains. Indeed, this process use others aspects than 
expected solutions to propose a feedback. The feedback process is 
based in a set of didactical aspects. In particular, the feedback 
targets the control element of knowledge, i.e. the knowledge that 
allows to validate one step in the problem solving process. The 
paper describes the feedback process and its implementation in 
the framework of one TEL system in orthopedic surgery. 

Keywords 

Control knowledge, feedback process, ill defined domain, and 
didactical decision. 

1. INTRODUCTION 
In ill defined domain one of the challenges is to continue to 
develop new tutoring strategies and seek out ways to combine 
existing strategies [13]. This challenge still open in particular 
when the domain has multiple and controversial solutions or ill-
defined task structures [4]. In this framework our research 
question is how to design a tutoring feedback system which is not 
only based in defined solutions but in the known characteristics of 
knowledge and learning situations.  

We study one kind of feedback which is adapted and epistemic. It 
is adapted because it takes into account the individual differences 
in relation to incoming knowledge and skills among students [18]. 
It is epistemic because it is specific to the piece of knowledge at 
stake and its learning characteristics. Compute an epistemic 
feedback involves knowledge from the learner, the learning 
situation and the learning domain [11].  

We design a process to produce adapted epistemic feedbacks 
which includes one decisional model based in a set of didactical 
hypothesis. The process was implemented and tested in the case 
of orthopedic surgery.  

The research discussed in this paper is developed in the 
framework of the TELEOS1 platform [9] which is a 
Technological Enhanced Learning environment for orthopaedic 
surgery. This platform proposes a set of resources for the student 
(haptic simulator, online course, clinical case database) and a 
diagnosis system able to analyse the student productions and 
make a knowledge diagnosis based in identified controls. 

                                                                 
1 http://teleos .imag.fr  

Based in the model presented in this paper we add a feedback 
system in the TELEOS environment. This implementation 
proposes a formative feedback which is delayed, i.e. at the end of 
the exercise in the simulator. The model is presented in the 
section 4 and the TELEOS example is presented in the section 5. 

2. RELATED WORKS 
In some domains (like percutaneous screw fixations in 
orthopaedic surgery) the knowledge obtained by experience plays 
an important role for both the expert teacher and the novice 
learner during a problem-solving process. This kind of 
knowledge, often tacit, refers to “work-related, practical know-
how that typically is acquired informally as a result of on-the-job 
experience, as opposed to formal instruction.” [22]. This kind of 
knowledge is pragmatic, obtained by experience. Moreover a 
skillful learner, even a domain expert, often makes several 
attempts before arriving at an acceptable solution: the person 
makes an error and then tries to correct the error several times. 
Also there are multiple solutions and because some parts of the 
knowledge are tacit the strategic to a good solution are unclear. 
This kind of problem is ill structured. Indeed, an ill-structured 
problem as one that is complex, with indefinite starting points, 
multiple and arguable solutions, or unclear strategies for finding 
solutions [19]. 
Several works address the problem to model ill defined 
knowledge and build feedback from these models ([13] and [20]). 
Based in this previous works, Fournier-Vigier et al. [5] pointed 
the design feedback difficulties in ill defined domains, in 
particular the difficulties to provide domain knowledge in ill 
structure problems. All studied paradigms (cognitive task 
analysis, constraint-based modeling, expert system, data mining 
algorithms) propose to describe task models using different 
techniques. The task models could be complete or partial. In all 
cases the model is used to offer assistance to the learner (ibid. 
234). Most of the feedback systems in these approaches try to 
guide the student to the intended solution, even if it is described 
partially and beside most of the feedback are goal oriented. 
We aim to study a model of feedback that is not only based in 
calculated solutions. We explore another feedback paradigm 
which is centered in the validation process more than the attended 
solution. In others words the feedback will be related to the 
characteristics of the controls brought into play during the 
problem solving process: it was brought into play in the right 
moment? It was valid or invalid? What is its nature ?  
We would like to investigate how to produce an adapted 
epistemic feedback that takes into account these knowledge 
characteristics and is able to handle the uncertainty coming from 



the diagnosis results. Indeed, like more and more intelligent 
tutoring systems, we chose to use Bayesian network for our 
diagnostic knowledge. 
From adaptive point of view, Shute & Zapata-Rivera [18] propose 
a four-process adaptive cycle connecting the learner to 
appropriate educational materials and resources. This four process 
cycle include (ibid. p 9) capture of the information about the 
learner, analyze the information in relation to the learner model, 
select the information for a particular learner and present specific 
content to the student. 
In relation to the selection step of the feedback, few systems 
propose a computer model which describes the decision of a 
pedagogical feedback following an uncertain diagnosis. Mayo and 
Metrovic [14] introduce the idea of Pedagogical Action Selection 
(PAS) and identified three general approaches to produce them in 
intelligent tutoring systems that use Bayesian networks: 
alternative strategies, diagnostic strategies, and decision-theoretic 
pedagogical strategies (ibid., p 132). 
For us a didactical decision is to propose the best feedback and 
depending on the diagnosis results. This decision means a choice 
between different possible hypotheses based on didactical 
analysis. We use a decision-theoretic approach in order to model 
this process. The decision-theoretic strategy is used in some ITSs 
to select tutorial actions that maximize the expected utility. The 
systems CAPIT [14] and DT tutor [16] use this strategy.  
CAPIT is a system for learning capitalization and punctuation in 
English. To decide two kinds of next feedback (next problem 
selection, error message selection) this system uses the utility 
function, which is based on the number of errors that the student 
made [14]. DT tutor also uses a decisional model: “For each 
tutorial action alternative, the tutor computes (1) the probability 
of every possible outcome of that tutorial action, (2) the utility of 
each possible outcome in relation to the tutor's objectives, and 
then (3) the alternative's expected utility by weighing the utility of 
each possible outcome by the probability that it will occur. The 
tutor then selects the action with maximum expected utility with 
utility function” [16]. In DT tutor, many factors related to the 
student (their morale, behaviour, etc) have an influence on 
expected utility. To propose the next feedback, DT tutor chooses 
first the theme where the feedback is focused and second the type 
of feedback (help, hint, positive or negative feedback). DT tutor is 
implemented in two learning systems, calculus and elementary 
reading. 
A further difference between these previous works and our 
approach is that the decision feedback models proposed 
previously are not based on the nature of the control knowledge; 
in our case we would like to center the feedback on the 
knowledge control dimension (knowledge that allows the users to 
validate their actions during the process) and to take into account 
the knowledge control specificities (pragmatic, declarative and 
perceptive-gestural). Another difference is that, in our learning 
environment, there are no well defined solutions and thus it is not 
possible to define a priori, a list of actions as expected feedback. 
Because we have some characterised resources in our 
environment, the feedback is built in several steps; it has a target, 
an objective, a form and content. It is created with a decision-
making process based on several PAS (Pedagogical Action 
Selection). In each step of the process, the chosen strategy 
corresponds to the degree of dependency of the step in relation to 
the domain knowledge. 

Finally the factors considered in our system must be the 
parameters that can be established by researcher. Indeed, this is 
multidisciplinary research that evolves and the system must adapt 
to the evolution of didactic and medical analysis. Different 
feedback hypotheses must be able to be tested. 

3. THEORETICAL FRAMEWORK AND 
DIDACTICAL HYPOTHESIS 
According to research in cognitive psychology and didactics, the 
learner/situation interaction can be modelled as a problem-solving 
process that engages itself different processes, tightly linked and 
recurrent: identification of the situation, planning, action, control 
of actions’ effects, regulation. The crucial role of control elements 
in this process has been pointed ([1],[17]), allowing the subject to 
decide whether an action is relevant or not, or to decide that a 
problem or sub-problem is solved.  
This framework has some important consequences on our work 
for our objectives related to the design of a feedback system:  
- It is necessary to choose characteristics of problems that will 

conduct to the right processes of learning according to 
professional objectives and to learner’s state of knowledge. 
This, in turn, leads to the necessity to diagnose learner’s 
knowledge, and interpret this diagnosis to be able to provoke 
targeted learning through learners’ actions and controls on 
problems. Thus, one objective of the feedback system is to 
consider is not only the actions but also the controls brought 
into play by the learner during the problem solving activity.    

- It is necessary to distinguish and consider both, the result (a 
punctual state of the problem, intermediate or final) and the 
problem solving process. We thus adopt a continuous 
approach of diagnosis and learning process.  

Besides, we argue that is necessary to distinguish the controls 
characteristics. These categories are related to the way that 
knowledge can be validated, and therefore, built. In the case of 
orthopedic surgery we identify three categories: declarative, 
pragmatic and perceptive/gestural. The first category, declarative 
knowledge, corresponds to shared knowledge, constituting a 
common reference for professionals. It can be expressed, 
formally, and serves communication, discussion, exchanges. The 
second, pragmatic, is partly expressible, and is linked to 
individual experiences and situations. The third concern the 
perceptive and gestural (technical gesture like surgical gesture) 
part, hardly expressible and embedded in particular situations.    
These are not the same that the classical division of knowledge 
between declarative and procedural. For example, part of 
procedural knowledge is validated in a declarative manner (is a 
reference for professionals and transmitted in a declarative way), 
part is validated in a pragmatic manner (by experience) and can 
also be validated in a perceptive-gestural manner (what is seen, 
felt). This second kind of activity is ill defined task, i.e. there are 
not clear strategies for finding solutions at each step of the 
problem solving process. 

3.1 Characterization of didactical hypothesis’ 
factors 
Based in previous framework our objective is to propose a 
feedback system able to take into account the didactical 
hypothesis. 
First of all and as explained above, each control element of 
knowledge is labelled according to its nature: declarative, 



pragmatic, or perceptual/gestural. Then, concerning knowledge 
related to the user’s action, it is labelled according to the moment 
it appears in the resolution process and according to its possible 
validity.  
This last element necessitates some clarification: knowledge 
elements are diagnosed by the environment, according to user’s 
set of actions and knowledge domain of validity, as being 
mobilized (brought into play) in a valid situation state (inside its 
validity domain), not mobilized or mobilized in an invalid 
situation state (outside its validity domain).  

 
Figure 1. Result of knowledge elements diagnosed 

The output can be considered like a tri-dimensional space (shown 
in Figure 1), where each knowledge element (ei), in our case 
controls, has a probability distribution according to their state 
(invalid, valid, or not-used). In the given example, the knowledge 
element e1 is brought into play in a valid manner with a 
probability of 73%. 
Based in this result we made choices concerning the best relevant 
type of feedback to be provided to the user, according to previous 
diagnosed elements. 
Thus, to produce epistemic feedback, the didactical analysis is 
based on the characteristics (state, order, type, etc.) of the control 
knowledge element and the classes of situations available. Also, 
to integrate the adapted dimension the feedback process has to 
take into account the student knowledge (the diagnosis result) and 
the characteristics of the learning environment (resources 
manipulated by the student and the characteristics of the 
problem). 

4. THE PROCESS TO PRODUCE AN 
ADAPTIVE EPISTEMIC FEEDBACK 
This process has four related steps. First, our decision model 
chooses the knowledge element(s), proposed by the diagnosis 
system, which will target the feedback. Second, it determines the 
feedback’s apprenticeship objective for the chosen target. Third, 
according to the target and the objective, it determines the 
relevant form of feedback from the existing forms in the learning 
environment. Finally, according to the form, the decision model 
formulates the feedback by defining its content. The process is 
conceived from objectives and didactical hypothesis, summed up 
in §3, which are represented like parameters in the system.  
In the next paragraphs, we describe each step in detail. 

4.1 Chose the target of the feedback  
This step can be shown as the selection of knowledge elements 
which are target by the feedback. The selection is influenced 
essentially by the knowledge diagnosis results and the controls’ 
characteristics. In our case the knowledge elements are the 
controls which are brought into play during the problem solving 

activity. At each student action a list of controls were diagnosed. 
The results of one step can be seen like in the Figure 1. This 
diagnosis system is described in Chieu et al. [4]. 
We use influence diagrams to represent this step of decision. It is 
used to represent and to calculate the decision-making in several 
applications [6], [7]. In the influence diagrams there are decision 
nodes and utility nodes as well as chance nodes. 
We have chosen this approach because it allows making decisions 
under uncertainty. Indeed, the learner's state of knowledge, 
produced by the diagnosis, will be deduced from learner actions 
with a degree of uncertainty, so our model has to generate the best 
feedback according to this input. 
In our model (Figure 2) there are knowledge nodes (the oval 
nodes that represent the result of the diagnosis), an apprenticeship 
utility node (hexagonal node) and target decision node 
(rectangular node with the list of candidate elements or 
knowledge to be targeted). The inference in this diagram allows 
selecting a knowledge element as target. Indeed, the result of the 
inference gives the values of the utilities for each knowledge 
element, the highest one will be the targeted element for the 
feeback. 

  
Figure 2. The influence diagram for target decision 

To apply the inference in the diagram, we defined a function that 
models the preferences from an apprenticeship point of view, 
which is the utility function. The preferences will be described 
numerically under the notion of utility U, where U(a1)> U(a2) 
means the decision-maker prefer action a2 compared to the action 
a1. 
In our case the apprenticeship utility function, Uapp(c, E), allows 
us to calculate the a priori utility to focus feedback on an element 
knowledge of a candidate (c) by taking into account the set of 
knowledge elements (E). Then, the inference in the influence 
diagram calculates the estimated utility for each candidate 
according to the diagnosis results. In other words, the utility 
function initializes the calculation in the influence diagram and 
then the inference algorithm deduces the decisions. 
As we can see, in the previous figure the diagram is very simple; 
our contribution is basically in the definition of the apprenticeship 
utility function that takes into account the didactical hypothesis, 
which we explain in the next paragraphs 

4.1.1 Apprenticeship utility function 
This utility function allows initializing a priori utilities according 
to the factors that influence the target decision. We identified 
some factors as the element state and the element characteristic:  

1. Element State is the diagnosis result. It represents the 
manner of using the knowledge element in the problem-
solving process: Used-valid, Used-invalid,   not-used.  

2. Element Type, it is linked to the validation criteria for 
each identified knowledge, like explained after, in our 



current Teleos example it can be “declarative”, 
“pragmatic” or “perceptive-gestural”;  

3. Element Order represents the step of problem-solving in 
which this element intervenes. An element can 
intervene in several problem-solving steps, for example 
the control knowledge related to the profile X-ray can 
intervene in several steps of the activity; 

4. Element Context indicates the context of problem-
solving in which this element intervenes. It can be 
‘general’ or ‘particular’. For example, in the case of 
surgical domain, some steps and knowledge control 
elements could be especially for the scoliosis 
intervention. 

From all of these factors we define in the equation (1) Uapp(c, E) 
the utility to choose a candidate element, c, as feedback target in 
taking into account the set of  knowledge elements, E, as the sum 
of all the utilities related to each factor. 
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In our didactical hypotheses, these factors do not have the same 
weight in influencing the choice of the target. Thus, we attribute 
to each factor a priority variable (D, E, J, and G), which represents 
its weight in the utility calculation.  

We define in the equation (2) the utility of choosing a candidate c 
as a target according to its state Ustate(c, E), as the sum of utilities 
for each pair of candidates c and element ej in E; n is the number 
of knowledge elements of the set E. 
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In addition, we define the state utility in the table for each pair 
Ustate(c, ej). The values are defined according to didactical 
hypotheses and the domain of knowledge.  
For example, the didactical hypothesis “it is more important to 
focus the feedback on an element that is used in an invalid way 
than to focus it on an element that it didn’t use” is represented by 
a value where Ustate(c = “used_valid”, e ) � Ustate(c = “not-
used”, e ). In other words, we propose one utility state table that 
allows selecting between two elements situated in the diagnosis 
results space (shown in Figure 1) according to the chosen 
didactical hypothesis. 

The definition of the type utility Utype(c) from didactical 
hypothesis can be “it is more important to focus the feedback on a 
declarative element than to focus it on a pragmatic one”. We 
express this by giving to declarative elements the higher value of 
utility. In this example, the Utype(c) = 3 if c is declarative and 2 if 
it is pragmatic. In the present implemented version, the system 
doesn’t take into account the perceptive-gestural knowledge 
because the didactical analysis is ongoing, but it is modelled to 
integrate it in an easy and modular manner. 
We define the utility order: Uorder(c), from the didactical 
hypothesis “it is more important to focus the feedback on an 
element appearing in a primary stage of the solving than to focus 
it on an element appearing in later stages”. Thus, it is possible that 
an element appears in several stages. We define the utility order 
in equation (3); m is the number of steps where this element 
appears and O(c) is its order. The first time of the control i is 
identified Oi(c) = 1. 

¦  
 

m

j j
order cO

cU
1 )(

1)(                                           (3) 

 
We define the nature utility Unature(c) from the didactical 
hypothesis as follows: “it is more important to focus the feedback 
on an element appearing in the solving of a general problem than 
to focus it on an element appearing in a particular context”. Like 
the Utility type function case, we express this by giving a higher 
value of utility to the nature target chosen (in this case if c is 
general Ucontext(c)= 2). 
According to these considerations, we have defined an algorithm 
that calculates the apprenticeship utility function and initializes 
the utility table from a set of knowledge elements with their 
characteristics. In this algorithm we create, first of all, the 
coefficients’ matrix « coeff » in relation to the number of 
knowledge elements (k), and then we calculate the state utility 
table for each candidate. It is calculated based in  formula 4, 
where k is the number of the column, j is the possible state of the 
knowledge element (used-valid, invalid or not-used) and Hypo is 
one of the didactic vectors A,B or C related to the state of the 
targeted candidate in  column k 
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This algorithm needs to be to running only once, after settle the 
didactical hypothesis. The inference in the influence diagram then 
uses probabilities resulting from the diagnosis and then calculates 
utility values to infer the estimated utility for each element. 
Finally, the target for the feedback is the element that has the 
maximal estimated utility value (Figure 3) calculated. It is 
possible to have some elements with the same maximal utility. 

 
Figure 3. Inference Diagram decision result 

As we presented before, we have chosen to represent all didactical 
hypotheses as parameters in the utility function. This choice 
makes our model flexible to add or modify didactical hypotheses. 
For example, for the factor “Type of Knowledge” if the didactical 
hypothesis is “it is more important to focus the feedback on an 
pragmatic element than to focus it on a declarative one”, then it is 
sufficient to give the parameter that represents the utility for an 
pragmatic element a value higher than the utility for a declarative 
element Utype(c=pragmatic)> Utype(c=declarative). 

4.2 Choose the objective of the feedback 
After choosing the target, the decision model determines its 
feedback objective in order to give, from the learning point of 
view, a semantic to the feedback intention. In our model we 
distinguish several feedbacks. Indeed, if the target knowledge is 
diagnosed (with a higher probability) as ‘brought into play in an 



invalid manner’ (BPI) the feedback is not the same than if this 
target knowledge is diagnosed as ‘not brought into play’ (NBP).  
We have defined a procedure that determines the feedback 
objective by applying an analysis on the target element state. The 
principle of this procedure is that it segments the diagnosis space 
into several zones, and it attributes an objective to each zone. 
Then, the feedback objective corresponds to the zone in which the 
target element is situated.  This step permits to pass from an 
uncertain state of knowledge to fixed objectives of learning. The 
number of segmented zones and the objective for each zone is 
customizable in our model.  

 
Figure 4. Example of segmentation of the knowledge elements 

space to determine the feedback objective  
In this example, if the knowledge element is in zone 1 (“if P(NBP 
) – P(BPI) > 0.25 and P(NBP) – P(BPV) > 0.25”)  then the 
feedback objective is  to “verify” if the targeted knowledge is 
understood by the learner. The possibilities proposed for the 
feedback objective are: verify, reinforce and destabilize. The 
meaning of verify feedback is to propose a type of feedback to 
improve the diagnosis related to a set of knowledge targeted 
elements (for example, proposing another problem where specific 
targeted knowledge has to be mobilized). The idea of the 
reinforce feedback is to support the user in relation to the targeted 
knowledge elements (for example a positive feedback, a closer 
clinical case that was studied or solve another problem where the 
targeted knowledge could be used). Finally, destabilize feedback 
has the objective to show that the targeted knowledge is used in 
an invalid manner in these kinds of problems (by explaining the 
right way in the course, proposing a counter example from the 
clinical case database or proposing another problem where if the 
knowledge is used, the result could be wrong) 

4.3 Determine the feedback form  
In this step, the decision model chooses the most relevant form of 
feedback linked to the type of the target knowledge element and 
the feedback objective (reinforce, verify, destabilize).  
Here the idea is to associate one kind of feedback form to the 
feedback objective and the type of the targeted knowledge 
element. In this step we need to consider the resources proposed 
to the student. Indeed more and more TEL system proposes 
several resources to the student. For example if the environment 
has a wiki with concepts we can associate it to a form of feedback 
when the targeted knowledge element is declarative and the 
feedback objective is to reinforce.  
This association is a simple table where we can match the 
resources with a pair  <type of knowledge, feedback objective>.  

4.4 Determine the feedback content  
The content is essentially related to the form of feedback. Here 
the objective is to determine the content of the feedback in 
relation to the feedback form. For example if the feedback form is 

a wiki with concepts the content has to be related with the 
targeted knowledge element. 
This step is not generic, it depends on the kind of feedback forms 
that the TEL system has. For this reason this step will be more 
detailed in the next section where we explain the case study 
where we implemented the feedback process. 

5. THE TELEOS SYSTEM EXAMPLE 
The analyzed procedure is about surgical orthopaedic 
percutaneous (without incision) operation. It is developed in [21]. 
It could be summarized as follows: The surgeon first inserts a pin 
in the bone through the skin. S/he makes the pin progress in the 
bone, taking several X-rays to validate the pin’s course at 
different steps of its progression. The X-rays allow him or her to 
“reconstruct” a complete vision of the position of the pin, in 
relation to the bone. If s/he recognizes any problems in those 
views, s/he restarts the operation process, taking another pin and 
correcting its entry point and/or direction. Until now we have 
analyzed the sacroiliac screw operation and the vertebroplasty. 
The description procedure does not have to be complete and well-
defined but the goal is to extract from the diversity of each 
particular situation, the significant controls elements, from a 
learning point of view, of the surgical procedure.  
The analysis, made in [21], allows us to identify crucial aspects of 
the surgical procedure. We identified primarily that the pin’s 
positioning is the most important part of the procedure, the 
definitive screw being placed along this pin. Secondly, we notice 
the crucial role of X-ray controls. As the surgeon cannot directly 
visualize the operating area, he has to interpret his gesture through 
these controls. This necessitates two levels of interpretation. On 
the first level, the surgeon has to ensure that the X-ray is valid 
(i.e. being oriented in order to represent what it is intended to 
represent); on the second level, the surgeon can look at the 
validity of the pin’s position according to anatomical criteria on 
the X-ray. 
Table 1. Examples of knowledge controls for sacroiliac screw 
Control 
Type 

Control elements of knowledge Domains of 
validity 

declarative The pin’s trajectory must be completely 
intra-osseous 

all 

declarative If the pin is well positioned then the pin 
appears as a point on the profile X-ray  

PB, PC, PE 

Pragmatic If the pin would become extra osseous 
by being pushed in S1, 1cm after the 
median line, then it can be stopped at the 
median line 

PC, PD 

Pragmatic If  the pin would become extra osseous, 
then it can be stopped just 1cm after 
having reached S1 

PA,PD,PF 

Perceptive-
gestural 

If the pin was in the sacroiliac and the 
resistance force decrease then the pin 
would become extra osseous 

All 

Thus, we identified the control knowledge elements, which are 
related to surgeons’ actions during the intervention, they allow 
surgeons to validate their actions; some examples are shown in 
Table 1. The controls have a domain if validity, i.e. they are valid 
for a set of problems. The control type is also identified: it could 
be declarative, pragmatic, or perceptive gestural. 



5.1 TELEOS SYSTEM 
We have developed a modular architecture. Each module is built 
in relation to the knowledge learning constraints [10]. The learner 
interacts with the following modules: Semantic Web Courses, 
Simulator, and Clinical Cases. We introduce briefly these three 
modules in the next section. The decision-making model uses 
these modules and the result of the diagnosis to build the 
feedback. The diagnosis model will not be described in this paper. 
The result will show in the Figure 1. 

5.1.1 Simulator for orthopaedic surgery 
The last implementation version is explained in a previous paper 
[12]. Two surgeries were implemented in this last version: the 
vertebroplasty and the sacroiliac screw.  

 
 
 

 
(a) 
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Figure 5. Haptic interface (a). Graphical interface during the 
pin trajectory (b). Graphical interface when the trajectory is 

validated by the user (c). 
Regardless of the simulated operation, the TEL system gives to 
the learner the opportunity to train himself and practise a surgical 
operation thanks to several functionalities: Choosing the type of 
patient and the type of operation; visualizing in 3D the tool and 
the patient model; Adjusting the position and the incidence of the 
fluoroscopic image intensifier; Drawing the cutaneous marking  
on the body of the patient model; Producing and visualizing 
radiographies; Manipulating the surgical tool through a mouse or 
through haptic interface; Verifying the trajectory in a 3D bone 
model when it has been validated (Figure 5). In this paper we are 
focused on the pelvis operation. 
In the previous figure we can see on the right of the graphical 
interfaces (b and c), two 2D images representing the last two 
radiographies produced by the user. In the top left hand corner, 
there is the 3D model of the patient, and the surgical tool, the user 
is able to see the 3D bone model only when the trajectory is 
validated.  

5.1.2 Clinical cases database 
The role of the Clinical Case agent is to illustrate the 
consequences of a proposed trajectory. It is a database where we 
can find pertinent information related to different phases (before, 
during and after the operation). 

 
Figure 6. Clinical Case with data from one operation 
For example, one clinical case may have some x-rays before the 
operation (Figure 6, right side), some films of the gesture during 
the operation and some x-rays and data describing the post-
operatory information (the position of the bone, the state of the 
bone, etc… left side Figure 6). This Clinical Case Database could 
be useful to show, for example, trajectories that have 
consequences in the post-operatory period (there may be a 
problem with the fracture reduction because the trajectory with 
the pin is too short, for Instance).  

5.1.3 Online Courses 
We have an online course (at http://www-sante.ujf-grenoble.fr) that 
explains the declarative knowledge (anatomy, surgical procedure, 
tools, etc.) about sacroiliac percutaneous screw placement. It is 
based on online courses and academic documentation, and is 
improved by interaction between the didactical expert and the 
surgeons.  
For this part we use ontology with a set of rules based in OWL 
language. We have developed a semantic web module, with more 
than eighteen web pages, which have metadata based on ontology. 
This module proposes not only syntactic links, but also semantic 
ones; it allows the redirection to precise and relevant chapters of 
the online course. The implementation of this module is explained 
in previous work [8].  

5.2 ADAPTIVE AND EPISTEMIC 
FEEDBACK PROCESS 
Like introduce in the paper the implemented feedback process is a 
delayed feedback, i.e. the TELEOS system propose a feedback at 
the end of the activity. The result of the process can be to solve 
another problem on the simulator, to consult a particular webpage 
on the online course or to consult one specific clinical case in the 
database. 

 
Figure 7. Kinds of feedback in TELEOS system. 

Because the two first steps described previously are generic, we 
don’t explain them in detail here. In the step three we propose a 
simple table interface where the didactical or pedagogical user 
can propose the match between the resource (simulator, clinical 



case and web course) and the pair type of knowledge (declarative, 
pragmatic, perceptivo-gestural) and feedback objective 
((reinforce, verify, destabilize).  We can choose one or several 
forms for the same pair <type, objective>. For example, the 
pedagogical user was proposed the clinical case and the simulator 
to destabilize the pragmatic knowledge. 
For the step 4 we need to consider the specific form of the 
feedbacks. In our case we have three forms of feedback (online 
web course, simulator, and clinical database) and to find the 
inquired form we do not apply the same process. One example of 
possible feedback is shown in the next figure: 
In the case of the form ‘consult part of web courses’, the content 
represents the links to the appropriate pages. It is made by 
sending keywords related to the target element to a semantic web 
model [8]. This feedback receives the knowledge elements to be 
considered, which are analyzed by the java program, using the 
ontology, and finally it produces a web page with a set of links to 
the online course, which are related to the targeted knowledge. 
The Java Engine code uses the open source tool Jena which offers 
libraries to work with OWL files. In the case of the sacro-illiac 
surgical operation, our system is based on two ontologies, one 
related to the pelvis anatomy, which is built on Standford 
university anatomy ontology [2], and the other one is related to 
the screw placement procedures, which we built and validated 
with our experts. 
For example if we give the knowledge element ‘Outlet radio 
control’, which is in relation with  anatomical ontology, the java 
engine finds the classes related to these knowledge elements and 
produces a set of links which come from the online course. 
The calculation of the content for the forms ‘clinical cases’ and 
‘simulator’ is made according to the target and to the feedback 
objective. For the form ‘consult a clinical case’, it represents the 
relevant case like a query in a database.  
Finally, for the form ‘solve another problem with the simulator’, 
it represents the relevant problem to solve. The design can be 
made by applying inference algorithms in the Bayesian Network 
(that represents the knowledge domain) or by a decisional 
theoretical approach to select a closer problem [15]. In the present 
version we find the problem that has the most common didactical 
variables (kind of fracture, the hardness of the spongy bone) with 
the solved problem. 

5.3 Evaluation and discussion 
The evaluation of the didactical decision process was achieved in 
several steps. Because the utility function is additive, we 
evaluated first the dominance between different modelled factors 
and second we made a sensitive analysis to study the adaptability 
of the model.  Moreover, we made an evaluation to study the 
behaviour of the system in relation to the expert’s propositions. 
Here we present this last evaluation. The others evaluations show 
that, firstly, small changes in the assigned probabilities lead to 
different decisions of feedback target. It means that if there is one 
small change then the result of the calculus of the target feedback 
could be radically different. Secondly, the sensitivity level can be 
adjusted according to the weight given to the element state factor. 
The aim of the comparison with expert proposition is to verify 
and refine the model in relation to the human didactical 
feedbacks. Here the input is the simulated diagnosis of learner's 
state of knowledge (e1 [BPI 0.7, BPV 0.17, NBP 0.13], e 92 [BPI 
0.65, BPV 0.23, NBP 0.12], etc) and the output is the feedback 

proposed (Consult the parts of the course ‘entry point related to 
skin marks’, propose a problem, with a disjunction, to solve in the 
simulator, etc.). These scenarios are run by an expert in didactics 
and by our didactical decision system, afterwards they are 
compared. 
Because in our model the didactical hypotheses are customizable, 
the parameters have to be calibrated by an expert (in didactics for 
example) before using it. To make the adjustment of these 
parameters easier, we developed some interfaces and we also 
proposed a questionnaire that contains multiple-choice questions, 
(associate to didactical hypothesis) and we associate with each 
choice a possible value of the parameter. Therefore, the answers 
to this questionnaire allow initializing the calculation in the 
model.  
One example of scenario given to the experts is “after radio 
outlet, a student does not takes Inlet radio and modifies its 
trajectory in the wrong direction (the pin was placed a little low 
on the outlet, it starts and moves the point of entry down). The 
declarative control e93 (coupling outlet / inlet) comes NBP 30%, 
the declarative control e19 (risk of passing through the hole of the 
sacrum because too low on outlet) is BPV 50% and the pragmatic 
control e18 (link outlet position / position of patient) is 75% BPI”. 
One expert proposition was: “propose the web page linked to the 
inlet/outlet coupling and propose an exercise related to the 2D and 
3D association”. 
In relation to the configuration of the system, the answer of the 
questionnaire shows us a dependent relationship between the state 
of the knowledge elements and its characteristics while in our 
model these factors are independent (it is an additive function). 
For example, the question about what is more important to target 
a “not-valid knowledge” or a “not used knowledge”, the expert 
answer depends on the type of the knowledge (declarative, 
pragmatic, etc.).  
In addition, regarding the output proposed by the expert, the 
results show that the system is able to produce relevant feedbacks 
for each scenario. Furthermore, some feedbacks are not exactly 
the same as the expert feedbacks. We identify two reasons for 
these differences. Firstly, the present model selects as target one 
(or some) element(s) that has(have) the maximal value of 
estimated utilities but in the expert propositions, the feedbacks 
can be related to some elements with positive values of estimated 
utilities and related as well to the elements with the maximal 
value. Secondly, the present model is not able to propose a 
sequential set of feedbacks (for instance, the expert proposes that 
feedback 1 follows feedback 2). In fact, the present model is able 
to take the historical dimension with the evolution of the 
probabilities, but it does not yet treat the historical dimension 
related to the previous feedback 

6. DISCUSSION 
This system had to support an explicit representation of 
pedagogical and didactical hypotheses and, from a computer 
architecture point of view; the system had to be separated from 
the other modules. These choices are related to the idea of 
proposing a normative system, able to evaluate separately and 
also to allow the investigation of some didactical hypothesis to 
generate the feedback. 
The decision model thus integrates didactical hypotheses in order 
to represent the decision-maker's preferences. These didactical 
hypotheses are customizable; this choice makes our model 
dynamic and partially generic. Also, this kind of model intends to 



allow multidisciplinary work in order to investigate pedagogical 
feedback. 
From the epistemic dimension of the feedback point of view, the 
system cannot be completely generic but the design allows 
identifying the generic steps from the knowledge analysis 
dependant steps. 
In relation to the adaptive dimension of the feedback, the system 
is able to adapt the feedback to some epistemic considerations 
about the user and the available resources. Indeed, this adaptive 
dimension takes into account only the knowledge factors. It 
doesn’t take into account other factors like the morale or 
attention. Also, as pointed out by Woolf ([23] p. 133), it is 
necessary to integrate different teachers’ strategies: A single 
teaching strategy was implemented within each tutor with the 
thought that this strategy was effective for all students. However, 
students learn at different rates and in different ways, and 
knowing which teaching strategy (…) is useful for which student 
would be helpful. This section suggests the need for multiple 
teaching strategies within a single tutor so that an appropriate 
strategy might be selected for a given student”.  
The reliability of our model depends on the accuracy of diagnosis 
results and the best set of parameters. Here it is also necessary to 
refine the model using real data in order to improve its structure, 
the conditional probability and the decision factors by using a 
method of automatic learning from data.  
Moreover, the evaluation indicates that it seems necessary to 
consider not only the history of the student activity but also the 
dynamic aspect linked to the decisions.  Indeed, in the classical 
approach the decision is in relation to the predictive aspect of the 
student model ([16], [2]) i.e. it calculates the consequences of the 
feedback on the predictive student model. However, it appears 
that the dynamic aspects concern not only the student factors but 
also the resources or the decision itself. 
The data collection seems to be the perspective’s keystone in 
order to improve the present model but also to go forward in this 
kind of research. However, the data to be collected it is not only 
the classical data in the domain of learning systems, i.e. the data 
from the student, but also the data linked to the feedback decision. 
This kind of collection will be more centred on the analysis of the 
decision process for the feedback production. 
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ABSTRACT
In this paper we explore the question of whether additional
benefits can be derived from providing formative feedback
on students’ explanations given the di�culties of accurately
assessing them automatically. We provide a preliminary
evaluation of an approach in which students assist in in-
terpreting their own explanations and we lay out our plans
for evaluating the e↵ectiveness of a natural-language intelli-
gent tutoring system’s feedback to that interpretation e↵ort.
The preliminary evaluation suggests that students respond
well to the approach. While their interpretation assistance
may be similar to an automated explanation matcher, they
continue to provide explanations throughout their interac-
tions.

Keywords
student explanations, tutorial dialogue, formative feedback

1. INTRODUCTION
Numerous studies suggest that self-explanations can be more
beneficial to students than explanations from others (e.g.
[3]). In the context of an automated learning environment
this raises the question of whether additional benefit can be
derived from providing formative feedback on any explana-
tions the student enters when the automated understanding
of those explanations remains a major obstacle. Must we be
satisfied with the self-explanation e↵ect or can and should
we do more?

Previous work has attempted to recognize natural language
explanations and then engage in a natural language dialogue

with the student to refine and improve those explanations
(e.g. [11]). And more recent work has attempted to field
dialogue systems that incorporate more knowledge intensive
automated recognition of students’ elaborations during dia-
logue [4]. But so far, recognizing what the student meant is
still very limited. And even if we step away from attempts
at actual understanding, the performance for matching to
canonical sets of answers is still relatively low (e.g. [5, 12])
compared to what can be achieved with short answer re-
sponses (e.g. [13]). Perhaps even more troubling is how
sensitive students are to a system’s failure to understand
them [4]. Although a system can recover and move forward
in a coherent manner, the students notice the lack of under-
standing. One possibility for this sensitivity may be that the
errors are often quite di↵erent from those a human makes
(e.g. the system fails to recognize a response as correct but
a human clearly would).

Related work, which studied the impact of decisions about
dialogue tactics [2], seems to have avoided some of these is-
sues by substituting a human interpreter (wizard) for the
automated interpreter. One goal of this substitution was
to reduce the confounds of misunderstandings so that the
system could focus on evaluating decision policies regarding
whether to elicit or tell the explanations and justifications
for statements made either by the system or the student.
The human interpreter was presented with a list of canonical
answers and was asked to find the best match for the stu-
dent’s response or to select “none of the above”. There were
significant di↵erences in learning based just on varying deci-
sion policies about whether to elicit or tell the same content.
This result suggests that being able to request explanations
and justifications and being able to reduce the confounds of
errors in matching to canonical answers has potential. But
is there a practical way to include a human interpreter in a
classroom setting? And how sensitive are students to prob-
lems that arise if their answer is close to correct but not a
good match for any of the canonical answers?



First we will introduce the Rimac1 system and its experi-
mental setting and our approach for eliciting and assessing
students’ responses to requests for explanations/justifications.
Next we will describe the data we have collected and provide
a preliminary evaluation of the success of our approach for
eliciting explanations/justifications. Finally, we will lay out
our plans for exploring if there is value added to providing
feedback on students’ explanations.

2. THE RIMAC SYSTEM
Rimac is a natural-language intelligent tutoring system that
engages students in dialogues that address physics concepts
and principles, after they have solved quantitative physics
problems. Much research has been devoted to identifying
features of tutorial dialogue that can explain its e↵ectiveness
(e.g., [1]), so that these features can be simulated in natural-
language tutoring systems. One hypothesis is that the highly
interactive nature of tutoring itself promotes learning. Sev-
eral studies indicate that our understanding of interactivity
needs refinement because it cannot be defined simply by the
amount of interaction nor the granularity of the interaction
but must also take into consideration how well the interac-
tion is carried out (e.g., [2]).

This need for refinement suggests that we should more close-
ly examine the linguistic mechanisms evident in tutorial dia-
logue. Towards this end, we first identified which of a subset
of co-constructed discourse relations correlate with learning
and operationalized our findings with a set of nine decision
rules which we implemented in Rimac [9]. To test for causal-
ity, we created two versions of Rimac: an experimental ver-
sion that deliberately executes the nine decision rules within
a Knowledge Construction Dialogue (KCD) framework, and
a control KCD system that does not intentionally execute
these rules. One of the rules in the experimental version of
Rimac that is of particular relevance for this paper is: If
the student gives no explanation for an answer to a complex
question then ask for one.

Rimac was built using the TuTalk tutorial dialogue toolkit
[6] but has been enhanced with additional dialogue features
such as reformulation of student input (e.g., [7]). The dia-
logues are tutor-initiative only and are primarily short an-
swer questions in order to keep the accuracy of automatic
recognition high. However, the system does request student
explanations at a few key points in the dialogues. It does
not attempt automatic recognition of these responses but
instead always follows-up with multiple choice answers for
the explanation question and a request that the student se-
lect the best match for the explanation she just provided.
In e↵ect, we are asking the student to fulfill the role of a hu-
man interpreter for the system. We give the students brief
verbal instructions for what is expected of them and why as
we will explain in more detail below.

Figure 1 is an excerpt of an interaction between one of the
students in our evaluation set and Rimac. This excerpt
shows the system requesting an explanation at line 3. The

1Rimac is the name of a river whose source is in the An-
des. Its name is a Quechua word meaning “talking;” hence
the nickname for Rimac: “talking river.” We thus consid-
ered Rimac to be well suited to a dialogue system that we
intended to embed in the Andes tutoring system.

1. T: We talked about the acceleration on the way up and
on the way down, but what about at the very top of
the jump? What was the direction of the acceleration
at the top?

2. S: zero

3. T: Why do you think there wasn‘t any acceleration?

4. S: it had a zero velocity

5. T: Thanks! So what below is the best match for what
you just entered? [menu choices: ‘Since the kangaroo is
not moving, there isn‘t any acceleration | The kangaroo
is changing direction, so it doesn‘t have an acceleration
| I guessed | None of the above‘]

6. S: Since the kangaroo is not moving, there isn‘t any
acceleration

7. T: There actually was acceleration at the top of the
jump, even though the kangaroo wasn‘t moving.

8. T: The kangaroo wasn‘t moving for just a very brief
moment and it was like that because its velocity was
switching from upward to downward. To switch from
an upward velocity to a downward velocity, the kanga-
roo‘s velocity must reach a point where it is 0 m/s.

9. T: Since acceleration represents the change in velocity
and the velocity was changing in this situation, the
kangaroo‘s acceleration must be non-zero.

Figure 1: Excerpt of actual student interaction

that requests student’s assistance with interpreta-

tion along with the resulting formative feedback

student provides her response and then the system asks the
student to select the best match for her response at line 5.
The system then follows-up in lines 7-9 with formative feed-
back that is appropriate for what the student selected as the
best match for her response.

3. THE EXPERIMENTAL DESIGN
Students in five Pittsburgh area high schools interacted with
one of the two versions of Rimac during two course units
(kinematics and dynamics). They used the system for one
to two class periods per unit. In this paper, we examine the
dialogues from the kinematics unit only.

A day or two prior to using the system, students first took
a pre-test, and then completed a homework assignment in
which they solved four quantitative physics problems. In a
subsequent class, they used the Rimac system and finally
during the next class meeting took a post-test.

Just before students began using Rimac, we introduced them
to the system and read the following to them regarding re-
quests for explanations:

“Sometimes it will ask you to explain your
response. This is regardless of whether it thinks
you were right or wrong.



When it asks you to explain, please be sure to
type in what you were thinking that lead you to
your answer. You may have to think a bit about
it. If you realize that you guessed or used your
intuition, that’s fine; just type that.

It will then follow-up with a multiple choice
question and ask you to pick what is the best
match for what you just wrote. It is important
that you pick the best match for the explanation
you just wrote and not what looks like the best
explanation. Rimac needs to know what your
thought process was so it can do a better job
of helping you understand the physics concepts
involved in solving the problem.

It asks you to do this matching for explana-
tion questions because it cannot understand ex-
planations accurately enough. However, for all
the other answers you type in it is fairly accu-
rate.”

As the student and system begin the review of an assigned
homework problem, Rimac first instructs her to view a brief
video that describes how to solve the homework problem and
then they engage in a reflective dialogue about that problem.
See [10] for a more detailed description of the pilot study and
planned analyses for testing the nine interactivity decision
rules. Note that in this paper we are focusing on just one of
these nine rules.

4. EVALUATING THE APPROACH FOR
ELICITING EXPLANATIONS

We visited the high schools at two di↵erent points during
their physics courses, once when the students were ready to
learn the material covered in Rimac’s kinematics problems
and later when they were ready for Rimac’s dynamics prob-
lems. The students who used the experimental version of Ri-
mac, in which the interactivity rules are implemented, had
the opportunity to discuss three kinematics problems and
three dynamics problems. In this preliminary evaluation of
our elicitation approach, due to time constraints, we have
examined the explanation request data for the three kine-
matics problems only and for just a subset of the students
who used this version of the system (93 of 193 students).

From this subset of the data, we extracted and reviewed the
dialogue data for 16 of the 18 system turns where students
were asked to interpret their own responses. Two of the 18
turns were requests to provide equations as justifications so
we excluded those for this analysis. Although there are 93
students in this data sample, not all questions are asked of
all students. The questions that are asked depend on the
student’s responses during the dialogue. In this sampling of
students there were 251 instances of requests for explana-
tions/justifications to examine. We reviewed each response
and categorized the student’s initial typed response as either
relevant to the question asked, an acknowledgement that she
had guessed or didn’t know, or irrelevant to the physics do-
main. We listed this analysis per problem in order to see if
there is any indication that the problem, the order in which
the problems were discussed or the types of questions asked
might influence the students’ behaviors.

1. T: Why do you think that acceleration is upward?

2. S: nevermind

3. T: Which of the following is the best match for what
you just entered? [menu choices: ‘Because the kanga-
roo changed direction | Acceleration is always in the
opposite direction as velocity | I guessed | None of the
above‘]

4. S: Acceleration is always in the opposite direction as
velocity

Figure 2: Example of an actual student reaction

when asked to explain an incorrect answer

Problem 1 Problem 2 Problem 3
relevant content 88% (123) 68% (50) 72% (28)

guessed/idk 5% (9) 15% (11) 23% (9)
irrelevant content 3% (7) 16% (12) 5% (2)

Table 1: A categorization of students’ responses to

requests for explanations

Table 1 shows that students rarely refused to respond (3-5%)
for problems 1 and 3. Refusal to answer increased notice-
ably for problem 2 (16%) so it does appear that the ques-
tions asked for this problem may have impacted students’
willingness to respond.

While most student replies that we counted as refusals to
answer were simply replies of “because”, we noted in prob-
lem 2 some instances of “ok” and “never mind” as in the
excerpt shown in Figure 2. Note that in this case the sys-
tem is asking the student to explain her incorrect answer.
After saying “nevermind” the student may be selecting what
she was thinking or something that looked like a true state-
ment. Of the 16 system turns evaluated, 8 were in response
to wrong answers. However, problem 2 accounted for 6 of
those requests and problem 3 for the rest. The increased re-
fusal to answer for problem 2 may be because there are more
requests to explain incorrect responses. When students self-
explain and recognize they have made an error, it appears
they sometimes try to figure out how to retract their answer
or evade the expected follow-up. However, if the student
does not realize her error, it does seem that the formative
feedback could be beneficial. For example, consider the dia-
logue excerpt shown in Figure 3 where the student is asked
to explain a wrong answer in line 6 and the formative feed-
back is provided in lines 8-13.

Next we evaluated how well the students performed in their
role as human interpreter. We reviewed each response by
following the training given to human interpreters for the
experiments described in [2] which used the Cordillera sys-
tem (i.e. how would I match this response to the choices
provided). One of the reviewers of the students’ responses
(the main author) was also one of the human interpreters
(wizard) for the first two versions of the Cordillera system.
So it could be instructive to informally compare and contrast
the interpretation tasks for the two systems and populations
from the perspective of a wizard.



1. T: If the stone is thrown with a larger horizontal initial
velocity, what happens to the time spent in the air (i.e.
will it be the same or larger?)

2. S: larger

3. T: Hmm...So why did you think this?

4. S: more time

5. T: Thanks for explaining your reasoning.

6. T: So which of the reasons below best matches your
explanation above for why you think the stone will stay
longer in the air? [menu choices: ‘I used my intuition
but I am not sure how to explain it in physics terms |
Throwing it harder means the stone will not fall right
away but will continue horizontally for a longer time
before beginning to fall | Throwing it harder makes the
stone spin and float on the air better | I‘ve seen this
happen before | Because it is going farther, it will take
longer to get there | Another reason‘]

7. S: Because it is going farther, it will take longer to get
there

8. T: That doesn‘t sound right to me. What equation
would you use to reason that out? [menu choices:
‘d

x

= v
x

⇤t|d
x

= v
x

⇤t+0.5⇤a
x

⇤t2|vf2
x

= vi2
x

+2⇤a
x

⇤d
x

‘]

9. S: d
x

= v
x

⇤ t + 0.5 ⇤ a
x

⇤ t2

10. T: Almost. What is the value of a
x

?

11. S: 0 m/s2

12. T: Right, so then the equation becomes d
x

= v
x

⇤ t.

13. T: The horizontal component of the motion is constant
velocity (not accelerating), so d

x

= v
x

⇤ t applies. In
this case, because the velocity is bigger, the displace-
ment will be bigger, but the time will not be.

Figure 3: Excerpt of actual student interaction

where system requests explanation of wrong re-

sponse

The Cordillera students were all undergraduates and their
explanations were longer and required more e↵ort to inter-
pret and match. However, there was usually one clear candi-
date for the match and when matching to a correct response
the criteria were that the necessary and su�cient details
were present or could be easily inferred and no additional
details signalled an error in thinking. The choices were au-
thored to provide the minimum that would be needed to
qualify as a complete answer. While wizards did not have to
be physics experts, they did need to understand the physics
concepts being discussed.

In contrast, the Rimac students were all in high school and
their explanations were relatively short. We did not expect
students to do well with a set of minimal match choices since
we assume you need to understand the physics concepts to
determine whether an answer actually matches. So instead
the Rimac dialogue authors provided responses for matching

Context: Problem solved for homework “A red colored
stone is thrown horizontally at a velocity of 5.0 m/s from the
roof of a 35.0 m building and later hits the ground below.
What is the red stone’s horizontal displacement? Ignore the
e↵ects of air friction.”
Question: Why did we need to find the time first?
Choices:

1. time is the same in both directions

2. d = vt

3. we don’t have enough information to solve for displace-
ment in the horizontal direction

4. we can find the displacement if we know how long it is
moving at the given velocity

5. another reason

Figure 4: An example of where some choices o↵ered

to students for matching are related to the same

underlying explanation (as in choices 1,3 and 4)

that were intended to be closer to what a student might say
and were based on input from teachers and responses col-
lected during pilot testing. As a result some of the choices
o↵ered to students for matching varied only in the detail
provided or how it was expressed. But these similar choices
present the same formative feedback when selected. For ex-
ample, in Figure 4, choice 2 is close to a good explanation
but requires more detail to be complete while choices 1,3
and 4 are all related to the same underlying explanation.
If the student selects 1,3 or 4 as a match then the under-
lying explanation is presented as an acknowledgement and
may be interpreted by the student as a reformulation. If the
student selects choice 2 then the system provides sca↵olding
that elicits the missing details.

So during our review of students’ response matching, we
selected all that we considered to be potential matches and
not just the best match. The rationale was that if a student
selected one of a similar set of responses that had details
that were missing in her response, a wizard cannot know
whether the student’s self-explanation included these details
and she chose not to express them or whether she thought
more detail was necessary and was trying to avoid formative
feedback.

After reviewing the student responses we counted the num-
ber of times we disagreed with their match choices. Again
we present the results per problem. Table 2 shows that stu-
dents’ performance may be similar to that of an automated
explanation matcher. The larger disagreement for problem
2 could be due to students possibly trying to evade further
feedback when they were asked to explain an incorrect an-
swer or could be related to the questions or answer choices
o↵ered. If deserves a closer look in future work to see if a
reason can be identified.

However, overall the students seem less perturbed by the
results of their matching behaviors. They still continued
to respond to the requests for explanations as shown by the



Problem 1 Problem2 Problem 3
agree 78% (108) 59% (43) 74% (29)

disagree 22% (31) 41% (30) 25% (10)

Table 2: Reviewer agreement with students’

matches of their responses

small increase in irrelevant content in Table 1, which remains
low with an increase from 3 to 5% when moving from the first
to last problem. The increase from problem 1 to problem 3
in “guessed/idk” could be due to fatigue, the explanations
requested or more specifically asking for more explanations
for incorrect answers in problems 2 and 3. Although the
number of “guessed/idk” decreased from problem 2 (11) to
problem 3 (9), recall that some students completed problems
in two class sessions and some in one. This was because of
di↵erences in the length of classes across schools.

To give an idea of an upper bound for agreement, we do not
expect 100% agreement between the reviewer and a trained
human interpreter (wizard). When o✏ine reviewers exam-
ined the selection choices made by the real-time human in-
terpreters for the Cordillera system for just the most di�cult
student responses (i.e. those that fell into the “none of the
above” category), the reviewer disagreed with 1% of the as-
signments to this category [8]. However, the lower bound
that is allowable for matching when students are acting as
the interpreter is still an open question. It will depend on
whether formative feedback on the explanation related to
their match choice is beneficial.

By the time of the workshop, we expect to have completed
the above analyses for all students for the kinematics prob-
lems.

5. PLANS FOR EVALUATING THE FORM-
ATIVE FEEDBACK GIVEN ON EXPLA-
NATIONS

Recall that in the instructions we read to students we asked
that they match the response they gave rather than pick-
ing what looks like the best response. We o↵er motivation
to do this by pointing out that the system needs to know
their thought processes so that it can provide better help
for them. We are assuming that the formative feedback of
a good match will be better than the “none of the above”
feedback. However, this remains to be seen.

But because our experiment was not testing this specific hy-
pothesis, we cannot answer this question directly (e.g. com-
pare to a condition in which the formative feedback is always
the “none of the above” feedback). However, we can test for
correlations between various match qualities (i.e. trained
reviewer agreed or disagreed with student) and learning of
the concepts addressed by the requested explanation. This
would suggest how important it is for students to receive
more adapted formative feedback. In addition, we can test
for gains on concepts covered in an explanation when the
student’s explanation is incorrect and relative to the qual-
ity of the match the student provided. This could suggest
whether the feedback that followed was beneficial.

This preliminary analysis of the e↵ects of formative feed-
back is forthcoming. We are currently scoring the pre and
post-tests, which (when completed) will allow us to measure
learning of particular concepts.
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ABSTRACT 
Serious games are generally designed with two goals in mind: 
promoting learning and creating compelling and engaging 
experiences (sometimes termed a sense of presence). Presence 
itself is believed to promote learning, but serious games often 
attempt to further increase pedagogical value. One way to do so is 
to use an intelligent tutoring system (ITS) to provide feedback 
during gameplay. Some researchers have expressed concern that, 
because feedback from an ITS is often extrinsic (i.e., it operates 
outside of the primary game mechanic), attending to it disrupts 
players’ sense of presence. As a result, learning may be 
unintentionally hindered by an ITS. However, the most beneficial 
conditions of instruction are often counterintuitive; in this paper, 
we challenge the assumption that feedback during learning 
hinders sense of presence. Across three experiments, we 
examined how an ITS that provided extrinsic feedback during a 
serious game affected presence. Across different modalities and 
conditions, we found that feedback and other ITS features do not 
always affect presence. Our results suggest that it is possible to 
provide extrinsic feedback in a serious game without detracting 
from the immersive power of the game itself.   

Keywords 

presence, immersion, learning, feedback, serious games, tutoring 

1. WHAT’S IN A GAME? 
We have all had the experience of being engrossed in an artificial 
experience, whether it’s a good book, an epic movie, a round of 
golf, or a couple levels of Angry Birds on a long elevator ride. 
Several features of games, especially, can make hours fly by, 
unnoticed. The interactivity of games draws players’ attention 
from non-game thoughts and stimuli. The rules of the game, too, 
are designed to add uncertainty and difficulty—and eventual 
reward—to the pursuit of an objective. Putting a ball into a cup is 
made fun, for example, by requiring that one use golf clubs to do 
so—rather than simply picking up the ball, walking over to the 
cup, and dropping it in. The eventual reward (sinking a putt) 

compels players to persist and eventually improve. 

Real-world games are fun, in part, because they take place in an 
environment that supports continued play (e.g., a golf course). 
Digital games, instead, must transport a player to the world of the 
game. This experience of being in the world of the game is 
sometimes referred to as a sense of presence [1]. Presence can be 
measured in several ways. The Temple Presence Inventory (TPI), 
for example, is a robust instrument for estimating the feeling of 
non-mediation in a multimedia experience [2]. The TPI consists 
of a series of statements to which participants respond to items 
such as “How often did you want to or did you make eye contact 
with a person you saw/heard?” with ratings between 1 (never) and 
7 (always). These statements are organized into several subscales, 
which correspond to various aspects of the experience that 
contribute to the sense of non-mediation. The two subscales we 
used were social (the experience of direct interaction with an 
artificial counterpart) and spatial (the experience of direct contact 
with an artificial environment).  

2. WHAT’S IN A SERIOUS GAME? 
In addition to the standard traits of a digital game (e.g., the 
difficult pursuit of an in-game objective, creating a sense of 
presence), serious games feature an objective outside the game 
itself. By “playing” a serious game, one becomes better at a real-
world task—or is at least better prepared to learn that task from 
subsequent instruction or practice [3]. Examples of serious games 
include CyberCIEGE, which is designed to teach people about the 
functions of computer network security measures. Another 
example is Spent, a simple simulation of a U.S. Citizen’s 
experience at the poverty line in a difficult economy with no 
bootstraps on which to pull. The difficulty, interactivity, and 
reward structure of serious gameplay can compel students to 
persist in learning something they would otherwise find dry or 
boring.  

Serious games are also used in part because the sense of presence 
created by gameplay may improve learning [4, but see 5, 6, 7]. On 
the other hand, the outside-the-game objective may be in conflict 
with that intent. Of course, a game-player’s sense of presence in a 
serious (or otherwise overtly educational) game may be disrupted 
by poorly integrated pedagogical content. For example, some 
educational games alternate between play and instruction. But 
even well integrated instructional content may be distracting; the 
user may occasionally stop to consider how to apply what they 
are learning to similar real-world tasks. If presence affects 
learning, this withdrawal may be detrimental.  

This potential conflict may be exacerbated when features that are 
intended to facilitate training are added to a serious game. These 

 
 
 
 
 



features may directly interfere, or may simply underscore that the 
player is using the game to achieve the external goal, as opposed 
to playing the game because it is fun.   

One such feature is an intelligent tutoring system (ITS). An ITS is 
a computer program or computing device that factors student 
performance into when and how it generates and provides 
guidance [8]. The development of ITSs (and other learning-
centric game features) is usually guided by principles of cognitive 
psychology and instructional design [8-10]. However, those 
principles are often developed in experimental laboratories, in 
which motivation and fun may not be priorities. Thus, ITSs may 
provide pedagogically valid feedback, but they may do so in a 
way that further deepens the rift between gameplay and learning. 
The goal of the studies reported in this paper was to determine 
whether extrinsic feedback from an ITS necessarily negatively 
affects learners’ sense of presence when playing a serious game.  

3. BILAT: A SERIOUS GAME ABOUT 
CROSS-CULTURAL NEGOTIATION 
The serious game we chose to use for our investigation is the 
Enhanced Learning Environments with Creative Technologies for 
Bilateral negotiations (ELECT BiLAT), a screenshot from which 

is shown in Figure 1. BiLAT provides an environment in which 
learners can prepare for, execute, and review cross-cultural 
meetings with virtual characters. The instructional design and 
underlying structure are focused on knowledge components that 
relate to culture and negotiation skills.  

Before a meeting, players research their meeting partner, learning 
about his/her interests and experiences. This research provides 
information that can help the character establish a personal 
connection with the character during their meeting. Once the 
meeting begins (shown in Figure 1), players interact with the 
characters by selecting an action from a menu system of pre-
authored actions (e.g., Ask “Who should I speak with to learn 
more about the market?”). The character responds to the learner 
with a synthesized voice and physical gestures. The player and 
the virtual character thus conduct a turn-based interaction, and the 
transcript of the meeting appears on screen in the panel at the 
bottom right of Figure 1.  

Although dozens of variables govern the actions of the character 
and the responses that will be chosen, the variable of primary 
importance is trust. BiLAT characters display a variety of 
emotions in their responses, but trust is the persistent record of 
how well players have used their interpersonal and intercultural 

Figure 1. A meeting in BiLAT. In the transcript pane (bottom right), the feedback from the ITS-driven coach 
appears as blue text. Below that are buttons used to adjust how frequently 

the coach decides to intervene (Experiments 2 and 3). 

Figure 1. A meeting in BiLAT. In the transcript pane (bottom right), the feedback from the ITS-driven coach appears as blue text. 
Below that are buttons used to adjust how frequently the coach (P. O., above) decides to intervene (Experiments 2 and 3). 



skills. In the simulation, trust is a major factor in whether BiLAT 
characters will agree to negotiate and what deals they will accept. 
A mistrusting character may demand unfair deals or refuse to 
negotiate. (For a more detailed description of BiLAT’s 
development and functionality, please see [11, 12].)  

The characters’ responses and decisions can be considered 
internal feedback. They help the player grasp the knowledge 
components through the primary interaction that constitutes 
gameplay. For example, if the player decides to offer the 
character a bottle of wine as a gift, the character will be offended 
and say so: “I can’t believe you’d even bring that into my home.” 
Depending on what the player has encountered both in and out of 
BiLAT, the player may conclude that the character does not like 
wine or that wine is a culturally inappropriate gift.   

During BiLAT gameplay, learners can be assisted by an ITS. In 
meetings with characters, the ITS takes the form of a 
disembodied, omniscient “coach.” The player can read the 
coach’s input in the transcript pane, but the meeting partner is not 
aware of the coach’s presence or input. In other words, the coach 
is an angel on the player’s shoulder. The input the coach provides 
is outside of the primary interaction that constitutes gameplay; it 
is external feedback.  

The coach can provide guidance about past actions (“A bottle of 
wine probably wasn’t the best gift.”) or hints about future actions 
(“What gift can you give Hassan as a gesture of goodwill?”). This 
advice can be either very general (i.e., focused on the underlying 
knowledge components) or very specific to something a player 
has done. For example, the coach could decide to say “Don’t give 
Hassan a bottle of wine” or “Make sure your gifts are culturally 
appropriate.” (For a detailed description of the ITS architecture, 
please see [13].)    

4. EXPERIMENT 1: THE EFFECTS OF 
EXTERNAL FEEDBACK ON PRESENCE 
In Experiment 1, we examined the effects of explicit ITS 
feedback on learners’ sense of presence during BiLAT gameplay. 
The manipulation was straightforward: whether the ITS was 
active or inactive during gameplay. We also added another 
manipulation: whether the sensory experience was rich or poor. 
Our goal in adding this manipulation was to ensure that we would 

be able to detect effects on presence with our system, procedure, 
and participation numbers. Thus, one group of the participants 
encountered the standard BiLAT experience: a 3-D environment 
in which a virtual character with realistic body language talks to 
the player in accented English. The other group of participants 
encountered a simplified, silent, primarily text-based 2-D 
environment. We held constant all other aspects of the system for 
the two groups. Specifically, the BiLAT characters drew from the 
same sets of utterances and the coach used the same algorithms to 
decide when to intervene. Only the interface of the two groups’ 
experiences differed. After interacting with the system in one of 
the four resultant (randomly assigned) conditions, the participants 
completed the TPI.  

Panel A of Figure 2 shows that there was a main effect of 
interface on presence. A greater sense of presence was created by 
the 3-D interface (M = 2.88, SE = .21) than by the 2-D interface 
(M = 2.08, SE = .20): F(1, 45) = 7.86, p = .007. There was not a 
main effect of ITS activation on presence. Indeed, presence 
ratings were similar in the active-ITS condition (M = 2.46, SE = 
.20) and the inactive-ITS condition (M = 2.49, SE = .20): F < 1, 
ns. There was also no interaction between interface and ITS 
activation on presence: F < 1, ns. It appears that receiving 
extrinsic feedback from an ITS does not necessarily affect 
presence. Thus, any pedagogical benefit provided by the ITS 
appears not to burden the immersive experience.  

5. EXPERIMENT 2: THE EFFECTS OF 
FEEDBACK CONTROLS ON PRESENCE 
In Experiment 1, the activity of the ITS was entirely out of the 
participants’ control. In Experiment 2, we added interactivity to 
the ITS. We gave the participants the ability to modify the 
coach’s behavior. We thought that this interactivity might cause 
the participants to attend to the coach (or the external training 
goal of the serious game) in a way that would disrupt presence.  

There were two groups of participants, both of which encountered 
the standard, 3-D BiLAT system with the coach operating 
according to its default algorithms. One of the groups was also 
provided with “coach controls.” These controls took the form of 
the buttons seen in the bottom right corner of Figure 1. These 
buttons suggested to the participants that they could nudge (up or 
down) the frequency with which the coach decided to intervene. 

Figure 2. Results from all three experiments. Panel A displays presence as a function of interface richness and ITS activation in 
Experiment 1. Panel B displays presence as a function of ITS interactivity in Experiment 2. Panel C displays presence as a function 

of initial ITS feedback frequency in Experiment 3. Error bars represent the standard error of the mean. 



The controls, however, were only cosmetic (although they still 
visually and aurally behaved like other in-game buttons). We 
chose to display but disable them in order to manipulate the 
participants’ belief that they could control the coach without 
allowing learning, performance, success, or frustration to vary 
uncontrollably. After interacting with the system in one of the two 
(randomly assigned) conditions, the participants completed the 
TPI.  

Panel B of Figure 2 shows that there was no main effect of ITS 
controls on presence: F(1, 22) < 1, ns. This result provides more 
evidence that even direct interaction with an ITS outside the 
primary game mechanic does not necessarily disrupt presence.  

6. EXPERIMENT 3: THE EFFECT OF ITS 
HELPFULNESS ON PRESENCE 
Experiment 3 was designed to extend Experiment 2. Our goal was 
to determine whether the BiLAT ITS could deliver feedback in a 
way that would disrupt presence. To that end, we modified the 
coach’s feedback-timing algorithms to draw even more attention 
to the ITS than in Experiment 2. For one group of participants, the 
coach began the session in complete silence. For the other group 
of participants, the coach began the session by speaking up on 
every single turn. We activated the “nudge” controls, which were 
merely cosmetic in Experiment 2, to encourage the participants to 
interact with the ITS as much as possible. Each press of “a little 
more” or “a little less” changed (by 5%) the probability that the 
coach would speak up on the next turn. After interacting with the 
system in one of the two (randomly assigned) conditions, the 
participants completed the TPI. 

As can be seen in Panel C of Figure 2, the participants in both 
conditions provided similar presence ratings: F(1, 22) < 1, ns. 
That is, whether the participants’ experience began with constant 
chatter or complete silence from the ITS, their sense of presence 
remained relatively unaffected. Moreover, in comparing the three 
panels in Figure 2, it is clear that the participants’ overall ratings 
were similar across all three experiments—despite drastic 
differences in feedback algorithms and ITS interactivity. It seems 
that, unless an ITS is designed with the express purpose of 
disrupting gameplay, it may not interfere with the immersion 
created by a serious game. 

7. GENERAL DISCUSSION 
Interpersonal and intercultural skills, to be frank, may not be the 
most compelling instructional topics. However, when playing 
BiLAT, players and participants become very engaged. A 
participant in one study, when meeting with a particularly 
stubborn character, took off his headphones and threw them 
across the room, saying “I know he wants to agree to it, and he’s 
just trying to give me a headache!” 

Our research demonstrates that this sense of presence is not 
necessarily disrupted when external feedback from an ITS is 
added to a serious game. Further, learners can even be instructed 
to directly interact with the ITS, yet still suffer no decrement to 
self-reported presence. On the other hand, the use of a single, self-
report measure of presence is a limitation of the present study. A 
more compelling case may be presented by including 
corroborating physiological data. (We did not examine measures 
of performance or learning because it would have been impossible 
to disentangle from each other the effects of feedback on 
presence, feedback on learning, and presence on learning.)   

Although these results may seem surprising, external stimuli 
interrupt engaging experiences quite frequently, often with no 
negative results. Many people have put down and then resumed 
an engrossing book—and been able to reinstate their enjoyment of 
and engagement with the story. Perhaps a compelling narrative or 
rewarding gameplay may make some serious and educational 
games robust to interruptions, as well. In these cases, people may 
be able to suspend and resume their engagement as they wish. If 
so, it is interesting to consider the extent to which developers can 
add pedagogically focused game features without sacrificing 
learners’ immersion. It is reasonable to assume there is some limit 
to the intrusiveness an ITS can exhibit while still being 
effective—but the present studies suggest that that limit is above 
zero. 
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ABSTRACT 
Various forms of feedback are used in formative assessment and 
interactive learning environments. The effects of different types 
of feedback are often examined at a group level. However, 
effective feedback may differ in learners with different 
characteristics or between learners at different stages in the 
learning process. In this paper explanatory item response theory 
(IRT) models are used to examine individual differences in 
feedback effects in children’s performance on a computerized 
pretest-training-posttest assessment of analogical reasoning. The 
role of working memory and strategy-use as well as interactions 
between these factors were examined in a sample of 1000 
children who received either stepwise elaborated feedback, 
repeated simple feedback or no feedback during the training 
sessions. The results show that working memory efficiency 
significantly predicted initial ability and confirm that elaborate 
feedback is the most effective form of training in this particular 
interactive learning environment. Furthermore, children with 
initially less advanced strategy-use benefitted far more from 
each type of feedback than the children displaying more 
advanced strategies and this was unrelated to working memory 
efficiency. In children with advanced strategy-use working 
memory appears to moderate the effect of training. Explanatory 
IRT analyses appear useful in disentangling the effects of learner 
characteristics on performance and change during formative 
assessment and could possibly be used in optimizing feedback in 
computerized training and assessment environments.     
 
Keywords 

Figural analogies, measuring change, item response theory, 
formative assessment 

1. INTRODUCTION 
Computer-based interactive learning environments have 
enormous potential in optimizing learning by providing 
feedback tailored to an individual’s instructional needs. 
However, determining what type of feedback best optimizes the 
learning of a particular task for a particular individual is a 
complex endeavor. The effectiveness of different types of 
feedback is not always clear-cut. Furthermore, individual 
differences may be present in how effective each of these types 
of feedback is at different stages in the learning process. 
 
In formative assessment different types of feedback can be used. 
Shute distinguished a range of feedback-types from simple 
forms such as verification of correct response to elaborated 
feedback where errors may be flagged, an opportunity to try 
again is provided and/or strategic prompts are given on how to 
proceed with the problem [Shutte 2008]. Kluger and DeNisi 
[1996] argued that although simple feedback, such as 
information on correctness of response or provision of the 
correct answer, has the reputation of improving performance on 
tasks, its effect is not clear-cut and only improves performance 
or learning in two-thirds of the studies included in their meta-
analysis. Furthermore, more recent research demonstrates that 
elaborate feedback, such as providing scaffolds or an 
explanation, is generally more effective than simple outcome 
feedback [Hattie and Gan, 2011; Narciss and Huth 2006; Shutte 
2008]. For example, a meta-analysis of effects of different forms 
of item-based feedback in computer-based environments reports 
that elaborated feedback shows higher effect sizes than simple 
outcome feedback, especially in higher-level learning outcomes, 
where transfer of previous learning to new situations or tasks is 
required [van der Kleij et al. 2013]. 
 
In the case of formative assessment the aim is to optimize 
learning at an individual level. In this educational setting the 
assumption is that there are individual differences both in initial 
ability as well as the effect of different types of feedback during 
an individual’s learning process. Furthermore, different types of 
feedback may be more effective during successive stages in the 
learning process. However, effective feedback may differ for 
different types of learners or at different stages in the learning 

 

 



process. For example working memory efficiency and strategy-
use have been implicated as predictors of performance in 
(computer-based) learning [Siegler and Svetina, 2002; 
Stevenson 2012; Tunteler et al. 2008]. In this study these factors 
were examined in conjunction with feedback-type as possible 
predictors of learning outcomes in a computerized training and 
assessment of analogical reasoning.  
 
Initial ability or learning stage especially appears to play an 
important role in the effect of different forms of feedback on 
learning [Hattie and Timperley 2007]. For example, in a 
previous study on children’s change in analogical reasoning 
training utilizing repeated simple feedback was contrasted with 
graduated prompting techniques, a form of elaborated feedback 
where increasingly specific strategic hints guide the child to the 
correct solution [Campione and Brown 1987; Resing and Elliott, 
2011]. The researchers found that although graduated prompts 
led to greater performance gains on the whole, this form of 
training was most effective for children who performed poorly 
on the pretest [Stevenson et al. 2013a]. These results could not 
be explained by ceiling effects or regression to the mean. 
Furthermore, this result coincided with other cognitive training 
studies in various domains where interventions were generally 
more effective in initially lower performing or at-risk 
populations. Does this mean that providing elaborate versus 
simple feedback is not necessarily beneficial for more advanced 
learners? 
 
To further explore the role of initial ability on feedback effects 
we examined the role of children’s initial solution strategies 
(analogical versus non-analogical, see Figure 1) in the effect of 
three types of feedback: (1) step-wise elaborated feedback, (2) 
repeated simple feedback or (3) no feedback. The hypothesis 
was that children with initially weaker analogical reasoning 
strategies, characterized by “duplicate” (copying object next to 
empty box) solutions or “other / creating a zoo” solutions would 
benefit most from more elaborate forms of feedback whereas 
children who were already capable of applying analogical 
reasoning strategies (providing (partially) correct solutions) 
would not show differential benefit in the different types of 
feedback training. The role of working memory, which has often 
been shown to be related to analogy solving skills, but not 
always able to account for children’s change in analogical 
reasoning [Stevenson et al. 2013b], was also taken into account 
in these analyses. 

 
Figure 1. Depiction of strategy distribution within two 
pretest strategy groups: non-analogical reasoners (top left) 
and analogical reasoners (bottom right).  

2. METHODS 
2.1 Sample 
1000 children from five age-groups (kindergarten, first through 
fourth grade) were recruited from public elementary schools of 
similar middle class SES in the south-west of the Netherlands. 
The sample consisted of 374 boys and 626 girls, with a mean 
age of 7 years, 3 months (range 4.9-11.3 years). The schools 
were selected based upon their willingness to participate and 
written informed consent for children’s participation was 
obtained from the parents.  

2.2 Design & Procedure 
The data utilized in this study is a combination from five 
separate studies utilizing a pretest-intervention-posttest control-
group design [Stevenson 2012]. In each study the children were 
randomly blocked to the step-wise elaborative feedback 
(graduated prompts), repeated simple feedback or a control 
condition without feedback based on their scores on a cognitive 
ability reasoning subtest (visual exclusion from the Revised 
Amsterdam Children’s Intelligence Test [Bleichrodt et al. 1987] 
or the Standard Progressive Matrices [Raven et al. 2004]). The 
three intervention conditions presented in this study are: (1) 
stepwise elaborate feedback, (2) repeated simple feedback, or 
(3) no feedback. Four analogy testing and intervention sessions 
took place weekly and lasted 20-30 minutes each. Prior to the 
analogy testing sessions the children were also administered the 
Automated Working Memory Assessment to assess verbal 
(subtest listening recall) and visuo-spatial (spatial span) working 
memory [Alloway 2007]. All participants were tested 
individually in a quiet room at the child’s school by educational 
psychology students trained in the procedure. 

2.3 Analogical reasoning assessment  
AnimaLogica was used to test and train children in analogical 
reasoning [Stevenson 2012]. The figural analogies (A:B::C:?) 
comprise of 2x2 matrices with familiar animals as objects (see 
Figure 2). The animals changed horizontally or vertically by 
color, orientation, size, position, quantity or animal type. The 
number of transformations – or object changes – provide an 
indication of item difficulty [Mulholland et al. 1980]. The 
children were asked to construct the solution to the analogy using 
drag & drop functions to place animal figures into the empty box 
in the lower left or right quadrant of the matrix. A maximum of 
two animals were present in each analogy. These were available 
in three colors (red, yellow, blue) and two sizes (large, small). 
The orientation (facing left or right) could be changed by clicking 
the animal figure. Quantity was specified by the number of animal 
figures placed in the empty box. Position was specified by 
location of the figure placed in the box. 
The pretest and posttest items were isomorphs [Freund and 
Holling 2011] in which the items only differ in color and type of 
animal, but utilize the exact same transformations to ensure the 
same difficulty level. The number of items different per age group 
but included overlapping items ability could be estimated reliably 
using item response models. The internal consistency of each of 
the versions was considered very good with α ≥ .90. 
Before each testing or training session two example items were 
provided with simple instructions on how to solve the analogies. 
If the child’s solution was incorrect the correct solution was 
shown before proceeding to the next item. During the testing 
phases the remaining items were administered without feedback. 



 
Table 1. 
Overview of the prompts used in the elaborative feedback 
condition. 

Prompt  Verbal Instruction 

0  
Here’s a puzzle with animal pictures. The animals 
from this box have been taken away. Can you 
figure out which ones go in the empty box?  

1  Do you remember what to do? Look carefully. 
Think hard. Now try to solve the puzzle.  

2  This animal picture changes to this one. This one 
should change the same way.  

3  So what changes here? Ok remember this one 
changes the same way.  

4  See, this picture changes to this one because…  

5  

Which animal goes in the empty box? The elephant 
or the horse?  
What color should it be? Red, Yellow or Blue? 
…Size? Quantity? Orientation? Position?... 

 

 
Figure 2. Depiction of visual effects emphasizes cues from 
prompt 1 to “Look carefully”, “Think hard” and then “Try to 
solve the puzzle” (these are not all shown at once).  
 
2.3.1. Feedback Interventions.  
The stepwise elaborate feedback condition received training 
according to the graduated prompts method [Campione and 
Brown 1987; Resing and Elliott 2011] which consisted of 
stepwise instructions beginning with general, metacognitive 
prompts, such as focusing attention, followed by cognitive hints, 
emphasizing the transformations and solution procedure, and 
ending with step-by-step scaffolds to solve the problem (see 
Table 1). The prompts were mostly auditory in nature and 
accompanied by visual effects support the explanations (see 
Figures 2 & 3). A maximum of five prompts were administered. 
Once the child answered an item correctly the child was asked to 
explain his/her answer; no further prompts were provided and the 
next item was administered. 

The simple feedback condition received auditory feedback on 
whether or not the outcome was correct and this was repeated 
until the item was solved correctly or five attempts were made to 
solve the item. After the fifth incorrect attempt the correct 
solution was shown before proceeding to the next item. If a 
correct solution was found before five attempts then the next item 
was administered.  
In the control condition the children received the exact same 
items as in the other two conditions but did not receive help or 
feedback in solving them. Therefore, the children only practiced 
solving the items but were not trained in analogical reasoning.  

 
Figure 3a. Visual effects emphasizing prompt 5 where 
scaffolds are used to solve the puzzle: “Which animal belongs 
in the empty box?”. 

 
Figure 3b. Prompt 5 scaffold: “What color should it be?”. 

2.4 Statistical Models 
Disentangling the complex changes in ability over time on an 
individual basis requires complex statistical models. For 
example, using raw gain scores (posttest minus pretest score) to 
measure change can lead measurement errors due to the 
unreliability of the gain score, the regression effect of repeated 
administration and that the scale units for change do not share 
constant meaning for test takers with different pretest scores and 
[de Bock 1976; Lord 1963]. These problems are potentially 
solved by placing ability scores for pretest and posttest on a 



joint interval measurement scale using logistic models such as 
those employed in item response theory (IRT) [Embretson and 
Reise 2000]. In the Rasch model, one of the most simple IRT 
models, the chance that an item is solved correctly depends on 
the difference between the latent ability of the learner and the 
difficulty of the presented item or problem. The Rasch-based 
gain score provides a good basis for the latent scaling of 
learning and change because the gain score has the same 
meaning in terms of log odds (i.e. the logarithm of probability of 
correct vs. incorrect) across the entire measurement scale 
[Embretson and Reise 2000]. Therefore, this study applied IRT 
models to analyze individual differences in feedback effects on 
learning and change [Stevenson et al. 2013a]. 
 
2.4.1 Explanatory IRT analyses 
Each of the hypotheses about the children’s performance and 
change was investigated using model comparison. First a 
reference model was created and then predictors were added 
successively to so that the fit of the new model could be 
compared to the previous (nested) model using a likelihood ratio 
(LR) test, which assesses change in goodness of fit. The models 
were estimated using the lme4 package for R [Bates and 
Maecheler 2010] as described by [De Boeck et al. 2011].  
 
2.4.2 Null model  
The initial reference model (M0) was a simple IRT model with 
random intercepts for both persons and items (pretest and 
posttest) where the probability of a correct response of person p 
on item i is expressed as shown in equation 1. 
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where θp ~ N(0, σθ2) and βi ~ N(0, σβ2)  (1) 
 
2.4.3 Modelling learning and change 
This study employs repeated testing. In order to account for this 
effect a session parameter has to be added to the null model to 
represent average change from pretest to posttest. However, this 
model assumes the effect of retesting to be equal for all children. 
In order to allow for individual differences in improvement from 
pretest to posttest a random parameter that allows for the session 
effect to vary over persons was added. In this model, 
Embretson’s Multidimensional Rasch Model for Learning and 
Change (MRMLC, see M2 in Table 1), the chance that an item 
is solved correctly (Pip) also depends on the difference between 
the examinee’s latent ability (θp) and the item difficulty (βi) 
[Embretson 1991]. Yet, the ability is built up through the testing 
occasions m up to k in a summation term, which indicates which 
abilities (θpm) must be included for person p on occasion k.  
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where  θpm ~ N(0, σθ2) and βi ~ N(0, σβ2) (2) 
The initial ability factor, θp1, refers to the first measurement 
occasion (i.e. pretest) and the so-called modifiabilities (θpm with 
m>1) represents the change from one occasion to the next. In the 
present model examining pretest to posttest change k=2 and the 

modifiability θp2 refers to performance change from pretest to 
posttest.  
2.4.4 Modelling sources of individual differences in learning 
and change 
The formula in equation 2 can be extended by including other 
item or person predictor variables and evaluating their effects on 
the latent scale [De Boeck and Wilson 2004]. Person predictors 
are denoted as Zpj (j=1,…,J) and have regression parameters ζj. 
The item predictor (e.g. number of transformations) can be 
denoted as Xi (k=1) and has the regression parameter δ. These 
predictors are successively entered into the null model (see 
equation 1) as follows, with indices i for items, p for persons, j 
for the person covariate used as a predictor variable and k for the 
item covariate used a predictor variable. 
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where  εp ~ N(0, σεp

2) and εi ~ N(0, σεi
2)  (3) 

This equation represents models M3-6 in the results presented in 
Table 2. 
Table 2.  
Overview of the estimated IRT models. 

Model 
Nested 
Model 

Effects 

 
AIC 

 
BIC 

 
-LL 

LR testa 

Fixed 

Random 
over 

Persons 

Random 
over 
Items df Λ 

M0   Intercept Intercept 37575 37600 18784   

M1 M0 + Session “ “ 35741 35775 17866 1 1835.90*** 

M2 M1  +Session “ 34871 34922 17429 2 874.18*** 

M3 M2 + Session* 
Condition 

“ “ 34063 34132 17024 2 811.52*** 

M4 M3 * Strategy 
group 

“ “ 33773 33944 16866 12 314.50*** 

M5 M4 * WM “ “ 18014 18236 8979 8 15775*** 
a The LR-test comprises a comparison between the model and the nested model. *** p < .001 

 
Figure 4. Plot of M5 with logit (y-axis) by Session (x-axis) for 
Analogical Reasoners (AR) versus Non-analogical reasoners 
(NAR) for each feedback condition (elaborate, repeated simple 
and control). 

3. RESULTS 
Table 2 displays the outcomes of the model building steps. As 
can be seen in the right-most column the addition of each new 



predictor in the explanatory IRT model significantly improved 
model fit. From M0 to M1 we could statistically infer that there 
was a main effect for training. The inclusion of individual 
regression lines for performance change from the pretest to 
posttest was deemed warranted given the improved model fit 
from M1 to M2. The significant model comparison result from 
M2 to M3 shows us that the different types of feedback had 
different “change” slopes. The difference in performance change 
from pretest to posttest between the two strategy-groups is 
shown in model M4 (see Figure 4). Finally, from M4 to M5 we 
could statistically infer working memory was differentially 
related to performance change per condition and strategy group. 
Analysis of the simple contrasts indicated that working memory 
moderated feedback effects in the analogical reasoners (AR 
strategy group), but was unrelated to performance change in the 
non-analogical reasoners (NAR strategy group) (simple 
feedback: B = -1.38, p <.01 and elaborated feedback: B = -1.37, 
p < .01, reference category = no feedback / control condition).  
Significant fixed main effects were found for Session, Strategy 
group, verbal and visuo-spatial Working memory. Significant 
fixed interaction effects were found for Session x Condition, 
Session x Strategy group, Session x Working memory, Strategy 
group x Working memory and Session x Strategy group x 
Working memory. Random intercepts were present for persons 
(SDability = .62, SDmodifiability = .70, r = -.24) and items (SD = .74).  
Table 3.  
Estimates of fixed effects in M5. 
 B SE p 
Intercept - 0.32 .42 .44 
Session (reference = pretest) 2.17 .16 <.001 
Simple Feedback Condition (reference = control) 0.10 .10 .32 
Elaborate Feedback Condition (reference = control) 0.08 .10 .41 
Strategy-group (reference = non-analogical reasoners) 3.26 .11 <.001 
Verbal working memory 0.23 .09 .01 
Visuo-spatial working memory 0.26 .04 <.001 
Session * Simple Feedback Condition 0.28 .13 .04 
Session * Elaborate Feedback Condition  0.65 .13 <.001 
Session * Strategy-group  -1.65 .12 <.001 
Session * Verbal Working memory 0.47 .11 <.001 
Strategy-group * Verbal Working memory 0.08 .10 .43 
Session * Strategy-group * Verbal Working memory -0.61 .13 <.001 

4. CONCLUSION 
This paper presented our recent research in the area of statistical 
models of formative feedback effects in performance and change 
in children’s analogical reasoning. The results showed that 
individual differences stemming from initial strategy-use and 
working memory efficiency were present and influenced the 
effect feedback. Elaborate feedback was more effective than 
simple feedback. Working memory was a predictor of pretest 
performance. Working memory also moderated feedback effects 
but only in children in the advanced strategy-use group. 
Working memory most likely forms a bottleneck in children’s 
analogical reasoning on difficult analogy tasks [Richland et al. 
2006]; however children with less advanced strategies most 
likely were unable to solve the more difficult analogy items 
which would require accurate solving steps and the 
accompanying greater taxation of working memory to do so. 
Finally, initial strategy-use interacted with feedback-type in that 
children using less advanced strategies at pretest benefited more 
from each form of feedback during training compared to the 
children displaying more advanced strategies at pretest. On the 
whole, the main conclusion is that elaborated feedback, 
presently implemented using graduated prompting techniques, 

appears to be the advisable form of feedback in advancing 
children’s change in analogical reasoning.  
 
Given the great potential of computer-based interactive learning 
environments to provide feedback tailored to an individual’s 
instructional needs an important task is creating algorithms to 
optimize feedback provision and thus learning. On the one hand 
(meta-analyses of) randomized pretest-training-posttest control 
experiments that contrast the effectiveness of different types of 
feedback and explore sources of individual differences herein as 
discussed in the present paper provide essential information 
concerning which factors could be used to optimize feedback. 
However an investigation of the effects of specific elaborated 
feedback prompts on a trial-by-trial basis [Golden et al. 2012] 
and the interactions with learner characteristics or task 
performance (e.g., strategy-use) using item response theory 
models is a promising next step towards the provision of optimal 
feedback in interactive learning environments. Thus the next 
step in this research project is to expand upon the present 
findings concerning the effectiveness of the stepwise elaborated 
feedback and disentangle the immediate effects of the separate 
prompts during the training process. It will be interesting to see 
whether different types of prompts better aid more or less 
advanced learners with more or less efficient working memory 
to solve the items presented during training.  
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ABSTRACT 
In recent years, an increasing number of Ateneo students have 
been taking an interest in the Japanese language. For Ateneo 
students beginning their study of the language however, Japanese 
particles are difficult concepts because they cannot be translated 
to equivalent words in English. For a beginner learner, it is 
inevitable to view a second language with the lens of a first 
language as shown by the concept of transfer in second language 
acquisition. As a result, learners tend to misconstrue Japanese 
particles by attempting to understand them with respect to 
non-existent equivalents in English. 
 
In this research, we develop an intelligent tutoring system for 
Ateneo students taking introductory Japanese (FLC 1JSP) to aid 
them better understand Japanese particles. The system would 
assess   the   learner’s   understanding   of   Japanese   particles   by  
practice and depending on which particle where most mistakes are 
made, the system would give instructional feedback. Feedback to 
be implemented in the system use visual prototypes that represent 
the meaning of the particle. We hope to see if visual 
representations can also teach Japanese particles to students as an 
alternative to text-detailed explanations such as those commonly 
found in textbooks. 

Categories and Subject Descriptors 
K.3.1 [Computer Uses in Education]: Computer-assisted 
instruction (CAI), Distance learning 

General Terms 
Design, Experimentation, Human Factors, Theory 

Keywords 
Intelligent Tutoring Systems (ITS), Japanese particles, Case 
Particles, Japanese language, Visual prototypes 

 

 

 

 

 

 

 

 

1. INTRODUCTION 
1.1 Context of the Study 
An increasing number of Ateneo students are minoring in 
Japanese Studies to learn more about the Japanese language and 
culture. Students beginning Japanese in their FLC 1JSP 
(Introduction to Japanese) course encounter difficulty with 
Japanese particles regarding proper usage and context: に (ni)、

へ (e)、を (wo)、と(to)、で (de)、の（no）、は（wa）、が（ga） 

 
1.2 Research Objectives 
In this paper, we discuss the development of a web-based 
Intelligent Tutoring System (ITS) addressing the difficulty of 
Ateneo students with Japanese particles - a system that facilitates 
practice with feedback that clarifies particle usage and meaning. 
We attempt the following questions: 
1. How do we create an intelligent tutoring system for Japanese 

to help students better understand the concept of Japanese 
particles? 

2. Other than the topic and subject marking particles は(wa) 
and が(ga) respectively, which particles do students make 
the most mistakes with in FLC 1JSP? 

3. What do these errors imply about the student’s mental model 
of Japanese particles? 
 

1.3 Scope and Limitations 
Users of the system developed are primarily FLC 1JSP students of 
Ateneo de Manila University, hence system content is scoped to 
the said course. We aim to supplement the language knowledge of 
FLC 1JSP students; instruction in the system is geared towards 
clarifying understanding, as opposed to teaching anew. 
 
Finally, we utilize visual feedback in the system based on 
prototypes by Sugimura (discussed in section 2.1) because we like 
to know if Japanese particles can also be taught by animations 
aside from explanations of their meaning. For particle and word 
combinations that do have not have any visual representations, we 
use textual feedback based on Socratic questioning as our 
alternative form of feedback. We hope to see if computer 
animations and our combination thereof can be an effective means 
to clarify these Japanese particles to students.   
  



2. FRAMEWORK 
2.1 Visual Prototypes for Japanese Particles 
Japanese particles can be taught using images representative of 
their meaning. Sugimura demonstrates that each Japanese particle 
can be represented by a prototype image and he states that 
learners would have less cognitive load learning Japanese 
particles in this manner than rote memorization of a definition 
[11]. In this research, we develop visual feedback, based on five 
prototype images of the following particles from FLC1 JSP: ni, e, 
to, no, de. 
 
1. The particle ni 

 
Figure 2.1: Prototypical meaning of ni [11] 

Ni shows   the   directionality   of   an   agent’s   action   and   its   binding  
effect to a target [11]; ni can also indicate the place or time of 
existence of a subject [11]. These two usages are generalized into 
the image of a point, indicating a destination or a point in time 
shown above. Compared to e, ni emphasizes the destination as 
opposed to the process, depicted by the dotted arrow in figure 2.1. 
 
2. The particle de 
The particle de indicates space where an action takes place in the 
nominative or accusative case [11]. The prototype of this particle 
is shown in figure 2.2 below: 

 
Figure 2.2: Prototypical meaning of de [11] 

The arrow in figure 2.2 above represents some force acting within 
an enclosed space. Though de is likewise represented with an 
arrow like ni, de emphasizes an action performed within the 
bounds of a certain space [11].  
 
3. The particle e 
In essence, e is similar to ni for indicating the direction of an 
action. Compared to ni, e puts emphasis in the process or means 
of an agent to get to a destination [11; Dr. Hiroko Nagai personal 
communication, May 5, 2012]. The particle e is represented 
according to Sugimura in figure 2.3 below [11]: 

 
Figure 2.3: Prototypical meaning of e [11] 

 
4. The particle to 
According to Morita, the particle to has a unificative meaning 
associated to its usage [11], where two agents work together to 
perform an action.  In a prototype image, Sugimura depicts the 
meaning of the particle to as follows [11] (Refer to Figure 2.4): 

 
Figure 2.4: Prototypical meaning of to [11]: An action 

performed together in companionship. 
 
5. The particle no 
No denotes relations between nouns but these have various forms 
hence, we only consider no for the following usages in our 
research as scoped in FLC1 JSP: 

1. A  is  the  possessor  of  B  (like  the  B  of  A  or  A’s  B)  such  as:  
watashi no kaban (My bag) 

2. A is the location where B belongs to (B in/at A) such as: 
ateneo no gakusei (A student in Ateneo) and; 

3. A created B hence B is possessed by A such as: gakusei no 
sakubun (A student’s essay) 

In all these three cases above, the particle no connects nouns 
together, such that the preceding noun phrase forms a phrase to 
modify a following noun phrase [6]. According to Oya, Japanese 
language adviser of the Japan Foundation, Manila, the particle no 
can be depicted in a prototypical image of a circle (noun 2) inside 
a larger circle (noun 1) and so on as follows for these three 
usages: 

 
Figure 2.5: Firipin no ateneo no daigakusei: Combining nouns 

with no 
In figure 2.5 above, the largest circle sets a scope to the circle(s) 
enclosed within. In this representation, Ateneo is in the 
Philippines and the student is affiliated with the Ateneo, thus a set 
of concentric circles. The enclosed nouns are connected by no, 
forming one noun, meaning “A University Student of Ateneo in 
the Philippines”. 
 

2.2 Visuals as Feedback in Multimedia 
Learning 
Students learn best by seeing the value and importance of 
information presented so it is important to sustain interest using a 
feedback medium that coincides with the learning style of a 
student, which is “the manner in which individuals perceive and 
process information in learning situations” [4].  
 
According to the Cognitive Theory of Multimedia Learning by 
Mayer, Multimedia instructional messages designed according to 
how the human mind works are more likely to lead to meaningful 
learning than those that are not [7]. The theory states that humans 
seek to make sense of multimedia presentations in relation to their 
collected experiences. Hence, visual feedback would be effective 
given that it resembles common human experience while 
depicting the meaning of Japanese particles. Table 3.1 

Firipin 
(Philippines) 

- Noun 1 

Ateneo - 
Noun 2 

Daigakusei 
(University 
Student) - 
Noun 3 



summarizes the theory regarding how learners relate visuals to 
experience. 
 
Table 3.1 Image-related Processes in the Cognitive Theory of 

Multimedia Learning: Building Connections between Pictorial 
Models with Prior Knowledge 

Process Description 

Selecting 
images 

Learner pays attention to relevant pictures in a 
multimedia message to create images in working 
memory. 

Organizing 
images 

Learner builds connections among selected images to 
create a coherent pictorial model in working memory. 

Integrating Learner builds connections between pictorial models 
and with prior knowledge. 

 
As guidelines for our design of visual feedback, the following are 
prescribed by the theory [1, 2]: 
 
1. Focus on Task-Relevant Aspects of Information: Research 

show that guiding learners' attention is only useful if it leads 
the learner to a deeper understanding of the task-relevant parts 
of the information presented. 

2. Limit Unnecessary Information: Each piece of information, 
useful or not has to be processed by the learner so it is additive 
to cognitive load. According to the Apprehension Principle, 
information that is not required for the task or problem solving, 
such as seductive details or eye-catching illustrations, produce 
extraneous cognitive load that ties attention to less relevant 
concepts and therefore reduces knowledge acquisition [1]. 

3. Attention-guiding Principle: Supporting the process of 
selecting relevant information will be useful because it shifts 
the learners' attention to those parts of information that are 
needed to understand the key concept of presented materials. 
Also, since animation is fleeting by nature, often involving 
simultaneous display changes, it is important to guide learners 
in understanding the animation so that they do not miss the 
change. Highlights, visual cues and color coding seem to be 
appropriate visual instructional aids because novice learners 
are not able to distinguish between relevant and irrelevant 
features. 

4. Personalize Instruction: Learner's attention can be activated 
in a more effective way if instructions are personalized rather 
than anonymous, for example by addressing the learner in the 
first person. 

 

2.3 Error Isolation and Feedback 
Mistakes are part of the learning process. According to Gass and 
Selinker, second language errors do not reflect faulty imitation by 
a learner; they are attempts to figure out a system by imposing 
regularity on the language being learned. In fact, mistakes are 
structured; there is an underlying generalization and this shows a 
certain level of development [3, 9].  
 
Mistakes are akin to slips of the tongue but errors are systematic 
and recurring [3]. Errors mean that the learner does not recognize 
that it is wrong, and by consistent reproduction, he has 
incorporated it into his system of the target language [3]. In our 
system, we isolate errors by a pre-test and when an error has been 
committed at least twice (same particle and context), then 

feedback is given, targeting the faulty knowledge only as much as 
possible.  
 
Feedback in our system is designed to let the learner realize his 
own mistake. We do this by presenting the animation of a 
learner’s erroneous particle side-by-side with the animation of the 
correct particle. Alternatively, we pose questions or hints to 
challenge the learner to reconsider his answer instead. In this 
manner, we allow the learner an opportunity to explore and adjust 
the application of the form or rule he used to derive his wrong 
answer to what is correct – restructuring in interlanguage 
processes [9]. This is more effective because it does not interrupt 
the learner because of fear of being directly corrected [5].  
 

3. METHODOLOGY 
3.1 Development Methodology 
The Intelligent Tutoring System (ITS) developed in this research 
is web-based for simpler deployment and testing; Adobe Flash 
was used to drive animations.  

Identify Problem Develop PrototypeInitial Requirements

Implement and 
Use Prototype

Working Prototype

Revise and Enhance 
PrototypeProblems

New Version

Feedback from Experts

Figure 3.1: The Prototyping Methodology [8] 
Based on consultations with FLC 1JSP instructors, students have 
difficulty mastering case particles because they confuse the 
different notions these particles provide in sentences. We 
identified particle pairs students frequently have misconceptions 
with such as ni and de, to and no or ni and to, etc., then we 
developed prototype animations that highlight their semantic 
differences. Then, we showed these animations to instructors for 
feedback and we improved them to ensure that visual feedback 
developed in any form teach the correct notion of Japanese 
particles. Consultations were performed during development 
mainly with Dr. Hiroko Nagai, Director of the Ateneo Japanese 
Studies Program, as well as with Mr. Susumu Oya, Japanese 
Language Adviser of the Japan Foundation, Manila, observing the 
processes of the prototyping methodology in software 
development as shown in figure 3.1 above. 
 

3.2 Student Modeling 
Student models provide descriptions of learning at a level of 
granularity that facilitates the encoding of principles and rules in a 
teaching system [12]. Learner models approximate student 
behavior by tracking misconceptions in comparison with 
substandard reasoning patterns.  This is performed with the goal 
of   supporting   weak   students’   knowledge   and   to   develop   the  
students' strengths [13]. In our system, we used an overlay model 
to model the student-user of our system. The model is able to 
show   “the   difference   between   novice   and   expert   reasoning,   by  
indicating how students rate on mastery of each topic, missing 
knowledge and which curriculum elements need more work" [13]. 
Since an overlay model is a model of a proper domain subset (i.e. 
Japanese particles in grammar), we used this model to evaluate 
students and give feedback accordingly. 
 



The disadvantage of overlay modeling is that students may have 
knowledge  that  is  not  part  of  an  expert’s  knowledge, thus it is not 
represented in the student model [13]. However, we mitigate this 
by creating a multiple-choice based system, where possible 
answers are contained only within the domain knowledge we 
teach. Since Japanese particles also have distinct grammatical 
usages at the level of FLC1 JSP, creating this model is simple 
because the domain knowledge itself is a matter of conforming to 
concise grammar rules. 
 
To create the overlay model of the student, we broke down the 
concept of Japanese particles from FLC1 JSP into its base 
knowledge components1. Among Japanese particles, this is the 
production rule learned and referenced by a learner to know how 
to use a Japanese particle. For example, a student can have the 
following knowledge component: “to indicate the existence of a 
living or non-living thing, the particle ni is used”. In total, we 
have nine (9) knowledge components in our ITS, following a 
permutation of nine possible contextual usages of all the Japanese 
particles in our system designed for FLC1 JSP. Note that the 
particle e and the particle ni for indicating a place where 
something moves (direction) are both singly counted as one 
knowledge component, whereas the rest are considered as 
individual knowledge components. This is because FLC1 JSP 
does not yet teach students to differentiate the nuance of both 
these particles. Also, a more detailed description of how our 
overlay model operates is discussed below, where we also 
describe the general operation of the system. 
 

3.2 General ITS System Operation Flow 
 
Students create an account and the ITS presents a pre-test called 
“Learning Check 1” (See Figure 3.2). This activity shows a 
battery of eighteen (18) Japanese sentences using the Japanese 
particles taught in FLC1 JSP; the task for the student in this 
section is to complete the sentence by choosing the right particle 
to complete the statement. 

 

Figure 3.2: Learning Check 1 – Students complete the 
sentences by supplying the missing particles using the choices 

provided. 
Learning Check 1 is used by the system to create an overlay 
model of the student. This is used to measure the extent of a 
student’s knowledge of Japanese particles. The model works by 

                                                                 
1 A knowledge component is a process or a generalization that a 

learner uses alone, or in combination with other knowledge 
components to solve a problem [10]. 

assigning points per knowledge component2 and if a student uses 
a particle given a context correctly, one (1) point is assigned to the 
corresponding knowledge component. The model works like a 
table, where we distribute points across rows and each row is a 
knowledge component. At the level of FLC1 JSP, since we have 
nine (9) contextual usages for the particles taught in the course 
and we have two questions for each usage, we have eighteen (18) 
questions for Learning Check 1 (See figure 3.3 below): 
 

Pseudo-Overlay Model 

Particle Context Pts. 

Ni 

Indicate a point in time something takes place. 2 

Indicate a place where something or someone 
exists. 2 

Indicate target of an action by an agent 
(uni-directional target). 2 

ni/e Indicate a place towards which something moves. 2 

De Indicate where an event/action takes place. 2 

O Direct objects  2 

No Noun phrase modification to indicate property 2 

To 
Connect  nouns  together  ‘AND’ 2 

Indicate target of an action by an agent 
(bi-directional target). 2 

Total 18/18 

Figure 3.3 Overlay Model: Point distribution across 
knowledge components. Maximum attainable score is 18/18 

Based on the model, the system displays content in the following 
section, “Learning Check 2”, where actual tutoring takes place. 
Here, another battery of Japanese sentences is selectively 
presented about the Japanese particles the student appears to have 
a lack of knowledge with, had the student not met the established 
minimum number of points per row of the overlay model. While 
the student is answering, tutoring is now provided - feedback is 
presented on-the-fly upon mouse clicks in Adobe Flash (See 
Figure 3.4): 

 

Figure 3.4: Learning Check 2 shows another sentence using 
‘de’; feedback as needed. 

Following Learning Check 2, we present the student a post-test to 
measure improvements in knowledge. The post-test also serves as 
a follow-up learning opportunity for the student and the questions 
used in this section are similar to the questions in the pre-test in 
terms of count, particle usage and presentation but arranged in a 
different order. We simply changed the nouns or verbs in the 

                                                                 
2 A knowledge component is a process or a generalization that a 

learner uses alone, or in combination with other knowledge 
components to solve a problem [7]. 



sentences and we also maintained two questions per context, 
hence also making eighteen (18) questions. This allows for 
comparison on an equal basis between both sections in terms of 
scoring. Also, to mitigate the possibility that the pre-test is more 
difficult than the post-test and vice-versa, we also swapped the 
questions we used in the pre-test with those in the post-test at 
random. Finally, after using the system, we show a report page to 
the student concluding the use of the system and how many points 
were earned based on the overlay model 3 . We also suggest 
grammar points to the student where more review is 
recommended based on the result of the post-test (See Figure 3.5 
below). 

 
Figure 3.5: Report Page 

3.3 Feedback Design 
Feedback is given by animations based on the prototype of 
Japanese particles (See section 2.1). For Japanese particles and 
their combinations thereof with certain words, forming sentences 
yielding an image-based representation, we show the student 
animations with the correct particle and the incorrect particle 
subtituted in the sentences side-by-side. The goal of this mode of 
presenting feedback is to allow the student to think for himself the 
correct answer before the system explicitly shows the answer with 
explanation. However, for cases non-illustratable, we used textual 
feedback based on Socratic questioning with cues. The system 
was designed in mind only to show explicit correction as a last 
resort because our goal is to restructure grammar knowledge in 
this tutoring system without being obstrusive to student 
motivation. 

 

Figure 3.6: Animation Selection: With ‘de’ for the sentence 
“juuji _ nemasu (Sleep at 10pm).”, the animation of the 

incorrect answer (left) versus the correct answer (right) is 
shown.  

If the student chooses the correct animation, he is praised and he 
is shown an explanation why his answer is correct. Otherwise, if 
the student still chooses the wrong animation, the system shows 
an explanation of the error and it allows the student to try 
completing the sentence again (See figure 3.6 below).  

                                                                 
3 Each correct answer in Learning Check 1 is one (1) point. If a 

student commits an error, the missed points, synonymous to the 
number of errors made in Learning Check 1, can still be earned 
back provided that the student answers the corresponding 
follow-up questions in Learning Check 2. 

 

Figure 3.7 System Responses: Choosing the right animation 
leads to praise (left); choosing the wrong animation, leads to 

an explanation of the answer (right). 
In cases when animations are not applicable, we give textual 
feedback in the form of clues based socratic questioning as shown 
in figure 3.7 below: 

 

Figure 3.8: Textual feedback for syntatically impossible cases. 

4. Results 
4.1 Field Testing 
As a system designed to target students beginning their study of 
Japanese in Ateneo, field testing was conducted with the 
aforementioned students during their FLC1 JSP classes. Students 
were brought to a computer lab to access the tutoring system 
online and a total of forty-five (45) students participated in testing 
across classes handled by three different instructors. 
 
For our results in this research, we focus on presenting analysis 
based on the results of our pre-test versus post-test scores to see if 
the students improved using our ITS. Also, we evaluate the 
experience of the students who used our tutoring system via 
survey to give us an idea how they find our ITS. 
 

4.2 Testing Methodology 
Participants were divided into two (2) groups: twenty-one (21) 
and twenty-four (24) participants respectively. One group used the 
ITS such that at the onset of a mistake, corresponding feedback is 
already shown in Learning Check 2. Another group used the ITS 
such that the pair of sentences per particle and its context in 
Learning Check 1 must be incorrect for feedback to be given in 
Learning Check 2. We formed the two test groups to see how 
much consideration is adequate before feedback is delivered, 
although the latter case is ideal based on the notion of error 
consistency from second language acquisition. A single mistake 
may not necessarily translate to malformed knowledge about a 
concept (i.e. a mouse misclick) hence, we believe that consistency 
is key to isolating true faulty knowledge [3]. During testing, no 
student was allowed to use any references regarding Japanese 
particles over the internet. 



  

Figure 4.1: Computer Laboratory Setup 
 
4.4 Pre-test and Post-test Comparison 

Table 4.1: Group 1 – One 
mistake, then Feedback 

 Table 4.2: Group 2 – Two 
mistakes, then Feedback 

ID 
Number 

Pre-test 
(18) 

Post-test 
(18) Δ 

 ID 
Number 

Pre-test 
(18) 

Post-test 
(18) Δ 

120864 8 9 1  111662 10 11 1 

110882 10 12 2  114537 11 9 -2 

110966 8 4 -4  114553 3 10 7 

111329 6 5 -1  121314 9 14 5 

91388 9 13 4  121359 10 11 1 

122145 7 11 4  124592 10 8 -2 

112807 10 11 1  114512 5 9 4 

123232 12 16 4  110866 8 9 1 

123653 8 10 2  111399 11 9 -2 

123743 9 11 2  91957 9 8 -1 

123796 9 11 2  112107 3 5 2 

123800 4 7 3  112227 8 6 2 

114162 11 12 1  112017 3 5 2 

94060 5 11 6  

120721 10 11 1  

123283 9 9 0  

 
In testing, we collated scores from different sections. The score in 
Learning Check 1 is the pre-test column. A separate post-test was 
carried out after Learning Check 2 to measure the change in 
knowledge of a student after going through the ITS.  
 

4.5 Group 1 Analysis 
For participants with a score of 13 and above in pre-testing for 
group 1, we did not count their results in our analysis because 
among all participants in this group, the highest change in score 
was six (6) points. This means that the highest possible 
improvement in points can only be measured with scores of 
twelve (12) and below. Students who obtained a score higher than 
twelve (12) can only get less than six (6) points to make it the 
perfect score of eighteen (18) which becomes a cap, hence there is 
a possibility of unequal comparison in terms of the maximum 
achievable improvement across students in the test group. To 
allow for equal and consistent comparison, these participants were 
excluded in the results [Dr. Joseph Beck, personal communication 
January 7, 2013]. 

All participants of group 1 found feedback in the system helpful 
with an average of 1.235 and 1.471 for their evaluation of the 
animation and textual feedback respectively on a scale of -2 to 2 
(-2 as the lowest and 2 as the highest). Standard deviation values 
are 0.970 and 0.624 respectively for these averages. These mean 
that both forms of feedback used in the system are generally 
regarded as helpful by the participants in the group. Ease of use 
was evaluated by the students with an average of 1.176 and desire 
for a similar system for use in FLC 1JSP class was evaluated with 
an average of 1.294 on the same scale. Standard deviation values 
are 0.951 and 0.686 respectively for these averages, which point 
to a good consensus that the system is fairly simple to use and the 
students would like to have a similar system again in class. 
Content-wise, all the participants evaluated the system difficulty 
with 0.765 (from -2, easy until 2, hard) and the standard deviation 
is 0.437, implying that the system difficulty is manageable in 
terms of content. Word familiarity was evaluated with an average 
of 0.294 (-2 as least familiar and 2 as most familiar) with a 
standard deviation of 0.588. While the averages tell us that 
students are generally knowledgeable with the words in the 
system, it is neither high to indicate an excellent understanding of 
words nor the students are unfamiliar with the words in the system. 
Based on raw answers collected through the system, knowledge of 
words pose as a factor behind student errors because to use the 
correct particle, understanding the notion of words lead the 
decision to use the correct particle to relate them in sentences. 
 

4.6 Group 2 Analysis 
As with group 1, for students who received a score of twelve (12) 
and above in pretesting, we did not consider their results in our 
analysis to yield an equal and consistent comparison. 
 
It appears that group 2 participants had a lower average for word 
familiarity at 0.000, yet the same participants found the system in 
terms of difficulty easier with an average of 0.615, compared to 
group 1 on the same scale of -2 to 2. Standard deviation values are 
both 0.100 and 0.650 respectively for these averages. These mean 
that while the participants are generally familiar with the words in 
the system, it also varies greatly per individual. On the other hand, 
system difficulty is moderate for the participants of this group. 
Notably, lower averages were attained with 0.667 and 1.083 
regarding feedback helpfulness in animation and text respectively. 
The standard deviations for these values are 0.778 and 0.669 
respectively. Ease of use and desire for use of the system in FLC1 
JSP gained lower averages at 0.846 and 1.077 with standard 
deviations values of 0.689 and 0.641 respectively. For these lower 
scores, it is possible that because participants received feedback 
less in this group, they found the system less helpful hence more 
difficult.  
 

5. Conclusion 
Table 5.1: Average Delta in Scores (Pre-test vs. Post-test) 

1 Mistake (Group 1) 1.75pts. 

2 Mistakes (Group 2) 1.38pts. 
 
Findings show that the ITS is effective for both test groups as 
shown by the positive increase in average delta scores for both 
test groups. However, more aggressive feedbacking seem to lead 
to a better perception of the ITS and higher improvement in scores 
among participants are evident in group 1 than in group 2. In 
computer-based teaching, it appears that immediate feedback is 



better whenever an error is committed at the onset, contrary to 
what we posited based on concepts in second language acquisition, 
where it is best to wait for consistent error production first before 
feedback. In classroom-based teaching, direct correction is not 
advised, however in computer-based teaching where correction is 
already indirect by nature through a screen and not by person, 
immediate correction is more effective and best at the onset of an 
error. 
 
As initial work in the field, much improvement can still be done 
to further this ongoing research. In consultation with Dr. Joseph 
Beck, a visiting professor from Worcester Polytechnic Institute, 
he suggests to add follow-up questions with our animations, 
confirming if the user did understand what is taught by the system 
right after any feedback. Also, from theory to our direct 
application of image-based teaching of Japanese particles by 
Sugimura, more investigation regarding effective visual feedback 
design could be carried out because how we translated the theory 
into animation based on theoretical meaning may not deliver the 
intended idea of what we mean to show the student. By doing so, 
it is possible to uncover the elements in animated feedback 
students find particularly helpful regarding these particles. From 
this endeavor, we know that an effective intelligent tutoring 
system centered on animations for Japanese particles works when 
it guides the self-discovery learning of students. Success is 
notable when the students themselves can reproduce the correct 
answer on their own on a similar question immediately after 
feedback.  
 
Finally, to have a more in depth understanding of the causality of 
learner errors and to further confirm our analysis regarding trends 
among these Japanese particles, we plan to conduct follow-up 
interviews with select participants to factor in how a user 
understands certain aspects of the system in relation to a 
participant’s understanding of Japanese.  
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ABSTRACT 
This paper presents our ideas on generating formative feedback in 
the Genetics Argumentation Inquiry Learning (GAIL) system. 
GAIL will provide undergraduate biology students with tools for 
constructing Toulmin-style arguments on questions in genetics. 
Feedback will be based in part on the output of GAIL’s argument 
analyzer, which will compare learner arguments to automatically 
constructed expert arguments. In addition to identifying problems 
in the learner’s arguments, the analyzer will recognize the 
argumentation scheme used to construct acceptable arguments. 
From that, GAIL can instantiate critical questions, a unique form 
of feedback in intelligent learning environments. 

Keywords 

Educational Argumentation Systems, Undergraduate Genetics 
Education. 

1. INTRODUCTION 
We are developing the Genetics Argumentation Inquiry Learning 
(GAIL) system for improving undergraduate biology students’ 
argumentation skills in the domain of genetics. As in many 
educational argumentation systems, GAIL will provide the learner 
with tools for representing arguments in diagrams due to the 
cognitive benefit of diagrams [1-3]. In addition, educational 
systems can exploit the learner’s argument diagram as a source of 
information for providing educational feedback. A prototype 
graphical user interface (GUI) for GAIL is shown in Figure 1.  
The top left-hand side of the screen presents a problem, e.g., to 
make an argument for the claim that J.B., an imaginary patient, 
has the genetic condition called cystic fibrosis. Below that are 
possible hypotheses, data about the patient and his biological 
family members, and biomedical principles that may be relevant 
to the current problem. The learner can drag these elements into 
the argument diagramming workspace in the center of the screen 
to construct an argument in a Toulmin-influenced [4] box-and-
arrow notation; a vertical arrow from the data points upward to 
the claim/conclusion and the warrant is attached at a right-angle 
to the arrow.  
In this paper we describe our planned approach to providing 
formative feedback based upon automatic analysis of learners’ 
argument diagrams. Expert models for argument analysis will be 
automatically constructed by GAIL using an argument generator 
module similar to the argument generator developed for the 
GenIE Assistant [5]. The expert model will contain all acceptable 
arguments that can be generated automatically for a given claim 
from an underlying knowledge base (KB) representing the 
problem domain. GAIL’s argument analyzer will compare the 
user’s argument to the generated expert arguments to identify 

acceptable learner arguments and weaknesses in the learner’s 
argument. Weaknesses in student arguments are identified using 
non-domain-specific, non-content-specific rules that recognize 
common error types, e.g., those observed in a pilot study reported 
in section 3. In addition, if an argument is acceptable, the analyzer 
will recognize and output the argumentation scheme underlying 
the student’s argument and its associated critical questions. The 
output of GAIL’s argument analyzer will be utilized by GAIL’s 
feedback generator to provide formative feedback. 

In some previous educational argumentation systems, the 
student’s argument diagram is compared to a manually-
constructed expert model to provide problem-specific support. 
However, expert models are expensive to construct and may not 
cover all possible solutions or errors [6]. In GAIL’s approach the 
expert model is constructed automatically. Other systems use 
simulation of reasoning to evaluate formal validity but do not 
provide problem-specific support [6]. GAIL’s approach is similar 
in that it reasons like an expert to generate an argument. Unlike 
those systems, however, GAIL’s approach will provide problem-
specific support.  

This paper presents how the expert model is generated (section 2), 
a pilot study of GAIL’s GUI prototype that motivated the 
classification of weaknesses in learners’ arguments (section 3), 
implementation of a prototype argument analyzer (section 4), 
some issues to be addressed in the planned feedback generator 
(section 5), and conclusions (section 6). 

2. EXPERT MODEL 
Generation of expert arguments in GAIL will be done following 
the approach to argument generation used in the GenIE Assistant, 
a proof-of-concept system for generating first-drafts of genetic 
counseling patient letters [5]. Written by genetic counselors to 
their clients, this type of letter contains biomedical arguments to 
justify diagnostic testing, the diagnosis of genetic conditions, and 
the probable genotypes of family members. GenIE’s internal 
components include  

• domain models, causal models of genetic conditions used by 
genetic counselors in communication with their clients [7], 

• an argumentation engine that uses computational definitions 
of argumentation schemes [8] to guide search in the domain 
model for data and warrant needed to support a particular 
claim, and 

• a letter drafter that organizes and expresses the arguments as 
English text using natural language generation techniques. 

GAIL’s expert arguments will be produced using a similar 
approach to the GenIE Assistant’s domain models and 
argumentation engine. However, the natural language generation 



module, the letter drafter, will not be needed to generate expert 
arguments. 
The domain models in the GenIE Assistant are represented 
computationally as qualitative probabilistic networks (QPN) [9]. 
A QPN consists in part of a directed acyclic graph whose nodes 
are random variables. In addition, a QPN specifies qualitative 
constraints on variables in terms of influence (S+, S-), additive 
synergy (Y+, Y-), and product synergy (X0, X-) relations. For 
(Boolean) random variables A, B and C, S+(A,B) [or S-(A,B)] can 
be paraphrased as If A is true then it is more [less] likely that B is 
true; Y+({A,C},B) [or Y-({A,C},B) as If A and C are true then A 
enables [prevents] C from leading to B being true; 
X0({A,C},B)[or X-({A,C},B)] as if both [either] A and C are true 
then it is likely that B is true.   
To illustrate S+, if a patient has two mutated BRCA1 alleles then 
it is more likely she will develop breast cancer; Y+, someone who 
has inherited a genetic mutation for familial hypercholesterolemia 
is at a higher risk of heart disease if she is obese; X-, breast cancer 
can be caused by mutation of BRCA1 or some other gene; and X0, 
together the mother and the father can pass an autosomal recessive 
mutation to their offspring. A QPN representing knowledge about 
a genetic condition can be reused for different patient cases. 
Representative domain models for testing the GenIE Assistant 
were built quickly using information from genetics reference 
books. The size of a QPN to be used in GAIL would be of the 
same scale as those used to generate letters in the GenIE Assistant 
(less than 50 nodes). For more information on domain modeling 
see [5]. 
Computational definitions of argumentation schemes are used by 
the GenIE Assistant’s argumentation engine to construct a genetic 
counselor’s arguments for the diagnosis and genotypes of family 
members [5]. The argumentation schemes are formalized in a 
structure including claim, data, and warrant. Since the 
argumentation engine and schemes do not encode domain-specific 
or patient case-specific content, they can be used to generate 
arguments in any domain whose domain knowledge can be 
represented in a similar format. The propositions used as claim or 
data describe states of variables in a QPN. The warrant expresses 
formal constraints on the nodes of the QPN in terms of influence 
and synergy relations mentioned above. The distinction between 
the two types of premises reflects their difference in function and 
source of information. Claims and data are facts or hypotheses 
about a particular case, whereas warrants describe (biomedical or 
other) generalizations.  
In addition to those components, argumentation schemes in the 
GenIE Assistant include a field called the applicability constraint, 
a constraint that must be true to generate an argument from that 
scheme. Note that conclusions of the argumentation schemes are 
not necessarily deductively valid, and the applicability constraint 
is a type of critical question [8]. As discussed in section 5, the 
critical questions of GAIL’s argumentation schemes provide a 
systematic means of challenging the conclusion of an argument. 
To illustrate, consider an abductive reasoning scheme used in the 
GenIE Assistant: 

Claim: A ≥ a 
Data: B ≥ b 
Warrant: S*(<A,a>, <B,b>) 
App. constraint:  ¬ exists C X-({C,A},<B,b>): C ≥ c 
 

In the above, uppercase-initial terms -- A, B, C -- are random 
variables in the QPN, S* is a chain of one or more positive 
influence relations S+. Lowercase-initial terms – a, b, c – are 
values of the random variables, and in this scheme are threshold 
values. To paraphrase this scheme, (warrant) there is a (chain of) 
possible positive causal influence(s) from A to B; (data) B is at 
least b; therefore (claim) A is at least a; (applicability constraint) 
provided that there is no C such that C and A are mutually 
exclusive positive influences on B and C is at least c. For 
example, (warrant) having a genotype with two mutated alleles of 
CFTR can lead to (abnormal CFTR protein which can lead to 
abnormal pancreas enzyme level which can lead to) growth 
failure; (data) this patient has growth failure; therefore (claim) this 
patient has cystic fibrosis; (applicability constraint) as long as 
there is no other condition believed to explain growth failure.   
An argument for a given claim is automatically constructed by 
searching the domain model and data about the patient’s case for 
information fitting GenIE’s argumentation schemes instantiated 
with the claim. In addition to the above abductive argumentation 
scheme, other schemes support abductive reasoning about 
alternative causes or jointly necessary causes, reasoning from 
cause to effect, reasoning from negative evidence, and reasoning 
by elimination of alternatives. The argumentation schemes reflect 
those used in a corpus of genetic counselor-authored letters. Note 
that the GenIE Assistant’s argumentation engine can construct 
complex arguments involving multiple pieces of evidence and 
chains of arguments. The same approach will be used in GAIL to 
generate expert arguments for a given claim. In a performance 
evaluation of the GenIE Assistant, two letters, each containing 
multiple arguments, were generated in 22 seconds on a desktop 
computer [5]. Note that the time should be less than that in GAIL, 
since the arguments will not be realized in English. Also, they can 
be generated off-line if necessary. 
 
 

 
 
                                                                                                     
                                                  
 
 
 

Fig. 2. Example of simple argument structures.  

Some example arguments that can be generated are illustrated in 
Figures 2 and 3 in the box and arrow style of notation used in the 
GAIL interface. (To save space, the diagrams contain variables 
rather than the text that would be used in the GUI.) The diagram 
on the left of Figure 2 is a chain of two abductive arguments. The 
claim (A) that patient P has cystic fibrosis (two mutated CFTR 
alleles) is supported by the hypothesis (C) that P has abnormal 
CFTR protein and is warranted by the positive influence relation 
between CFTR alleles and CFTR protein. Hypothesis C is 
supported by the data (D) that P has frequent respiratory 
infections and the positive influence relation between CFTR 
protein and respiratory infections. The diagram on the right of 

 E 

 B 

S+(B,E) 

 A 

 C 
S+(A,C) 

 D 

S+(C, D) 



Figure 2 is a causal/predictive argument for the claim (E) that 
individual M (the patient’s mother) is a carrier of a CFTR 
mutation. E is supported by the family history data that M has a 
certain ethnicity and is warranted by the higher probability of 
being a carrier if an individual has that ethnic background. 
Figure 3 shows part of an argument for the claim (A=1) that P’s 
mother has exactly one mutated CFTR allele. The left-hand 
subargument is for the hypothesis that she has one or two mutated 
CFTR alleles. That subargument is supported by the hypothesis 
(D=2) that P has cystic fibrosis (two mutated CFTR alleles), and 
is warranted by the synergy relation, X0(<A=1,B=1>, D=2), i.e., 
that a child who has two mutated alleles inherited one from the 
mother and one from the father. Note that the claim D=2 would be 
supported by another subargument (not shown in Figure 3). The 
right-hand subargument is for the hypothesis that the mother does 
not have two mutated CFTR alleles. This is supported by the data 
(¬C) that she does not have cystic fibrosis symptoms, and 
warranted by the positive influence relation between CFTR alleles 
and symptoms of cystic fibrosis. 

 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Example of part of more complex argument. 

3. PILOT STUDY 
A formative evaluation of GAIL’s prototype user interface was 
done in fall 2011 through spring 2012 with a total of 10 paid 
undergraduate volunteers, the first seven of which were recruited 
from biology classes and the last three computer science students. 
Each participant was first asked to read a seven-page patient 
education document, which we had found on the internet and 
printed for this study, on the inheritance and diagnosis of cystic 
fibrosis. After a participant read the document, it was put away 
and the research assistant narrated a silent video tutorial 
describing the components of an acceptable argument, and 
showing the features of the GAIL GUI and the process of 
constructing several different arguments using GAIL. Afterwards, 
the research assistant pointed out a chat box in the GAIL GUI for 
communicating with the assistant if necessary. The assistant then 
left the room, but could view the participant’s computer screen on 
another computer monitor. 
Listed in the upper left-hand corner of the GAIL GUI, the 
problems for which the first seven participants were asked to 
construct arguments are as follows.  
Problem 1: Give two arguments for the diagnosis that J.B. has 
cystic fibrosis.  

Problem 2:  Give one argument for the diagnosis that J.B.’s 
brother has cystic fibrosis.  
Problem 3: Give one argument against the diagnosis that J.B.’s 
brother has cystic fibrosis. 
Problem 4: Give one argument for hypothesis that J.B.’s mother 
and father are both “carriers” of the CFTR gene mutation that 
causes cystic fibrosis 
Note that the hypotheses, observations, generalizations (warrants), 
and problems shown on GAIL were written by the author of this 
paper based on information from a college genetics textbook. (J.B. 
refers to a fictitious patient.) 
None of the first seven students created acceptable arguments. At 
that point in the study, it was decided to modify the materials and 
procedure. First, the problems were reduced in number 
(eliminating Problem 2, requiring an argument with conjunction). 
Second, when the participant submitted a response, the research 
assistant reviewed it using a checklist of error types created by the 
author after reviewing the arguments created by the first group of 
participants. If the participant’s response contained any of those 
types of errors then the research assistant gave the participant 
feedback (as discussed below) through the chat box and asked the 
student to revise his argument.  After three tries, the student was 
told to proceed to the next problem in the set. Third, to expedite 
the revised study, the remaining three students were recruited 
from computer science. 
The distribution of error types is shown in Table 1. A Type 1 error 
was an argument whose claim did not match the claim for which 
the student was asked to give an argument. Type 2 was an 
argument where the data was not evidence for the claim. Type 3 
was an argument where the warrant did not relate the data to the 
claim. Type 4 was an argument where the opposite type of link 
was required. Type 5 was a chained argument in which a 
subargument was missing or incorrect. For example, consider the 
chained argument on the left of Figure 2. If the learner failed to 
give a subargument in support of C, or if the learner skipped the 
intermediate conclusion C and showed D as directly supporting A, 
the error would be classified as Type 5. Type 6 errors involved 
incorrect use of conjunctions. Type 7 was omission of the warrant.  

Table 1. Average number of errors per error type per person 
in each group  

Error Type Group 1 Group 2 
1:Incorrect claim 1.9 0.8 
2:Incorrect data 2.6 0.3 
3:Incorrect warrant 2 1 
4:Incorrect pro/con 0.9 0.3 
5:Incorrect/missing chained claim 1.4 0 
6:Incorrect/missing conjunction 0.9 NA 
7: Missing warrant 0.1 0.4 

 
In Table 1, Group 1 comprises the first seven students, who were 
given no feedback. Group 2 comprises the last three students, who 
were given feedback and three tries on each problem. The number 
of errors on each try for each student in Group 2 was totaled and 
the average was computed by dividing by nine (i.e., three students 
with three tries each). From the first group, it can be seen that the 

 A=1 or A=2 

A=1  
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 A≠2 

¬C 

S+(A=2,C) 

D=2  

X0(<A,B>, D=2) 



most frequent errors (in descending frequency) were incorrect 
data, incorrect warrant, and incorrect claim. Although the quantity 
of errors in the first and second groups cannot be compared, it 
should be noted that the top three error types in Group 1 remained 
the top three in Group 2.  
Group 2 received feedback from the research assistant based on 
the following guidelines: 
1. Does the hypothesis match the problem? If not, tell the 

student that the hypothesis must match the problem. 
2. Is everything OK except that the student has used Pro instead 

of Con or vice versa? If so, explain the difference. 
3. Is the data relevant to the hypothesis (could you make a good 

argument using that data)? If not, suggest he/she try to use 
some other data. 

4. Is the data relevant but the generalization (warrant) does not 
link the data to the hypothesis? If yes, suggest he/she try a 
generalization that links the two. 

5. Is the generalization (warrant) relevant (could you make a 
good argument with it) but the data does not fit the warrant? 
If yes, suggest that he/she try different data that fits the 
warrant. 

6. Did the student include some data in a conjunction that is 
unnecessary? If so, suggest that he/she remove the conjuncts 
that do not fit the warrant. 

7. Did the student appear to skip a step in a chained argument 
that has a sub-argument for the data of the top argument? If 
yes, help the student break it into the main argument and the 
sub-argument. 
 

Table 2 shows the types of errors made by the three students in 
Group 2 after receiving feedback on their first and second answers 
on each problem. Problem 1 was solved correctly by two students 
on the first try, and by the third student on the second try. 
Problems 2 and 3 were solved correctly by only one student (on 
the third try). Problem 3 was solved correctly by two students on 
the second try. These results suggest that on the more difficult 
problems (Problems 2 and 3), the feedback may have helped to 
reduce the number of errors. 
 
Table  2.  Types of errors in group 2 (after feedback). 
 

Student 
 

Try 
 

Problem 1 Problem 2 Problem 3 

1 1st  1, 3 ,4 2, 3 
 2nd  1, 3 7 
 3rd  3, 4 2, 7 
2 1st 1 1, 3 1, 7 
 2nd  1, 3  
 3rd  1  
3 1st  3, 4 2, 3, 7 
 2nd  3  
 3rd    

 
At the end of the session, students were asked to complete a user 
experience survey. The survey results, shown in Table 3, indicate 
that the students had a favorable response to using the software 
despite making errors.  
 

Table 3. Average scores on user experience survey (N=10). 
Possible responses: 3(True), 2(Somewhat true), 1(False). 

Question Score 
My background … helped me answer the 
problems in this study. 

2.3 

I found the subject of genetic conditions and 
inheritance interesting. 

3 

I found the tools for diagramming arguments 
easy to use. 

2.8 

I found the tutorial on how to use the 
argument diagramming tools helpful. 

3 

I prefer using the argument diagramming tools 
to writing arguments. 

2.7 

I would like to use a program like this in my 
courses on genetics 

2.9 

 
4. ARGUMENT ANALYZER 
The expert model will contain all acceptable arguments that can 
be automatically generated for a given claim from an underlying 
knowledge base (KB) representing the problem domain. The 
generated arguments are simple or complex argument structures 
containing KB elements. Text elements provided to the learner 
through GAIL’s GUI are linked internally to KB elements. The 
inputs to GAIL’s argument analyzer will be the learner’s 
argument and the expert model, both in the same format. 
Implemented in Prolog, the prototype argument analyzer 
determines if a student’s argument diagram represents an 
acceptable argument and if not acceptable, identifies its 
weaknesses.  
The algorithm to determine acceptability merely checks whether 
the user’s argument matches one of the acceptable arguments. If 
the user’s argument does not match an acceptable argument, its 
weaknesses are identified using pattern-matching rules motivated 
mainly by the types of errors seen in the study described in the 
previous section. The rules are non-domain-specific and non-
problem-specific. For example, if the user’s data and claim match 
the expert’s, but the warrant does not, the analyzer identifies the 
problem as an unacceptable warrant (Type 3). The prototype 
argument analyzer implementation outputs an error message for 
each error detected. However, in the future implementation of 
GAIL, the argument analyzer’s output would be used by the 
Feedback Generator, which will be responsible for selecting 
which error(s) to highlight and providing appropriate feedback.  
If the learner’s argument is acceptable, i.e., it matches an expert 
argument, then knowledge of the argumentation scheme used to 
generate the expert argument provides an additional resource for 
generation of feedback as described in the next section. 

5. FEEDBACK GENERATOR 
The feedback generator has not been implemented yet. Currently, 
we are gathering information to guide its design. As discussed in 
the previous section, the feedback generator will have access to 
the output of the argument analyzer. If the learner’s argument 
contains errors such as those types listed in Table 1, some design 
questions are: which of the errors to address (and in what order), 
when to provide feedback, what feedback content to provide, and 
in what syntactic form. Before designing a feedback generator that 



answers these questions, we are running a think-aloud study to get 
a better understanding of why students make these errors. For 
example, a type 4 error might be due to a misunderstanding of the 
argument representation used in GAIL’s GUI. If that is indeed the 
case, then it would seem that addressing such an error should be 
given higher priority by the feedback generator. On the other 
hand, we hypothesize that a type 1, 2 or 3 error may be due to a 
deeper problem, either in the learner’s understanding of what 
constitutes an acceptable argument, or in understanding the 
genetics information provided by GAIL as possible building 
blocks for the learner’s argument diagram.  
A key point to note is that our approach supports content-based 
feedback. Many of the types of errors listed in Table 1 are 
content-based errors that can be detected by the argument 
analyzer based on the expert model. In addition to using it to 
identify content-based errors, GAIL will be able to use the expert 
model to provide content-based feedback. This is illustrated in the 
following imaginary scenario. Figure 4 depicts abstractly a student 
argument diagram in which the data, B, is not related by the 
warrant, S+(A,C), to the conclusion A. Our approach supports 
providing feedback to the effect that this argument is not 
acceptable because the warrant does not relate the data to the 
conclusion; and supports giving the advice to look for other data 
that is consistent with the given warrant or to look for another 
warrant that links the given data to the conclusion. Suppose that 
the expert model contains an argument similar to that in Fig. 4, 
but using C as data. If the student is unable to make use of the 
more general advice to replace the data or warrant in the diagram, 
a hint could then be generated asking whether C is in the 
observations or hypotheses on the GUI screen. 
 
 
 
 
 
 
 

Fig. 4. Abstract example of unacceptable argument. 
 

Figure 5 shows that with the help of this feedback, the imaginary 
student has replaced the data in the argument diagram with C. 
However, suppose that C was listed on the GUI screen as a 
hypothesis rather than an observation. In that case, a sub-
argument for C would be required. The argument analyzer could 
recognize that the sub-argument for C in the expert model is 
missing in the student’s diagram. Then the feedback generator 
could inform the student that C must be supported by a sub-
argument since it is only a hypothesis. 
 
 
 
 
 
 
Fig. 5. Abstract example of partly fixed, unacceptable argument. 

Figure 6 shows that with the help of this feedback the student 
adds a sub-argument for C to the diagram, matching an acceptable  
expert argument. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Abstract example of acceptable argument. 
In this domain, however, the conclusions of acceptable arguments 
are not necessarily deductively valid. As discussed in Section 2, 
each abstract argumentation scheme is associated with certain 
critical questions, which provide a way of challenging an 
argument constructed from that scheme. Critical questions support 
a different type of feedback, which could inspire a learner to 
consider multiple arguments pro and con the same claim. To 
illustrate, one of the critical questions of the abductive 
argumentation scheme is whether there is another plausible 
explanation of a certain observation. Having recognized the 
learner’s argument as an instance of this scheme, the feedback 
generator could instantiate this critical question. Suppose that the 
learner has constructed an acceptable abductive argument for a 
diagnosis of cystic fibrosis; instantiating this critical question 
could support generating feedback such as Can you make an 
argument for an alternative diagnosis that explains the patient’s 
frequent respiratory infections? or, What if he has some other 
condition that could explain those symptoms? 
Some other critical questions of GAIL’s abductive argumentation 
schemes, where B is an observation and A is a putative cause of 
B, include (Green 2010): 
• (Missing Enabler) is there a C such that C is required for A 

to cause B, and C is absent? (Example: Has exposure to 
bacteria occurred, which is required for thickened mucous to 
lead to frequent respiratory infections?) 

• (Mitigation) is there a C whose presence may mitigate the 
effect of A on B? (Example: Is the patient taking antibiotics, 
which will prevent respiratory infections?) 

• (Inapplicable Warrant) Despite the similarity of individual 
I to the population described by the warrant, is there is a 
difference that could make it inapplicable to I? (Example: 
Although the mother is from a geographic region with a high 
rate of cystic fibrosis, is her ethnic background different 
from most of the population there?) 

• (False Positive) Is p(¬A | B) too high? (Example: Is the false 
positive rate for the laboratory test used to diagnose this 
condition high?) 

• (Low Certainty of Data) Is p(B) too low? (Example: Are we 
confident that there is accurate information about the health 
of the biological mother who gave the patient up for 
adoption when he was an infant?)  

 A 

 C 
S+(A,C) 

 D 

S+(C, D) 

 A 
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S+(A,C) 
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 C 
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Again note that feedback can be given without requiring problem-
specific knowledge to be embedded in the feedback generator. 
Also note that semantic, not syntactic, forms of critical questions 
are associated with argumentation schemes. Thus, using natural 
language generation from semantic forms to generate syntactic 
variations, one could study the varying effectiveness of different 
ways of asking the same critical question.  

6. CONCLUSIONS 
This paper presents our ideas on generating formative feedback in 
the Genetics Argumentation Inquiry Learning (GAIL) system. 
GAIL will provide learners with tools for constructing Toulmin-
style arguments in diagrams using blocks of text provided by the 
system. The text is linked internally to KB elements. An argument 
generator like one previously developed for another application 
will use the KB and abstract argumentation schemes to 
automatically generate expert arguments. GAIL’s argument 
analyzer will determine if a learner’s argument is acceptable by 
comparing it to the expert arguments. A prototype argument 
analyzer has been implemented using non-domain-specific, non-
content-specific rules that recognize common error types. The 
error types are based on those observed in a pilot study. GAIL’s 
formative feedback generator will use the argument analyzer’s 
output. In addition to identifying problems in the learner’s 
argument, if the argument is acceptable the analyzer will inform 
the feedback generator of critical questions of the argumentation 
scheme underlying the student’s argument. The critical questions 
can be used to generate feedback stimulating the learner’s critical 
thinking.   
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Fig. 1. Screen shot of GAIL prototype user interface in formative evaluation of fall 2011 – spring 2012. 
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ABSTRACT 
Civic innovators design real-world solutions to societal problems.  
Teaching civic innovation presents serious challenges in 
classroom orchestration because facilitators must manage a 
complex learning environment (which may include community 
partners, open-ended problems and long time scales) and cannot 
rely on traditional classroom orchestration techniques (such as 
fixed schedules, pre-selected topics and simplified problems).  
Here we consider how digital lofts--online learning environments 
for civic innovation might overcome orchestration challenges 
through the use of badges, cases, crowd-feedback, semi-
automatically created instruction, self-assessment triggered group 
instruction, social media, and credentialing.  Together these 
features create three types of feedback loops: a crowd critique 
loop in which learners receive formative feedback on their 
innovation work from a broader community, a case development 
loop in which examples of student work are semi-automatically 
created to provide instruction, and a learner-driven instructional 
loop, in which self-assessments determine which group instruction 
is provided.   Researching and developing digital lofts will help us 
to understand how to support real-world innovation across design 
disciplines such as engineering, policy, writing and even science; 
and result in technologies for disseminating and scaling civic 
innovation education more broadly.   

Keywords 

Digital lofts, feedback, civic innovation, online learning 
environments 

1. INTRODUCTION 
Many of the challenges facing our society such as global 
warming, poverty, and illiteracy are political problems that cannot 
be solved through engineering alone.  For example, to create 
environmentally sustainable cities we would have to train 
engineers to redesign the land, water, energy and information 
systems of the city.  And while we do train engineers to design 
membrane filtration-, renewable energy-, and mass transit-
systems, we do not teach them about changing economic policy to 
promote conservation, energy initiatives to discourage fossil fuel 
use, or zoning rules to encourage mass transit.  We do teach 
engineers about complex mechanical systems and how to 
communicate effectively as a team, but we don’t teach them that 
sustainable infrastructure might also require changes in policy.  
Even when we do teach them about policy, we don’t teach them 
how to change it, and even if they did know how to change it, they 
can’t change it alone, leaving us with engineers who are at the 

mercy of policy problems, not ones that can solve them.  In short, 
good technology and bad policy means no impact (Easterday, 
2012). 
To overcome societal challenges, we must train civic innovators 
who can identify, design and engineer solutions to societal 
problems.  Civic innovators must be able to develop, modify, and 
implement ideas while navigating ambiguous problem contexts, 
overcoming setbacks, and persisting through uncertainty in their 
community.  To become civic innovators, learners must gain 
experience identifying and tackling complex, ill-structured design 
challenges that are not easily solved within a fixed time frame.  
Civic innovation education is thus a kind of service learning that 
“...integrates meaningful community service with instruction and 
reflection to enrich the learning experience, teach civic 
responsibility, and strengthen communities...” (ETR Associates, 
2012).  However, unlike other forms of service learning, civic 
innovation focuses on design--whereas service learning might ask 
students to pick up trash in a riverbed to motivate learning about 
ecology, civic innovation might ask students to pick up trash in a 
riverbed to motivate learning about ecology in order to identify, 
design, and engineer solutions to reduce environmental pollution. 

But embedding learning in real-world activities makes civic 
innovation difficult to teach: individual mentoring can be effective 
but expensive; extra-curricular environments provide flexibility 
but insufficient guidance; and classroom instruction is too rigid 
and time-bound for solving complex societal problems.  
Embedding learning in real-world activities creates a serious 
challenge of classroom orchestration.  Classroom orchestration 
(Dillenbourg & Jermann, 2010) involves satisfying the constraints 
of curriculum, assessment, time, energy, space, etc. required to 
promote learning in a given context.  Embedding learning in the 
real-world increases the orchestration challenge because 
orchestration techniques that work in the classroom (such as using 
simple problems, making students complete assignments at the 
same pace) can’t be used when learners are working on real-world 
problems.  Adding community clients and professional design 
mentors only makes orchestration more challenging. 

New cyberlearning technologies, such as web 2.0, social media, 
reputation systems, and crowdsourcing offer new ways to 
orchestrate learning environments for civic innovation.  Just as we 
create instructional labs to teach science, the purpose of this 
project is to develop instructional lofts to teach innovation.  Our 
research question is: how might we create Digital Lofts: on-line, 
learning platforms for teaching civic innovation that overcome 
the orchestration challenge? 

Knowing how to design digital lofts that overcomes the 
orchestration challenge will allow us to amplify teaching 
resources to make civic innovation education feasible.  Design 
principles for Digital Lofts would allow us to overcome 
orchestration challenge not just for civic innovation education, but 
for project-based learning environments as well, allowing us to 
design learning environments that are more sustainable, more 
easily scaled to new contexts, and more like real life. 

 

 



2. BACKGROUND 

Advantages of civic innovation learning communities 

What do civic innovation learning environments look like?   Civic 
innovation learning communities: (a) have pro-public missions, 
(b) teach learners how to design solutions to real problems, (c) are 
led by learners and supported by faculty and professional experts, 
and (d) extend nationally through a network of chapters.  For 
example, in GlobeMed, students work on international health 
challenges.  In Engineers for a Sustainable World, students work 
on projects that promote environmental, economic, and social 
sustainability.  It is important to stress the pro-public mission of 
these learning communities.  Learners are tackling problems that 
require them to address societal challenges and to understand 
policy issues. For example, by tackling the problem of energy 
sustainability, students are forced to consider the environmental, 
economic and legal policies that constrain the effectiveness of 
technological interventions.  For this project, we consider Design 
for America, which provides an ideal model of a learning 
community for civic innovation.  

Figure 1. Design for America’s community of practice.  The 14 
studios are hosted on University campuses and interact with, but 
do not replace the existing curricula.  Studios incorporate local 
clients, mentors and alumni and communicate directly with DFA 
Headquarters. 
Design for America (DFA) is a learner-directed, extracurricular 
service-learning environment that is succeeding at developing 
civic innovators.  Universities host on-campus DFA studios in 
which student teams work on self-selected civic innovation 
projects throughout the academic year, applying the skills and 
expertise they’ve gained through academic coursework (Figure 1 
& 2).  Student teams identify challenges in healthcare, 
environment, and education in their local community such as 
reducing hospital-acquired infections and reducing water waste in 
cafeterias.  They work with organizational partners to: understand 
stakeholder needs, ideate, prototype, test, and implement 
solutions.  During the annual 4-day Leadership Studio, 
experienced student leaders train new student leaders in studio 
management and leadership. 
Design for America was conceived by co-author Gerber during 
the 2008 presidential election to engage university students in 
solving civic issues using human-centered design.  As an assistant 
professor of design, Gerber joined student co-founders Mert Iseri, 
Yuri Malina, and Hannah Chung, to start the first studio at 
Northwestern University.  Currently, there are 14 studios hosted 
by universities throughout the country (including Stanford, 
Virginia Tech, and Northwestern) involving 1800 students (58% 
women), aged 18-30 from over 60 majors, working on over 50 
projects; 15 faculty mentors; and 80 professional mentors.  And 

the number of studios is expected to grow to 30 by 2015.  In just 
four years, DFA has produced two start-ups that have raised over 
$1.5 million in funding.  DFA has been featured in Fast Company, 
Oprah, and the Chicago Tribune. 

 
Figure 2: Design for America students learn civic innovation 
through projects that require designing, building, and 
implementing solutions. 
Findings from surveys, daily diaries, interviews, and observations 
suggest that DFA students develop confidence in their ability to 
act as civic innovators through successful task completion, social 
persuasion, and vicarious learning in communities of practice with 
clients, peers, industry professionals, and faculty.  Furthermore, 
students attribute achievement of learning outcomes outlined by 
the Accreditation Board for Engineering and Technology 
including identifying, formulating, and solving problems; 
functioning on a multidisciplinary team; communicating 
effectively; and knowledge of contemporary issues to their 
participation in Design for America. (Gerber, Marie Olson, & 
Komarek, 2012); (ABET Engineering Accreditation Commission, 
2011). 
Design for America’s civic innovation model follows many 
recommendations of the learning sciences for improving 
motivation and transfer such as using real world problems that 
require design of meaningful products with social relevance.  
DFA encourages students to work on authentic problems  (Shaffer 
& Resnick, 1999) to motivate learning and transfer. Students 
identify and select projects and self-direct the innovation and 
discovery process including observation, idea generation, 
prototyping, and testing (Kolodner, Crismond, Gray, Holbrook, & 
Puntambekar, 1998); (Puntambekar & Kolodner, 2005).  By 
trying to apply their knowledge to a problem, students come to 
understand what they know and when they need more information 
(Edelson, 2001). Like service learning (Furco, 1996), DFA 
increases civic awareness, interest in the real needs of people, and 
contemporary issues by focusing on innovating solutions to local 
community challenges (Gerber et al., 2012). 

Unlike traditional classrooms, Design for America’s community 
of practice (Figure 1) expands beyond the physical boundaries of 
the student community to include experienced, local 
professionals, local clients and community members, as well as 
beyond the temporal boundaries of student life as learners 
continue to participate in projects as alumni.  Students’ 
involvement in a community of practice (Lave & Wenger, 1991) 
includes engaging with peer mentors, professionals and faculty in 
a non-evaluative environment over an extended timeframe.  
Communities of practice foster innovation self-efficacy (i.e., 
learners’ belief in their ability to innovate, (Gerber et al., 2012) 
and such beliefs influence goal setting, effort, persistence, 
learning and attribution of failure (Bandura, 1997); (Deci & Ryan, 
1987); (Ryan & Deci, 2000).  Students select real world 



challenges (Shaffer & Resnick, 1999) that are personally 
meaningful, build and test solutions to problems, and share their 
work with the community through review sessions (Papert & 
Harel, 1991); (Papert, 1980); (Resnick, 2009); (Kolodner, 
Owensby, & Guzdial, 2004).  Because DFA projects are 
extracurricular, they conclude when ideas are implemented, rather 
than when the academic term ends.   

Orchestration challenges in civic innovation learning 
communities 
While learning environments for civic innovation have many 
potential advantages, they also face many challenges.  Civic 
innovation teachers face serious orchestration challenges because 
they have to teach many different project teams, with different 
levels of expertise, working on different problems for different 
community clients.  The orchestration challenge makes civic 
innovation difficult to teach well. 

Like many extra-curricular organizations, DFA students often 
suffer from a lack of guidance.  Our needs analysis of Design for 
America found that, unsurprisingly, learners would benefit from 
more scaffolding and feedback on the innovation process 
including: (a) planning and conducting research on their project 
challenge; (b) using initial research to inform proposed solutions; 
(c) selecting and conducting appropriate design activities for their 
project challenge; and (d) discounting initial solutions if these 
solutions prove not to be viable.  While DFA has been very 
successful at attracting learners, these learners report that 
frustrations from lack of progress makes them question their 
commitment to the work they are undertaking.  And while leaders 
(student facilitators) experienced in project work and trained at 
the DFA leadership studio require less support, they find helping 
other students very challenging.  In interviews, these student 
leaders asked for more granular ‘how to’ guides from DFA 
headquarters. 

DFA students also often struggle to access available resources that 
could help them in their projects.  While students are aware that 
they can reach out to experts within the DFA network generally, 
they struggled to identify specific individuals or instructional 
resources that can help them.  Learners often fail to ask for 
support from more experienced members of the community 
because they don’t know whom or for what to ask.  Similarly, 
learners find it challenging to locate helpful instruction.  They 
report floundering for long periods of time trying to find resources 
and as well as not knowing where to start looking.   

In fact, these issues are challenges in project-based learning and 
criticisms of minimally guided instruction in general.  Without 
sufficient guidance, learners become lost, confused and frustrated, 
which can lead to misconceptions (Kirschner, Sweller, & Clark, 
2006); (Hardiman, Pollatsek, & Well, 1986); (Brown & 
Campione, 1996).  Furthermore, students often need to develop 
additional help-seeking skills in order to learn effectively (Gall, 
1981; Pintrich, 2004); (Ryan, Pintrich, & Midgley, 2001).  
Learning science provides myriad ways to offer guidance such as 
providing explanations, worked examples, process worksheets, 
prompts, (and many more) (Scardamalia, Bereiter, & Steinbach, 
1984); (Reiser, 2004); (Edelson, Gordin, & Pea, 1999); 
(Puntambekar & Kolodner, 2005); (Kolodner et al., 2004).   

Note that we do not wish to re-litigate the discovery vs. direct 
instructional debate here--achieving the proper balance between 
providing and withholding assistance (a.k.a the assistance 
dilemma) remains a fundamental and enduring question in the 
learning sciences (Koedinger & Aleven, 2007).  Our point is 
merely that civic innovation facilitators cannot effectively deliver 

any instructional model (constructionist, direct, or otherwise) 
because they cannot effectively orchestrate learning at DFA 
studios.  In other words, we cannot answer the fundamental 
questions about civic innovation without addressing orchestration. 
The need for new orchestration technologies 

In a typical classroom, orchestration is relatively easy.  But the 
traditional classroom approaches to orchestration don’t work for 
civic innovation.  For example, to make classroom teaching 
easier, we often give students identical, simplified problems (in 
the words of one DFA student: “well-defined problems on a 
platter.”)  We use schedules that keep learners moving at the same 
pace so we can teach the same skills and knowledge to the whole 
class.  This is an easy way to orchestrate groups of learners when 
we have a limited set of teaching resources.   

Unfortunately, when we use simplified, artificial problems, we 
don’t give students a chance to practice the skills for coping with 
design complexity we want them to learn.  We also destroy the 
motivational benefits that come from working on real world 
problems.  For example, if we want students to practice 
“scoping,” (i.e., identifying important but tractable problems to 
solve) then we need to give them ill-defined problems that can be 
scoped in different ways and that may not fit neatly into the 
academic calendar.  If we want them to practice communicating 
with clients, then we must accept unclear and changing project 
goals.  If we want to take advantage of students’ intrinsic 
motivation to address real world problems on topics they feel are 
important, then we must accept a certain level idiosyncrasy of 
projects.  But once we start letting different groups work on 
different, more complex problems, at different speeds, working 
with clients in the community, and so on, it becomes almost 
impossible for a single teacher to orchestrate learning in a 
productive way. 

Could technology help teacher orchestrate civic innovation 
learning environments?  Existing online learning management 
platforms do not address the orchestration problem.  Many of the 
most popular general-purpose online platforms assume a 
classroom model and are designed for distributing online books or 
lectures, such as academic platforms like the Open Learning 
Initiative (Lovett, Meyer, & Thille, 2008), MIT Opencourseware 
(Massachusetts Institute of Technology, 2012), and Coursera 
(Severance, 2012), which do not help us orchestrate design 
projects.  Other technologies provide no pedagogical help but 
rather tools for managing files and conversations, such as 
Blackboard (Blackboard Inc., 2012), Canvas (Canvas, 2012), Lore 
(Lore, 2012), and Sakai (Sakai Foundation, 2012).  Some 
technologies for orchestration focus on only small portions of the 
challenge such as managing a single activity (Dillenbourg & 
Jermann, 2010).  And while there has been great progress in 
technologies for orchestrating scientific inquiry (Peters & Slotta, 
2010), such as BioKIDS  (Songer, 2006), BGuILE  (Reiser et al., 
2001); (Sandoval & Reiser, 2004), Inquiry Island (White et al., 
2002), KIE (Bell, Davis, & Linn, 1995), and WISE (Slotta, 2004), 
these platforms are not appropriate for teaching civic innovation. 

Solving the orchestration challenge is not simply another 
application of technology to teaching, it is absolutely essential for 
creating the civic innovation learning environments urgently 
needed to prepare learners for the societal challenges that await 
them. 

3. TECHNOLOGICAL INNOVATION 
Orchestration of civic innovation is difficult because there are too 
many moving pieces: different learners, with different abilities, 



working on different (complex) design problems, at different 
speeds, with different community clients.  We could solve the 
orchestration challenge by giving each project team it’s own 
professional design teacher but doing so is costly.  However, with 
new technologies like web 2.0, crowdsourcing, and social media, 
we may be able to reduce the orchestration challenge for teachers 
and give them additional resources to overcome it.  Specifically: 
we can use web 2.0 to scaffold the innovation process and provide 
flipped, just-in-time instruction relevant to students’ current goals; 
we can use crowd-feedback to provide learners with more 
frequent, higher quality feedback on their progress; we can use 
recommender systems to semi-automatically create case libraries 
of successful designs; and we can automatically monitor group 
progress so teachers can give the right instruction to the right 
group at the right time. 

Design hypothesis.  Our initial design hypothesis argues that we 
can teach civic innovation by using what we call Digital Lofts to 
overcome the orchestration challenge.  Digital Lofts are online 
learning platforms for support learning in real world contexts that: 

1. use badges to scaffold the innovation process,  
2. provide a student-generated and curated case-library linked to 

badges to teach design,  
3. use crowd-feedback to increase the frequency and quality of 

feedback, 
4. use recommender systems to semi-automatically create case-

based instructional material,  
5. use self-assessment to trigger maximally relevant group 

instruction, 
6. use social media to facilitate participation and support, and 
7. use recognition and credentialing to facilitate help-seeking and 

connections to resources.  
These features allow us to create a curriculum that dynamically 
adapts to the needs of the learner, that is, to merge curriculum and 
data.  By merging curriculum+data, we can reduce the challenge 
of orchestrating civic innovation to a manageable level. 

To understand how Lofts help us orchestrate civic innovation, we 
can think of Lofts as supporting 3 interrelated feedback loops: (a) 
a crowd-critique loop in which students receive feedback on 
their work through project critiques, (b) a case development loop 
in which student work is used to semi-automatically create case 
studies of successful and unsuccessful designs which are then 
used to teach design principles, and (c) a learner-driven 

instructional loop in which students’ self assessments trigger 
face-to-face group instruction taught by facilitators (Figure 3).   

The crowd-critique loop 

Designers and engineers often organize their work according to an 
innovation process.  Figure 4 shows the high level steps or goals 
of a simplified innovation process consistent with the processes 
used by leading design and engineering firms like IDEO and 
Cooper (Dubberly, 2005) by the Stanford d.school (Beckman & 
Barry, 2007) or defined in engineering education standards 
(Massachusetts Department of Education, 2006).  In Figure 4, the 
first stage of design is to “focus” by identifying a potential topic 
to address such as “water conservation at universities.” The 
second stage is to “immerse” or study the user-needs, constraints 
and technologies involved in the issue.  The third stage is to 
“define” a specific problem that can be solved, such as “reduce 
water use in the college cafeteria by 30%.”  The fourth stage is to 
“ideate” by generating a wide range of potential solutions.  The 
fifth stage is to “build” the design using sketches, prototypes and 
high-fidelity implementations that realize the design idea.  The 
sixth stage is to “test” the design.  Even in simplified models like 
that in Figure 4, the design process is applied in an iterative and 
non-linear manner.   

 
Figure 4.  Badges scaffold complex design processes for the 
novice into smaller, more manageable challenges and identify 
members who have passed the challenges as potential mentors. 
Design can be thought of as a process of learning (Beckman & 
Barry, 2007); (Owen, 1998). Designers construct new knowledge 
through observations that yield insights; insights support 
frameworks that inspire ideas that lead to innovative solutions 
(Beckman & Barry, 2007).  Through this process, people 
construct knowledge (Dong, 2005), moving back and forth from 
the analytic phase of design, which focuses on finding and 

 
Figure 3.  Digital Lofts merge curriculum and data in three integrated feedback loops: the crowd-critique loop, the case development 
loop and the learner-driven instructional loop. 



discovery, to the synthetic phase, which focuses on invention and 
making (Owen, 1998).  Beckman and Barry (2007) describe 
knowledge creation through the design process as movement 
between concrete experiences and abstract conceptualization, 
reflective observation, and active experimentation.  Inductive and 
deductive practices support the construction of new knowledge 
that designers use to shape the environment in ways that did not 
previously exist. 

So how can teachers guide design groups working on different, 
complex problems?  One of the most important ways to promote 
learning is to provide learners with scaffolding and feedback on 
their work.  

The Loft’s crowd-critique loop scaffolds the design process and 
provides feedback using project critiques.  The crowd-critique 
loop starts with project badges (like girl scout badges) that break 
the complex design process into a series of manageable mini-
challenges (Figure 4).  For example, for the focus badge, learners 
have to scope an important but tractable issue such as hospital 
acquired infections; for the immerse badge, learners have to 
conduct user-research on their target population to better 
understand their needs.  In the second step of the crowd-critique 
loop, learners use the resources attached to each badge to help 
them solve the challenge--each badge is linked to flipped 
(blended) instructional material (Khan, 2012); (Lovett et al., 
2008) that includes resources, principles, and examples that can 
help the learners solve the design challenge.  For example, the 
“build” badge for a web design project might include a video 
lecture on writing html, an interactive javascript tutorial, on-line 
readings about web-design principles, or examples of the different 
stages of creating a well-designed website  In the final step of the 
crowd-critique loop, (after students have worked on a badge and 
submitted their work to the Loft), the Loft solicits feedback on 
students’ work from professional design mentors and peers who 
have previously completed the badge.  The mentors and peers use 
the badge assessment rubrics to provide feedback to students.  

The widespread use of badges in online games has led to a surge 
of interest in badges for learning (Duncan, 2011).  However, civic 
innovation students are already intrinsically motivated to work on 
real world design problems, so it doesn’t make sense to use 
badges as extrinsic rewards that might decrease motivation (Deci, 
Koestner, & Ryan, 1999) and encourage gaming the system 
(Kraut & Resnick, 2012).  So instead, Lofts use badges to scaffold 
the design process and communicate learning goals, which should 
increase learning (Ambrose, Bridges, DiPietro, Lovett, & 
Norman, 2010). 

Combining flipped instruction with face-to-face teaching can be 
more effective than face-to-face teaching or online-only teaching 
alone (Scheines, Leinhardt, Smith, & Cho, 2005); (Lovett et al., 
2008).  Our flipped instructional material will use a guided-
experiential learning approach shown to improve learning 
outcomes relative to traditional project-based learning (Velmahos 
et al., 2004); (Clark, 2004/2008). 

Providing high quality feedback to learners is one of the most 
effective ways to increase learning (Hattie, 2009); (Hattie & 
Timperley, 2007); (Ambrose et al., 2010). The Loft provides 
learners with two underutilized sources of feedback: professional 
mentors and peers.  Giving peers well-designed assessment 
rubrics can make their feedback as effective as instructor feedback 
(Sadler & Good, 2006).  The Loft thus uses crowd-feedback to 
increase the frequency and quality of feedback available to 
learners. 

But what if students refuse to submit work or mentors and peers 
refuse to review it (Kraut & Resnick, 2012)?  Our needs analysis 
found that DFA students are hungry for feedback on their project 
and very willing to submit work to get this feedback.  Professional 
design mentors are also very willing to provide this feedback 
assuming that students ‘drive’ the process by providing them with 
well-prepared material from their design process (which the 
badges help students to do). 

The case development loop 

Developing useful learning resources can be a challenging task 
especially with design teams that may all be pursuing different 
directions at different times--how can cyberlearning technologies 
help produce effective and engaging learning resources?  
Our needs analysis found that DFA students prefer to share design 
lessons through stories about how they created their designs and 
how well those designs worked.  In the learning sciences, this falls 
under the heading of case-based reasoning, where each story 
describes an example or case of a design that worked (or didn’t 
work) along with an explanation of the key features that led the 
result, in which context, and so on.  Teaching effectively with 
cases has been well studied in several forms, including learning 
from cases (Kolodner, 1993; 1997), analogies (Gentner, 
Loewenstein, & Thompson, 2003), and worked-examples (Ward 
& Sweller, 1990; Salden, Aleven, Renkl, & Schwonke, 2009).   
Unfortunately, DFA students’ learning from cases suffers many 
limitations: (a) it is done informally, so knowledge of particular 
cases is not spread widely; (b) students do not effectively teach 
with cases, sometimes hiding illustrative mistakes, promote their 
projects rather than teaching, and failing to highlight the key 
design lesson or principle; and (c) students do not present 
contrasting cases that would allow learners to understand the deep 
features and the context of applicability of a case.  Such 
knowledge sharing is typical of large distributed organizations 
(Argote, 1999).   

Furthermore, it is difficult to create case-based teaching material 
both in terms of creating a useful library of cases and in creating 
ways for learners to find the appropriate case when needed 
(Kolodner, 1997). 
Digital Lofts overcome this challenge through a case development 
loop.  In the case development loop, the Loft uses assessments of 
students’ work to semi-automatically create case libraries--
examples of student work that include reflections about what 
worked, what didn’t, in what context.  First, the crowd-feedback 
from the crowd-critique loop is used to recommend particularly 
successful and unsuccessful examples of each design step, 
producing sets of contrasting cases.  Second, an instructional 
designer creates curated cases by selecting cases that best 
illustrate key design principles.  The instructional designer then 
refines these cases.  Finally, the contrasting cases are then 
presented as an instructional resources linked to each badge. 

The crowd-feedback and badging systems of the Loft reduce the 
orchestration challenge of providing relevant and engaging 
instruction to a manageable level in several ways.  First, the Loft 
continually collects student work from multiple campuses, so we 
get the initial material for the case library “for free” using 
crowdsourcing, or production of work by a distributed crowd of 
people (Von Ahn & Dabbish, 2004).  Second, project critiques act 
as a recommender system (Kiesler, Kraut, Resnick, & Kittur, 
2012) sorting student work into contrasting cases.  Third, cases 
are already linked to particular phases of the design process 



through the badges, so we automatically generate index that links 
the case to the relevant goal the student is working on.  After the 
Digital Loft has done the heavy-lifting of generating, 
recommending, and indexing cases, the instructional designers 
can make the final case selection. Instructional designers can also 
edit the cases to improve their quality (Puntambekar & Kolodner, 
2005; Kolodner et al., 2004), and present related so to encourage 
case comparison thus improving the chances of transfer 
(Thompson, Gentner, & Loewenstein, 2000; Gentner et al., 2003). 

The learner-driven instructional loop 

One of the difficulties of teaching groups of students of varying 
abilities engaged in projects at differing stages is how to provide 
face-to-face group instruction in a relevant and timely manner.  
When should a facilitator lead a “user research” workshop if each 
group is at a different stage of the design process?  While the Loft 
tailors feedback and instruction to each project team, there is still 
a need for group instruction taught by a knowledgeable facilitator. 

In the learner-driven instruction loop, students’ self assessments 
of their abilities and interest in learning different design skills are 
collected and monitored by the Loft.  When enough students 
indicate a desire to learn a certain skill set, facilitators are notified 
that there is an opportunity to teach a workshop on an in-demand 
topic.  The learner-driven instructional loop begins after students 
complete a badge.  At this point, the Loft reminds learners to 
update their “individual development plans” (Beausaert, Segers, 
& Gijselaers, 2011).  An individual development plan (IDP) is a 
list of skills along with the learner’s self-assessment of his current 
ability level and desire to learn that skill.  As students take on new 
badge challenges, the skills necessary for completing that badge 
are added to their IDP.  Once a given number of students at a 
DFA studio or classroom express an interest in learning a 
particular skill, facilitators are notified that they should conduct a 
particular workshop (and provided with a facilitator’s guide for 
that workshop).  Because these workshops are triggered by 
students’ current interests, the workshops maximally target 
students’ interests and needs.  While students may not be perfectly 
accurate in their self-assessments, feedback from mentors and 
peers provide a reality check on the students’ self-assessments 
(i.e., negative feedback from mentors will prompt students to 
reassess their skills).  
People who implement career goal plans report greater success 
and satisfaction in their career (Ng, Eby, Sorensen, & Feldman, 
2005), so IDPs for civic innovation should increase the success 
and satisfaction of novice civic innovators on their journey to 
become more successful designers.   

4. CONCLUSION 
The study of Digital Lofts will lead empirically-grounded 
principles for designing online environments for civic innovation 
education, contributing to number of research areas including 
digital badges, crowdsourcing, learning-by-cases, design-based 
learning, and online learning communities.  Because many 
domains can be framed as design disciplines including 
engineering (making technologies), policy (creating government 
programs), English language arts (creating texts and speeches), 
and even science (creating research studies), principles for online 
innovation education apply to myriad disciplines.  And by 
coordinating groups of learners and mentors throughout the design 
process, Digital Lofts blur the boundaries between informal and 
formal learning environments: making extra curricular 
environments more effective and classroom environments more 

like real life. This project seeks to lay a theoretical foundation for 
understanding the broader ecosystem of online, social, design-
based learning environments.  

More broadly, our goal is to create a widely adopted online 
learning environment that will support civic innovation training.  
The Digital Loft platform will be disseminated broadly, targeting 
use in the teaching, training, and learning of civic innovation. This 
will fill an urgent need for learning environments that educate 
civic innovators who can solve our greatest societal challenges.  
Foreseeable impacts on higher education and society include: 
increasing the number of graduates motivated and capable of 
broader societal impact, improved education, curricular changes, 
and support for future interventions.  Successful output of this 
project will help to foster and support a culture of innovation in 
our future workforce.  By developing a scalable, cost-effective, 
online platform for design-based learning across many disciplines 
(design, engineering, speaking, etc.) Digital Lofts have the 
potential to fundamentally transform online learning. 
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ABSTRACT 
This paper reports on progress on the design of OpenEssayist, a 
web application that aims at supporting students in writing essays. 
The system uses techniques from Natural Language Processing to 
automatically extract summaries from free-text essays, such as 
key words and key sentences, and carries out essay structure 
recognition. The current design approach described in this paper 
has led to a more “explore and discover” environment, where 
several external representations of these summarization elements 
would be presented to students, allowing them to freely explore 
the feedback, discover issues that might have been overlooked and 
reflect on their writing. Proposals for more interactive, reflective 
activities to structure such exploration are currently being tested. 
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1. INTRODUCTION 
Written discourse is a major class of data that learners produce in 
online environments, arguably the primary class of data that can 
give us insights into deeper learning and higher order qualities 
such as critical thinking, argumentation and mastery of complex 
ideas. These skills are indeed difficult to master as illustrated in 
the revision of Bloom’s Taxonomy of Educational Objectives 
(Pickard 2007) and are a distinct requirement for assessment in 
higher education. Assessment is an important component of 
learning and in fact (Rowntree 1987) argues that it is the main 
driver for learning and so the challenge is to provide an effective 
automated interactive feedback system that yields an acceptable 
level of support for university students writing essays.  
Effective feedback requires that students are assisted to manage 
their current essay-writing tasks and to support the development 
of their essay-writing skills through effective self-regulation. 
Our research involves using state-of-the-art techniques for 
analyzing essays and developing a set of feedback models which 
will initiate a set of reflective dialogic practices. The main 
pedagogical thrust of e-Assessment of free-text projects is how to 
provide meaningful “advice for action” (Whitelock 2010) in order 
to support students writing their summative assessments.  It is the 
combination of incisive learning analytics and meaningful 
feedback to students which is central to the planning of our 

empirical studies. Specifically, we are investigating whether 
summarization techniques (Lloret & Palomar 2012) could be used 
to generate formative feedback on free-text essays submitted by 
students.  
This paper is organized as follows. We briefly describe the 
context and research questions that are informing the design 
principles of our platform, OpenEssayist. We then describe the 
basic processes behind the summarization techniques 
implemented in the system and, finally, demonstrate the current 
stage of design of the prototype, in particular the use of external 
representations for the summarization elements. We conclude this 
paper by sketching our current and planned evaluations. 

2. DEFINING A DESIGN SPACE FOR 
OPENESSAYIST 
2.1 WRITING SUMMARIES VS. 
REFLECTING ON SUMMARIES FOR 
WRITING. 
Writing summaries has been a long-standing educational activity 
and has received some serious attention in delivering computer-
based support. For example, systems such as SummaryStreet 
(Wade-Stein & Kintsch 2004) or Pensum (Villiot-Leclercq et al. 
2010) aim to  help students write summaries as a learning, skills-
based, task.  
But using summaries as a source of reflection on your own writing 
seems to be a more open issue. Recent research on formative 
feedback suggests indeed that essay summarization, understood to 
comprise both a short summary of the essay and a simple list of its 
main topics, could be useful for students, e.g. "to help determine 
whether the actual performance was the same as the intended 
performance” (Nelson & Schunn 2009, p. 378). 
With this in mind, one of our research questions is how to use 
advances in Natural Language Processing to design an automated 
summarization engine that would provide a good foundation for a 
dedicated model of formative feedback. Can we use 
summarization elements to help students identify or visualize 
patterns in their essays, as explored by (O’Rourke & Calvo 2009)? 
Or to trigger questions and reflective activities, as implemented in 
Glosser (Villalon et al. 2008)? 



2.2 SUPPORTING ESSAY WRITING IN 
DISTANCE LEARNING 
The context of application of our research agenda is supporting 
students at the Open University (OU) in writing assignment 
essays. Specifically, we have been working closely with a 
postgraduate module Accessible online learning: Supporting 
disabled students (referred to as H810). This postgraduate module 
runs twice a year for about 20 weeks and contributes to a Master 
of Arts (MA) in Online and Distance Education. All courses, 
materials and support are delivered online. Students on this 
module, as is the case for most of the students at the OU, are 
typically part-time, mature students, who have not been in formal 
education for a long period of time. It is therefore unsurprising 
that writing essays, a common assignment in most of the OU 
courses, proves to be a challenging task for students (and, 
anecdotal evidence suggests, a common reason for drop-out). 
At the same time, OU students often have extensive work 
experience in a wide variety of areas, and that experience is 
explicitly capitalized on in the assignments. This means that 
essays can vary greatly in subject matter. To illustrate this point, 
two examples of assignment tasks are given in Table 1.  

 
The questions we are considering, given this context, is how we 
can support these students as they write essays and what the 
implications are for the design of a computer- and summarization-
based approach. 
In the initial phase of the project, we ran a couple of focus groups 
with OU students that helped to identify many aspects of the 
students’ personal approach to essay writing (Alden et al. 2013). 
Writing an essay is a task that can involve several stages: 
preparation of material, drafting of essay, reflecting on feedback, 
summative evaluation by tutors. But not all of them are suitable, 
or even desirable, for support in an automated assessment system. 
Moreover, writing a 1500+ word essay is not a casual operation, 
nor is it handled in the same way by different students. For 
example, we discovered that some students are not using 
computers to draft their essays, because of unease, lack of 

permanent access to a desktop computer or simply because they 
still prefer to write their text with paper-and-pencil before typing 
for the final submission.  
Relying on embedded text editors or on cloud-based solutions 
such as Google Docs – as done by (Southavilay et al. 2013) for 
collaborative writing – is therefore not a viable solution in our 
context. The system will have to accept texts written with 
whatever platform students are using to organize, draft and revise 
their essay. Ultimately, the system will have to be seen and used 
as a resource, the way forums, online textbooks and other digital 
tools are used by OU students.  
One of the consequences of such selective support is that the flow 
of activities during the overall writing process is likely to be 
highly scattered in time: the core of the activity (i.e. writing) will 
take place outside the system’s ecology and its use will be mostly 
as an ancillary to that main task. Careful attention will have to be 
paid to trade-offs between support and distraction, especially 
when it comes to interaction, formal reflective activities, 
accessibility and usability1.  
Finally, the diversity of content in student essays is one of the 
motivations for investigating summarization techniques as a 
backbone for formative feedback. Unlike other NLP techniques 
such as Latent Semantic Analysis (LSA), used in many 
educational systems, we will not be relying on a corpus of essays 
to compare and grade new essays accordingly. Summarization 
using the text alone with no domain-specific knowledge will 
enable OpenEssayist to handle assignments which have open 
topics, as well as enabling it to be applied without extensive 
further development to new subject areas. 

2.3 A WEB APPLICATION FOR 
SUMMARIZATION-BASED FORMATIVE 
FEEDBACK. 
OpenEssayist is developed as a web application and is composed 
primarily of two components (Figure 1, see appendix). The first 
component, EssayAnalyser, is the summarization engine, 
implemented in Python with NLTK2 (Bird et al. 2009) and other 
toolkits. It is being designed as a stand-alone RESTful web 
service, delivering the basic summarization techniques that will be 
consumed by the main system. The second component is 
OpenEssayist itself, implemented on a PHP framework. The core 
system consists of the operational back-end (user identification, 
database management, service brokers, feedback orchestrator) and 
the cross-platform, responsive HTML5 front-end. 
The intended flow of activities within the system can be 
summarized as follows. Students are registered users and have 
assignments, defined by academic staff, allocated to them. Once 
they have prepared a draft offline and seek to obtain feedback, 
they log on to the OpenEssayist system and submit their essay for 
analysis, either by copy-and-paste or by uploading their 
document. OpenEssayist submits the raw text to the 
EssayAnalyser service and, upon completion, retrieves and stores 
the summarization data. From that point on, the students, at their 
own pace, can then explore the data using various external 
                                                                    
1 Worth noting is that students who mention that they don’t use 

computers for drafting their essays also report that they are 
using smart phones. A focus on responsive user interface 
suitable for mobile (and tablet) and on asynchronous data access 
will be an issue for serious consideration in this project. 

2 Natural Language Processing Toolkit, see http://nltk.org/   

Table 1. Examples of assignment tasks. 

TMA1 (1500 words) 

Write a report explaining the main accessibility challenges for 
disabled learners that you work with or support in your own 
work context(s). 
Use examples from your own experience, supported by the 
research and practice literature. If you’re not a practitioner, write 
from the perspective of a person in a relevant context. Critically 
evaluate the influence of the context (e.g. country, institution, 
perceived role of online learning within education) on the: (1) 
identified challenges; (2) influence of legislation; (3) roles and 
responsibilities of key individuals;  (4) role of assistive 
technologies in addressing these challenges. 

TMA2 (3000 words) 

Critically evaluate your own learning resource in the following 
ways: (1) Briefly describe the resource and its accessibility 
features; (2) Evaluate the accessibility of your resource, 
identifying its strengths and weaknesses; (3) Reflect on the 
processes of creating and evaluating accessible resources.  
 



representations made available to them, can follow the prompts 
and trigger questions that the Feedback Orchestrator might 
generate from the analysis and can then start planning their next 
draft accordingly.  
Again, this rewriting phase will take place offline, the system 
merely offering repeated access to the summarization data and 
feedback, as a resource, until the students are prepared to submit 
and explore the summarization feedback on their second draft and 
on the changes across drafts. This cycle of submission, analysis 
and revision continues until the students consider their essay ready 
for summative assessment. 

3. EXTRACTIVE SUMMARIZATION 
We decided to start experimenting with two simpler 
summarization strategies that could be implemented fairly 
quickly: key phrase extraction and extractive summarization, 
following the TextRank approach proposed and evaluated in 
(Mihalcea & Tarau 2004). Key phrase extraction aims at 
identifying which individual words or short phrases are the most 
suggestive of the content of a discourse, while extractive 
summarization is essentially the identification of whole key 
sentences. Our hypothesis is that the quality and position of key 
phrases and key sentences within an essay (i.e., relative to the 
position of its structural components) might give an idea of how 
complete and well-structured the essay is, and therefore provide a 
basis for building suitable models of feedback. 
The implementation of these summarization techniques is based 
on three main automatic processes: 1) recognition of essay 
structure; 2) unsupervised extraction of key words and phrases; 3) 
unsupervised extraction of key sentences.  
Before extracting key terms and sentences from the text, the text 
is automatically pre-processed using some of the NLTK modules 
(tokenizer, lemmatizer, part-of-speech tagger, list of stop words).  

3.1 STRUCTURE IDENTIFICATION 
The automatic identification of essay structure is carried out using 
handcrafted rules developed through experimentation with a 
corpus of 135 essays that have been previously submitted for the 
same H810 module. The system tries to automatically recognize 
which structural role is played by each paragraph in the essay 
(summary, introduction, conclusion, discussion, references, etc.). 
This identification is achieved regardless of the presence of 
content-specific headings and without getting clues from 
formatting mark-up. With the essays in the corpus varying greatly 
in structure and formatting, it was decided that structure 
recognition would be best achieved without referring to a high-
level formatting mark-up.  

3.2 KEY WORD EXTRACTION 
EssayAnalyser uses graph-based ranking methods to perform 
unsupervised extractive summarization of key words. The 'key-
ness' value of a word can be understood as its 'significance within 
the context of the overall text'. 
To compute this key-ness value, each unique word in the essay is 
represented by a node in a graph, and co-occurrence relations 
(specifically, within-sentence word adjacency) are represented by 
edges in the graph. A centrality algorithm – we have experimented 
with betweenness centrality (Freeman 1977) and PageRank (Brin 
& Page 1998) – is used to calculate the significance of each word. 
Roughly speaking, a word with a high centrality score is a word 
that sits adjacent to many other unique words which sit adjacent to 

many other unique words which…, and so on. The words with 
high centrality scores are the key words3. 
Since a centrality score is attributed to every unique word in the 
essay, a decision needs to be made as to what proportion of the 
essay's unique words qualify as key words. The distribution of key 
word scores follows the same shape for all essays, an acute 
"elbow" and then a very long tail, observed for word adjacency 
graphs by (Ferrer i Cancho & Solé 2001). We therefore currently 
take the key-ness threshold to be the place where the elbow bend 
appears to be sharpest.  
Once key words have been identified, the system matches 
sequences of these against the surface text to identify within-
sentence key phrases (bigrams, trigrams and quadgrams). 

3.3 KEY SENTENCE EXTRACTION 
A similar graph-based ranking approach is used to compute key-
ness scores to rank the essay's sentences. Instead of word 
adjacency (as in the key word graph), co-occurrence of words 
across pairs of sentences is the relation used to construct the 
graph. More specifically, we currently use cosine similarity to 
derive a similarity score for each pair of sentences. Whole 
sentences become nodes in the graph, while the similarity scores 
become weights on the edges connecting pairs of sentences. The 
TextRank key sentence algorithm is then applied to the graph to 
compute the centrality scores. 

3.4 ESSAY ANALYSIS OUTPUT 
The text submitted for analysis is stripped of its surface formatting 
and returned as a new annotated structured text, reflecting the 
various elements identified by EssayAnalyser: sentences and 
paragraphs, labeled with their structural roles (body, introduction, 
headings, conclusions, captions, etc.) and confidence levels.  
Key words and key phrases are returned as an ordered list of 
terms, associated with various metrics such as centrality, 
frequency of inflected forms, etc. Key sentences are identified 
within the annotated text by their ranked centrality scores.  
In addition to the core summaries of the essay, various metrics 
and specialized data structures are made available, for use by the 
system for diagnosis purpose (or by researchers for analysis): 
word and sentence graphs, word count, paragraph and sentence 
density and length, number of words in common with the module 
textbook, average frequency of the top handful of most frequent 
words, etc. 
Our task is now to look for ways of presenting and exploiting 
these results and, ultimately, to devise effective models of 
feedback using them. 

4. OPENESSAYIST: EXTERNAL 
REPRESENTATIONS AND REFLECTIVE 
ACTIVITIES 
The design of the first version of the system has focused on 
defining the essay summarization engine and integrating it into a 
working web application that supports draft submission, analysis 
and reporting, using multiple external representations.  

                                                                    
3 In the actual process, we are in fact ranking lemmas (the 

canonical form of a set of words) rather than their inflected 
forms in the surface text. For brevity’s sake, we will keep the 
terms ‘words’ and ‘key words’ in this document. 



At the front-end level, the instructional interactions have been 
deliberately limited to fairly unconstrained forms, leading the 
system towards a more “explore and discover” environment. Our 
aim was to establish a space where emerging properties of the 
interventions under investigation (i.e. using summarization 
techniques for generating formative feedback) could be 
discovered, explored and integrated into the design cycles in a 
systematic way, contributing to both the end-product of the design 
cycle (the system itself) and to its theoretical foundations. 
Several external representations have been designed and deployed 
in the system, reporting the different elements described above in 
different ways, trying to highlight such properties in the current 
essay (or, in changes over successive drafts).  
The main view of the system is a mash-up of the re-structured raw 
text, highlighting many of the features extracted by EssayAnalyser 
in context, using a combination of HTML markers and JavaScript-
enabled interactive displays (Figure 2). Sentences, paragraphs and 
headings (as identified by EssayAnalyser) are displayed as blocks 
of text, with visual markers on the left-hand side indicating their 
diagnosed structural role (e.g. introduction, headings, conclusion, 
etc.). Key words and key phrases are also highlighted with 
specific visual markers, as with the top-ranked key sentences. 
A control-box allows the student to change the visibility of 
selected elements of the essay: show/hide specific structural 
components (e.g. only show the introduction), key words (or user-
defined categories, see below), top-ranked sentences, etc. 
(Figure 3). 
The intended purpose of this dynamic essay representation is to 
attract the attention of the student away from the surface text to 
issues at a more structural level that might become apparent once 
an alternative viewpoint is considered.  
For example, if confidence levels were low in the structural 
recognition of an introduction, the visual indicator would reflects 
that degree of (un)certainty about their exact role of this 
paragraph, requiring the student to reflect on his intention (or on 
the fact that an introduction might be missing in the essay or 
seems to be too long or too short).  
Similarly, the highlighting of key words and key phrases, in 
context within the essay, is intended to trigger reflection on their 
occurrence within the text. Its purpose is different from a 
dedicated external representation of the key words as such 
(Figure 4), where the focus is more on individual terms, and on 
their relative importance in the essay (as indicated by their 
centrality score or frequency in the surface text). In the mash-up 
view, the key word centrality score is played down (we do not 
represent any attribute other than its identification as a key word) 
while we try to focus on whether key word dispersion across the 
essay might help identify the flow of ideas and arguments. 
To complement the main mash-up view and to alleviate potential 
overload, we are also designing and deploying ad-hoc external 
representations on specific aspects of the summarization. 
For example, we are exploring whether more compact 
representations of the dispersion of key words across the essay 
(Figure 5) might provide a more suitable ground for insight into 
its meaning. In this graph, each key word (or category of key 
words, if they have been defined) is plotted on a scale showing the 
flow of the essay (the figure uses words on the x-axis but 
sentences and paragraphs can also be used as units). By adding on 
the scale markers for the introduction, the conclusion (or any other 
structural elements), the student has immediate access to the 
overall flow of key words across the text and within specific parts 

of it: patterns of occurrence or omission might provide 
opportunity to detect an overlooked mistake (e.g. what can be said 
about the fact that “learning resource”, ranked as a top key word 
by the system, only occurs in the first few paragraphs of the 
essay?).  
On a more experimental approach, we are also exploring the 
possibility of visually exploiting the networks that constitute the 
core internal representation of the key word and key sentence 
extraction, using various visualization tools (e.g. force-directed 
graph, adjacency matrix). A case for their informational and – 
more importantly – formative values remains to be made. 
However, we are also arguing that, to help students explore the 
significance of summarization elements in their essay, 
visualization on its own will not be enough. Support for reflective 
action is needed to resolve a key question students are likely to 
ask: "what are the key words (and key sentences) and how do they 
help me?" 
Let’s consider the key words. In the current version of the system, 
key words are presented in a very simple fashion (Figure 4): 
ranked by their centrality score and by their dimension (i.e. 
bigrams, trigrams and so on). This is a reflection of the domain-
independent, data-driven design approach followed so far; key 
words are derived on the basis of co-occurrence, i.e. identity 
relation, not on the basis of semantic relations such as synonymy 
or hyponymy. 
We can therefore have situations, as in Figure 4, where key words 
such as “learning experience” and “study experience” both occur 
as distinct bigrams, whereas, for the student who used them, they 
might mean very similar things. More fine-grained approaches 
could be implemented in EssayAnalyser to address such situation 
at detection level, but, ultimately, the intention of the student is 
the only safe ground for deciding on the usage of both terms. 
Hence the need to support some user interaction with the system, 
especially if it can act as a reflective scaffold.  
A first example of support for reflective action is made available 
to the students immediately after a draft has been analyzed by the 
system: to let them organize key words according to their own 
schema, using as many categories as they wish or need (see 
Figure 6). This serves two purposes: it helps the students to reflect 
on the content of the essay and helps the system to adapt the 
content of every external representation accordingly, by clustering 
key words together (as seen in Figure 5). 
Another key-word-related activity relies on the fact that a decision 
is made by the system on what constitutes a key word, a decision 
that might be at odds with the intention of the student. So we are 
offering the possibility for students to define – or select – their 
own key words. With the extraction process deriving a centrality 
score and frequency count for every unique word in the text, the 
student's decision to flag a word as a key word can be matched 
with that information, encouraging her to reflect on why it might 
be that the words she thinks should be key words are not being 
recognized by the system as such. 

5. CONCLUSION 
The first phase of the design of OpenEssayist, as reported in this 
paper, has focused on devising a range of external representations 
on the various elements that the summarization engine is 
extracting, notably key words, key sentences and the structural 
role of paragraphs in the essay.  
We have implemented a working prototype that delivers a fairly 
unconstrained, unstructured exploration of these elements, The 



drive of our design approach has been to consider how these 
elements, either separately or combined, would create a space 
where students (and researchers) could discover emerging 
properties of the essay, triggering deeper reflection on their own 
writing.  
Our objective is now to consider how we structure these reflective 
episodes for support within the system, and how we design 
dedicated reflective activities that will prove to deliver formative 
feedback for students.  
Our work is continuously focusing on three parallel but inter-
connected lines of experimentation and evaluation:  
1) improve the different aspects of the summarization engine;  
2) experiment with it on various corpora of essays to identify 

trends and markers that could be used as progress and/or 
performance indicators (Field et al. 2013);  

3) refine the educational aspect of the system, identify possible 
usage scenarios (Alden et al. 2013), test pedagogical 
hypotheses and models of feedback. 

At the time of writing, several usability/desirability inspection 
sessions are underway, using both semi-structured walkthrough 
protocols in a usability lab and self-guided remote sessions with 
students from the last presentation of the H810 module. Part of the 
aim of these empirical studies is to identify tutorial strategies to be 
used to scaffold the student’s exploitation of the system.  
Finally, we are planning two empirical educational evaluations of 
OpenEssayist in an authentic e-learning context, to take place in 
September 2013 and February 2014. All students enrolled on two 
different Master’s degree modules will be offered access to the 
system for two of the module’s assignments and encouraged to 
submit multiple drafts of their essays. In-system data collection, 
post-module surveys, and interviews with selected participants 
and their tutors will give us valuable information on their learning 
experience with the system. 
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APPENDIX 

 
Figure 1. Architecture of OpenEssayist 

 
Figure 2. Key words, phrases and sentences visualized in the essay context. Sentences in light-grey (green) background are key 

sentences as extracted by the EssayAnalyser (the number indicates its key-ness ranking). Key words and key phrases are indicated 
in bold (red) and boxed. 



 
Figure 3. The structural elements of the essay can be used jointly with the key word extraction to highlight relevant information 

within specific parts of the essay, here in both introduction and conclusion (and the assignment question). 

 
Figure 4. Key words and phrases as separate lists. 



 
Figure 5. Dispersion of key words across the essay. 

 
Figure 6. Key words extracted by the systems are re-organized by the students, using their own categories 
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ABSTRACT
Reviews are text-based feedback provided by a reviewer to the au-
thor of a submission. Reviews play a crucial role in providing feed-
back to people who make assessment decisions (e.g. deciding a
student’s grade, purchase decision of a product). It is therefore im-
portant to ensure that reviews are of a good quality. In our work
we focus on the study of academic reviews. A review is considered
to be of a good quality if it can help the author identify mistakes
in their work, and help them learn possible ways of fixing them.
Metareviewing is the process of evaluating reviews. An automated
metareviewing process could provide quick and reliable feedback
to reviewers on their assessment of authors’ submissions. Timely
feedback on reviews could help reviewers correct their assessments
and provide more useful and effective feedback to authors. In this
paper we investigate the usefulness of metrics such as review rel-
evance, content type, tone, quantity and plagiarism in determining
the quality of reviews. We conducted a study on 24 participants,
who used the automated assessment feature on Expertiza, a collab-
orative peer-reviewing system. The aim of the study is to identify
reviewers’ perception of the usefulness of the automated assess-
ment feature and its different metrics. Results suggest that partici-
pants find relevance to be the most important and quantity to be the
least important in determining a review’s quality. Participants also
found the system’s feedback from metrics such as content type and
plagiarism to be most useful and informative.

Keywords
review quality assessment, metareview metrics, user experience sur-
vey

1. INTRODUCTION
In recent years there has been a considerable amount of research di-
rected towards developing educational systems that foster collabo-
rative learning. Collaborative learning systems provide an environ-
ment for students to interact with other students, exchange ideas,
provide feedback and use the feedback to improve their own work.
Systems such as SWoRD [1] and Expertiza [3] are web-based col-
laborative peer-review systems, which promote team work by al-

lowing students to build shared knowledge with an exchange of
ideas. These systems also provide an environment for students to
give feedback to peers on their work.

The process of providing feedback to peers on their work may help
students learn more about the subject, and develop their critical
thinking. Rada et al. found that students who evaluated their peers’
work were more likely to improve the quality of their own work
than those students who did not provide peer reviews [4]. The peer
review process may also help students learn to be more responsible.

The classroom peer review process is very much similar to the
process of reviewing scientific articles for journals. Scientific re-
viewers tend to have prior reviewing experience and a considerable
knowledge in the area of the author’s submission (the text under
review). Students on the other hand are less likely to have had any
prior reviewing experience. They have to be guided to provide good
quality reviews that may be useful to their peers.

Metareviewing can be defined as the process of reviewing reviews,
i.e., the process of identifying the quality of reviews. Metareview-
ing is a manual process [2, 5, 6] and just as with any process that
is manual; metareviewing too is (a) slow, (b) prone to errors and
(c) likely to be inconsistent - the set of problems, which makes au-
tomated metareviewing necessary. An automated metareview pro-
cess ensures consistent, bias-free reviews to all reviewers. This
also ensures provision of immediate feedback to reviewers, which
is likely to motivate them to improve their work and provide more
useful feedback to the authors.

In this work we propose the use of a system that automatically eval-
uates student review responses. We use a specific set of metrics
such as review’s relevance to the work under review (or the sub-
mission), the type of content a review contains, tone of the review,
quantity of feedback provided and presence of plagiarism, to carry
out metareviewing. We have integrated the automated metareview
feature (with the listed set of metrics) into Expertiza [3]. Expertiza
is a collaborative web-based learning application. A screenshot of
the metareview output from the system is shown in Figure1. We
have conducted an exploratory analysis to study the importance of
the review quality metrics and usefulness of the system’s outputs,
as judged by users of the system.

2. RELATED WORK
One of the earlier approaches to manually assessing the quality of
peer reviews involved the creation and use of a Review Quality
Instrument (RQI) [9]. Van Rooyen et al. use the RQI to check
whether a reviewer discusses the following - (1) importance of the



Figure 1: Output from the automated metareview feature on Expertiza [3]. We provide a comparison of the participant reviewer’s
scores with other reviewers’ metareview scores (in a chart) to help reviewers gauge how well they are doing on a certain metric.

research question, (2) originality, (3) strengths and weaknesses, (4)
presentation and interpretation of results. In addition, the RQI also
checks if a review was constructive, and if the reviewer had sub-
stantiated his/her claims. We incorporate some of these metrics in
our approach, e.g. detecting constructiveness in reviews (based on
its content), checking whether reviewers substantiated their claims
(by identifying relevance to the author’s submission), to automati-
cally assess review quality.

Nelson and Schunn studied feedback features that help authors un-
derstand and use reviews [10]. They found that features such as
problem localization and solution suggestion helped authors under-
stand feedback. These are some of the types of content we look for
during review content identification.

Kuhne et al. use authors’ ratings of reviews to identify the quality
of peer reviews [5]. They found that authors are contented with
reviewers who appear to have made an effort to understand their
work. This finding is useful to our automatic review quality assess-
ment system, which assesses reviews based on the usefulness of its
content. Our system also detects the relevance of reviews, which
may be indicative of the effort made by a reviewer to understand
the author’s work and provide specific feedback.

Xiong et al. look for problems identified by reviewers in the au-
thor’s work in peer reviews from the SWoRD system [11]. Xiong
et al. use a bag-of-words, exact match approach to detect problem
localization features. They use a shallow semantic match approach,
which uses counts of nouns, verbs etc. in the text as features. Their
approach does not incorporate relevance identification nor does it

identify content type. Cho uses machine classification techniques
such as naïve Bayes, support vector machines (SVM) and deci-
sion trees to classify review comments [12]. Cho manually breaks
down every peer comment into idea units, which are then coded as a
praise, criticism, problem detection, solution suggestion, summary
or off-task comment.

Some other approaches used to study the usefulness of reviews are
those by Turney [15], Dalvi [16] and Titov [17]. Peter D. Tur-
ney uses semantic orientation (positive or negative) to determine
whether a review can be classified as recommended or not recom-
mended. Turney’s approach to differentiate positive from negative
reviews involves identifying similarity between phrases containing
adverbs and adjectives to terms “excellent" and “poor". Turney
uses semantic orientation to recommend products or movies. We
also use semantic orientation (referred to as tone) to identify the
degree of sensitivity with which reviewers convey their criticisms.

Lim et al. identify reviewers who target e-commerce products and
applications, and generate spam reviews [18]. The problem of
spamming may be analogous to the problem of copy-pasting text
in order to game the automated assessment system into giving re-
viewers high scores on their reviews. Therefore, we use a metric to
detect plagiarized reviews.

There exist research works that discuss metrics that are important
in review quality identification, and some that apply shallow ap-
proaches to determine quality. However, there is no work that takes
factors such as relevance, content type, tone, quantity and plagia-
rism into consideration while determining review quality. Our sys-



Table 1: Some examples of reviews.
S No. Review

1 “The example needs work."
2 “Yes, the organization is poor."

tem is an amalgamation of existing research in the said areas. In the
next section, we provide an overview of the different review quality
metrics.

3. AUTOMATED REVIEW ASSESSMENT
In order to assess quality, reviews have to be represented using met-
rics that capture their most important features. In general a good re-
view contains: (1) coherent and well-formed sentences, which can
be easily comprehended by the author, and (2) sufficient amount of
feedback. In this section we discuss the metrics we use to assess
reviews.

3.1 Review relevance
Reviewers may provide vague, unjustified comments. Comments
in Table 1 are generic, and do not refer to a specific object in the text
under review. For instance, what type of “work" does the “exam-
ple" need or, what is poor about the “organization"? These reviews
are ambiguous, and need to be supported with more information.
Also, how do we know if the review has been written for the right
submission, for instance any article may contain an example. Re-
view relevance helps identify if a review is talking about the right
submission.

We identify relevance in terms of the semantic and syntactic simi-
larities between two texts. We use a word order graph, whose ver-
tices, edges and double edges help determine structure-based match
across texts. We use WordNet to determine semantic relatedness.
Our approach has been described in Ramachandran and Gehringer
[19].

3.2 Review content
A review is expected to provide an assessment of the kind of work
that was done - praising the submission’s positive points, identify-
ing problems, if any, and offering suggestions on ways of improv-
ing the submission. Review examples in Table 1 do not provide
any details. Reviews must identify problems in the author’s work,
and provide suggestions for improvement in order to be useful to
authors, thus helping them understand where their work is lacking
or how it can be improved. Content of a review identifies the type
of feedback provided by the reviewer. We look for the following
types of content in a review:

• Summative - Summative reviews contain either a positive or
a neutral assessment of the author’s submission. Example: “I
guess a good study has been done on the tools as the content
looks very good in terms of understanding and also original-
ity. Posting reads well and appears to be largely original with
appropriate citation of other sources."

• Problem detection - Reviews in this category are critical of
the author’s submission and point out problems in the sub-
mission. Example: “There are few references used and there
are sections of text quoted that appear to come from a multi-
tude of web sites." However, problem detection reviews only
find problematic instances in the author’s work, and do not
offer any suggestions to improve the work.

• Advisory - Reviews that offer the author suggestions on ways
of improving their work fall into this category. Example:
“Although the article makes use of inline citations which is a
plus, there are only a few references. Additional references
could help support the content and potentially provide the ex-
amples needed." Advisory reviews display an understanding
of the author’s work, since the reviewer has taken the effort
to provide the author with constructive feedback.

Different types of review content have different degrees of useful-
ness. For instance summative reviews provide only summaries of
the author’s work and are less useful to the author, whereas reviews
that identify problems in the author’s work or provide suggestions
can be used by authors to improve their work, and are hence con-
sidered more important. We use a cohesion-based pattern identifi-
cation technique to capture the meaning of a class of reviews.

3.3 Review tone
Tone refers to the semantic orientation of a text. Semantic orienta-
tion depends on the reviewer’s choice of words and the presentation
of a review. Tone of a review is important because while provid-
ing negative criticism reviewers might unknowingly use words that
may offend the authors. Therefore we use tone information to help
guide reviewers. A review can have one of three types of tones -
positive, negative or neutral. We look for positively or negatively
oriented words to identify the tone of a review [15]. We use positive
and negative indicators from an opinion lexicon provided by Liu et
al [20] to determine the semantic orientation of a review. Semantic
orientation or tone of the text can be classified as follows:

• Positive - A review is said to have a positive tone if it pre-
dominantly contains positive feedback, i.e., it uses words
or phrases that have a positive semantic orientation. Ex-
ample: “The page is very well-organized, and the informa-
tion is complete and accurate." Adjectives such as “well-
organized", “complete" and “accurate" are good indicators
of a positive semantic orientation.

• Negative - This category contains reviews that predominantly
contain words or phrases that have a negative semantic orien-
tation. Reviews that provide negative criticism to the author’s
work fall under this category, since while providing negative
remarks reviewers tend to use language that is likely to of-
fend the authors. Such reviews could be morphed or written
in a way that is less offensive to the author of a submission.
Example: “The examples are not easy to understand and have
been copied from other sources. Although the topic is Design
Patterns in Ruby, no examples in Ruby have been provided
for Singleton and Adapter Pattern."

The given example contains negatively oriented words or
phrases such as “not easy to understand" ,“copied", “no ex-
amples". Review segment “..have been copied from other
sources..." implies that the author has plagiarized, and could
be construed by the author as a rude accusation. One of the
ways in which this review could be re-phrased to convey the
message, so as to get the author to acknowledge the mis-
take and make amends, is as follows - “The topic on De-
sign Patterns in Ruby could be better understood with more
examples, especially for the Singleton and Adapter patterns.
Please try to provide original examples from your experience
or from what was discussed in class."



• Neutral - Reviews that do not contain either positively or
negatively oriented words or phrases, or contain a mixture of
both are classified into this category. Example: “The organi-
zation looks good overall. But lots of IDEs are mentioned in
the first part and only a few of them are compared with each
other. I did not understand the reason for that." This review
contains both positively and negatively oriented segments,
i.e., “The organization looks good overall" is positively ori-
ented, while “I did not understand the reason for that." is neg-
atively oriented. The positive and negatively oriented words
when taken together give this review a neutral orientation.

In case of both content and tone, a single review may belong to
multiple categories. For instance consider the review, “Examples
provided are good; a few other block structured languages could
have been talked about with some examples as that would have
been pretty useful to give a broader pool of languages that are block
structured.” While classifying for content, we see that the first part
of the review, “Examples provided are good” praises the submis-
sion, while the remaining part of the review provides advice to the
author. Our content identification technique identifies the amount
of each type of content or tone (on a scale of 0 - 1) a review con-
tains. Similarly in the case of tone, we identify the degree of posi-
tive, negative or neutral orientation of each review.

3.4 Review quantity
Text quantity is important in determining review quality since a
good review provides the author with sufficient feedback. We plan
on using this metric to indicate to the reviewer the amount of feed-
back they have provided in comparison to the average review quan-
tity (from other reviewers of the system), thus motivating reviewers
to provide more feedback to the authors. We identify quantity by
taking a count of all the unique tokens in a piece of review. For in-
stance, consider the following review, “The article clearly describes
its intentions. I felt that section 3 could have been elaborated a little
more." The number of unique tokens in this review is 15 (excluding
articles and pronouns).

3.5 Plagiarism
Reviewers tend to refer to content in the author’s submission in
their reviews. Content taken from the author’s submission or from
some external source (Internet) should be placed within quotes in
the review. If reviewers copy text from the author’s submission
and fail to place it within quotes (knowingly or unknowingly) it is
considered as plagiarism.

Each of the review quality metrics listed is determined indepen-
dently, and are integrated into a complete review quality assess-
ment system. Reviewers are given feedback on each of these listed
metrics, so that they get a complete picture of the completeness and
quality of their review.

4. USER EXPERIENCE STUDY
We decided to study the experience of using an automated metare-
view system, since different types of reviewers - students, teaching
assistants and faculty may use this feature. We study the extent
to which users of an automated quality assessment system would
perceive it to be important, and the output of the system to be use-
ful. The study is important because it helps us understand whether
reviewers learn and benefit from such an automated metareview
system. This study also helps us learn what aspects of the feature
can be improved, by identifying what the surveyed reviewers liked

or disliked about the feature. A positive experience from using this
feature may mean that reviewers would be more inclined to use it
to improve their reviews.

According to Kuniavsky [21], user experience is “the totality of
end-users’ perceptions as they interact with a product or service.
These perceptions include effectiveness (how good is the result?),
efficiency (how fast or cheap is it?), emotional satisfaction (how
good does it feel?), and the quality of the relationship with the
entity that created the product or service (what expectations does
it create for subsequent interactions?).” There exist several other
definitions for the term user experience (abbreviated as UX) [22].
UXMatters1 defines user experience as that which “Encompasses
all aspects of a digital product that users experience directly - and
perceive, learn, and use - including its form, behavior, and con-
tent.” They also state that “Learnability, usability, usefulness, and
aesthetic appeal are key factors in users’ experience of a product.”
Therefore, apart from a study of factors such as user’s perceptions,
feelings or responses to a system, a user experience survey should
also involve a study of the learning gained from a system and the
usefulness of a system.

The aim of this study is to identify the degree of importance partic-
ipants attach to each of the metareview metrics–review relevance,
content, tone, quantity and plagiarism. This study will help us iden-
tify how effective the system is at helping reviewers learn about
characteristics of their reviews.

5. EXPERIMENTS
To study the usefulness of our review quality assessment system we
investigate the following broad research questions:

RQ1: Do automated metareviews provide useful feedback?
RQ2: Which of the review quality metrics are more or less impor-
tant than the others?
RQ3: Which of the review quality metrics’ output did the reviewers
find more or less useful when compared to the others?

5.1 Participants
In order to identify how useful users of the automated metareview
feature find it to be, we recruited 24 participants to (1) use the fea-
ture on Expertiza and (2) provide us with information on their ex-
perience by filling out a survey. Participants were recruited with an
email message, which explained to them the purpose of the study.
The set of participants included 15 doctoral students, 3 masters’
students and 1 undergraduate student, all of whom were from the
computer science department at North Carolina State University,
and 5 research scientists from academia and industry.

5.2 Data collection
Our data collection process involved two steps. In the first step,
participants were asked to use the automated metareview feature on
Expertiza. They use the system to write a review for an article. For
our study, we chose a wiki article on Software Extensibility2. We
chose this article since we were recruiting subjects from the field of
computer science, and Software Extensibility is a topic most com-
puter science students or researchers are familiar with. A detailed

1UXMatters - User experience definition -
http://www.uxmatters.com/glossary/

2Software Extensibility - https://en.wikipedia.org/
wiki/Extensibility



Table 2: Detailed set of instructions to help complete the survey

1. Use username/password to log into Expertiza.
2. Click on assignment “User Study”
3. Click on “Others’ Work” (Since you will be reviewing

someone else’s work.)
4. Click on “Begin” to start the review.
5. Click the url under the “Hyperlinks” section. Read the

article on Software Extensibility. Please keep in mind
that you are reviewing this article.

6. Answer questions on the review rubric describing the
quality of the article you read. After answering all the
review questions, click on the “Save Review” button.

7. Wait for a few minutes for the system to generate the
automated feedback.

8. Fill out the user-experience questionnaire.

set of instructions was provided to each of the participants to help
them complete the study (Table 2).

A review rubric is provided to the participants to help them write
the review. The rubric contains questions on the organization, orig-
inality, clarity and coverage of the article under review. The rubric
also evokes information on quality of the definitions, examples and
links found in the article.

When participants submit their reviews, they are presented with
automated feedback from our system. This feedback gives them
information on different aspects of their review such as (1) content
type, (2) relevance of the review to the article, (3) tone, (4) quantity
of text and (5) presence of plagiarism. A screenshot of the output
is available in Figure1. The participant reviewer reads and under-
stands the metareview feedback.

In the second step of data collection, the participant reviewer is
asked to fill out a user experience questionnaire (Step 8 in Table 2).
The user experience questionnaire is a big part of this study, and
has been explained in detail in Section 6.

6. USER EXPERIENCE QUESTIONNAIRE
The user experience questionnaire consists of four sections - par-
ticipant background, importance of reviews, importance of metrics,
usefulness of system’s output. The questions we use in our user ex-
perience survey are discussed in the following sections. Answers
to each of these questions are given on a scale of 1 (lowest) to 5
(highest).

6.1 Participant background
In the background section, participants were questioned about their
experience in writing reviews, and in their experience with using
peer-review systems such as Expertiza. The exact questions were:

Q1: Do you have prior reviewing experience?
Q2: Do you have prior experience using the Expertiza system?
Q3: Have you used a peer-review system before?
Q4: Are you a(n): Undergraduate, Masters or PhD student, or
Other?

6.2 Importance of reviews and metareviews
In the importance section, we questioned participants on the im-
portance of reviews and metareviews to a system.

Q5: How important do you think reviews are in a decision-making
process?
Q6: How important do you think metareviews (review of a review)
are in a decision-making process?

Answers are given on a 5-point scale - unimportant, somewhat im-
portant, neutral, important and extremely important. This section
also includes an open question to gather textual feedback from par-
ticipants. All these questions are optional, i.e., the participant may
choose not to respond to any of them.

We also gauge whether participants would be motivated to use re-
views to improve the quality of their submission (as an author), and
metareviews to improve the quality of their reviews (as a reviewer).
We therefore included the following questions in the questionnaire:
Q7: Would better reviews inspire you to use the feedback in your
revisions?
Q8: Would automated metareviews motivate you to update your re-
views?
Q9: Do the automated metareviews provide useful feedback?

6.3 Importance of metareview metrics
In the importance of metrics section we identify how important par-
ticipants think the different metareview metrics are in gauging the
quality of a review.

Q10: How important do you think each of the review quality met-
rics is in learning about the quality of your review? 1. Review
relevance, 2. Review content 3. Tone 4. Quantity 5. Plagiarism

The answers are given on a 5-point scale. This question helps us
identify the metrics to which users of the system attach most impor-
tance, or to which ones they attach the least importance. This sec-
tion also allows participants to provide any additional comments,
to learn about the participants’ opinions of the different metrics, or
any other related information.

6.4 Usefulness of system’s metareview output
This section helps us study the usefulness of the system’s outputs.
These questions gauge whether reviewers learned something about
their review’s quality from the automated feedback.

Q11: How useful do you think the output from each of the review
quality metrics is (from what you saw on Expertiza)? 1. Relevance,
2. Review content 3. Tone 4. Quantity 5. Plagiarism

Answers are given on a 5-point scale and range from not useful,
somewhat useful, neutral, useful or extremely useful. The ratings
indicate usefulness of the chosen design for the system’ output.
These questions help us learn whether participants are able to suc-
cessfully comprehend the meaning of the system’s output. This in-
formation coupled with the information from the previous question
on importance of metrics would help us identify the set of metrics
that need improving. This section also includes an open question to
gather any other comments participants may have on the system’s
output.

6.5 Other metrics
We included an open question on the survey to learn about any other
review quality metrics, which participants think would be useful in
an automated metareview system.



Figure 2: Participants’ rating of importance of reviews and
metareviews.

Q12: What other information do you think might help you improve
your review quality? Are there any specific review features you
would like to get feedback on? e.g. language of the review, gram-
mar, vocabulary, or nothing else

The next section discusses our analyses on the collected data.

7. ANALYSIS OF DATA
In this section we discuss some of the findings from our data. Out
of the 24 participants, 19 had prior reviewing experience. Only 7
of the participants had prior experience with the Expertiza system.

7.1 Importance of reviews and metareviews
All of the participants agreed that reviews play an important role
in the decision-making process (Figure 2). A majority of the par-
ticipants also agreed on the importance of metareviews (review of
reviews). One participant did not respond to these questions.

We asked participants whether good quality reviews would moti-
vate them to fix their submission. All participants agreed (7 agreed
strongly) that they would incorporate suggestions from the feed-
back in their work (Figure 3). We asked participants whether au-
tomated feedback on their reviews would inspire them to improve
their reviews. Out of the 24 participants 13 agreed that they would
use the automated feedback. However 8 participants displayed
doubt in the use of automated metareview feedback by answering
neither agree nor disagree. A small number said that they would
not be inclined to use the automated metareview feedback to im-
prove their reviews.

Thus we see that as authors, participants agree that good quality
feedback would motivate them to fix their work, but as reviewers
they may not be inclined to use metareview feedback to update their
reviews (and help other authors improve their work). The concept
of automated assessment of reviews is new, and a lack of under-
standing of the purpose of these metrics could be one of the reasons
why reviewers felt that automated metareviews may not motivate
them to fix their reviews.

7.2 Importance of the review quality metrics
We analyze how participants judge each of the automated metrics’
importance. The results are displayed in Figure 4. The metric,
which participants rated as the most important is relevance. Out of
the 24 participants 23 agree that relevance is important in assessing
the quality of a review (3 thought it was extremely important). The
next most important metric was found to be review content, with

Figure 3: Participants’ rating of motivation to use reviews and
metareviews to improve the quality of their submission or re-
view respectively. The chart also contains participants’ estima-
tion of usefulness of the automated metareview feature’s out-
put.

Figure 4: Participants’ rating of the importance of each review
quality metric.

21 of the participants agreeing on its importance (3 thought it was
extremely important).

Participants found quantity to be the least important metric, with 9
of them expressing doubts on its usefulness (neither important nor
unimportant) and 4 of them describing it as somewhat unimpor-
tant. Wilcoxon rank-sum test is used to determine if two metrics’
ratings have identical distributions (null hypothesis) [23]. We use
this test to compare metric quantity with metrics relevance and con-
tent (which have been identified as the most important metrics) at
0.05 significance level. The p value for the test on metrics quan-
tity and relevance is 0.0003, and for metrics quantity and content is
0.002. Since these p values are < 0.05, we conclude that quantity’s
ratings are significantly different from those of the most important
metrics - relevance and content.

Quantity contains the number of unique tokens in a review text, and
is meant to motivate reviewers to write more feedback. Quantity
may be obvious to a reviewer, since they are aware of the amount
of feedback they have provided. Hence quantity may turn out to
be the least effective, when compared with the other metrics, in
conveying any new information to the reviewer. This could be why
quantity is ranked as the least important quality metric.

7.3 Usefulness of system output
We questioned participants on the usefulness of the system’s metare-
view output, to study how informative or understandable they find



Figure 5: Participants’ rating of the usefulness of each review
quality metric.

it. The results of studying usefulness of metrics are displayed in
Figure 5. The metrics participants rated as most useful are plagia-
rism and review content, with 17 of participants (9 found plagiarism
extremely useful, and 2 found content extremely useful) agreeing
that these metrics were useful in helping them understand where
their reviews are lacking.

Tone is the second most useful metric with 16 of the participants
agreeing on its usefulness, despite having 8 participants judging it
to be neither important nor unimportant (from previous section).
Similarly in the case of quantity, 13 of the participants found the
systems’ output for quantity to be useful (2 of them thought it
was extremely useful), although 9 of the participants said that they
thought it to be neither important nor unimportant (Figure 4).

We use the Wilcoxon test (at a significance level of 0.05) to deter-
mine if there is a significant difference (increase) in the distribution
of the importance and usefulness ratings of quantity. We selected
pairs, whose ratings for usefulness showed an increase from their
corresponding importance ratings. The ratings have a p value of
0.03 < 0.05, which indicates that the increase in usefulness ratings
is significant. Similarly, when identifying the significance of in-
crease between the importance and usefulness ratings of tone, we
get a p value of 0.09. Although this is not < 0.05, we see that the
low p value may be indicative that the improvement in usefulness
ratings is not a chance occurrence (i.e., it is significant). Thus we
see that although participants thought initially that tone and quan-
tity may not be important to a metareview assessment system, they
found the output from the system for these two metrics to be in-
sightful.

Despite being judged as the most important review assessment met-
ric only 12 of the participants found the output of the relevance
metric to be useful. One of the participants expressed difficulty in
interpreting the meaning of the relevance score. Our metareview
feedback contains only real-valued scores in the range 0 - 1, which
may not have been very useful to the reviewer in understanding the
degree of relevance. This could have caused the relevance’s useful-
ness ratings to be lower when compared to the ratings of metrics
such as plagiarism, which contains true/false as output.

In the future we are planning to improve the format of the output
by providing textual feedback in addition to the numeric feedback.

The feedback will point to specific instances of a review that need
improvement. This may make it easy for reviewers to interpret the
numeric score, and maybe further motivate reviewers to use the
information to improve their reviews.

7.4 Other metrics
Some of the other metrics that participants exclaimed their inter-
est in are the grammar and syntax of reviews. One of the par-
ticipants suggested the use of sentence structure variability across
sentences as a means of assessing a review. The participant sug-
gested that though short phrases may succeed in communicating
the idea, they may not succeed in conveying the complete thought.
The presence of well-structured sentences in a review may help
the author comprehend the content of a review with ease. Well-
structured sentences also indicate to authors that the reviewer put
in a lot of thought and effort into writing the review. Similarly in
the case of another suggested metric - word complexity.

Another metric suggested by a participant is text cohesion. Reviews
sometimes contain a set of sentences, which may appear to be dis-
connected, i.e., lack a meaningful flow from one sentence to the
next. Cohesive text help make reading and understanding reviews
easier.

7.5 Usefulness of the overall automated assess-
ment feature

We surveyed participants on the usefulness of the overall automated
feedback system. Out of 24 participants 15 agreed that the feedback
was useful (Figure 3), and 8 neither agreed nor disagreed.

One of the participants exclaimed concern with the use of plagia-
rism as a metric to assess reviews. This is likely because the partic-
ipant did not see the motivation for a reviewer to plagiarize while
writing reviews. Students on Expertiza are evaluated (given scores)
on the quality of the reviews they write. Hence they do have a mo-
tivation to copy either other good quality reviews (available online)
or chunks of text from the submission and submit them as a good
quality review. Plagiarism could be caught by manual metareview-
ers, but may be missed by an automated system. Hence we have
this additional feature to ensure that reviewers do not try to game
the system by copying reviews.

8. THREATS TO VALIDITY
During the evaluation we noticed that a majority of the participants
did not have prior experience in using Expertiza, which could have
affected their overall performance.

We also learned, from the comments section of the questionnaire,
that a few of the participants did not fully understand the meaning
of some of the metrics. An understanding of the purpose of the
metareview metrics is essential to assessing their importance and
the output’s usefulness. Hence, a lack of complete understanding
of the metrics may pose as a threat to our results.

No textual reviews were provided by 4 of the participants, which
means that the system outputs a value of 0 for each of the metare-
view metrics. Participants may not be able to discern the usefulness
of metrics’ outputs for which they have received a score of 0. These
are some of the threats to the validity of our results.

9. FUTURE DIRECTIONS



In the future we plan on doing the following: (1) improve the dis-
play of metareview output to the reviewer, (2) identify the useful-
ness of other metareview metrics, (3) study the degree of agreement
of the automated metareview ratings with human-provided metare-
view ratings, and (4) study improvement in reviewing skills.

In order to improve the system’s metareview output we plan to
highlight snippets of the review that need to be updated. Two par-
ticipants suggested the need for additional information on metrics
such as problem detection and solution suggestion. We plan to pro-
vide information on specific instances (of the author’s work), which
the reviewer needs to read and assess to identify problems or pro-
vides suggestions. Also, providing feedback to reviewers with sam-
ples of good quality reviews may help them learn how to fix their
reviews.

We plan on investigating the use of other metrics such as sentence
structure, cohesion and word complexity (discussed in Section 7.4)
to study a review’s quality. At present our graph-based represen-
tations capture sentence structure (e.g. subject-verb-object), but
we do not study cohesion across sentences in a review. A study
of cohesion may involve exploring other areas of natural language
processing such as anaphora resolution [24].

We plan on investigating the extent to which the output from the
automated metareview system, as a whole, agrees with human-
provided values. This will help us determine whether the system
would do as good a job of metareviewing i.e., be as good as human
metareviewers in assessing reviews.

We would also like to study if reviewers who get feedback from
the system show signs of improvement, i.e., if their reviewing skill
improves with time. This would indicate that reviewers learn from
the system’s feedback to provide more specific and more useful
reviews to authors. We would also like to investigate the impact a
review quality assessment system has on the overall quality of the
authors’ submissions.

10. CONCLUSION
Assessment of reviews is an important problem in education, as
well as science and human resources, and so it is worthy of seri-
ous attention. This paper introduces a novel review quality feature,
which uses metrics such as review content type, relevance, tone,
quantity and plagiarism to assess reviews. This feature is integrated
into Expertiza, a collaborative web-based learning application. We
surveyed 24 participants on the importance of the metrics and use-
fulness of the review quality assessment’s output. Results indicate
that participants found review relevance to be most important in
assessing review quality, and system output from metrics such as
review content and plagiarism to be most useful in helping them
learn about their reviews.
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ABSTRACT
This work explores the e↵ects of using automatically gen-
erated hints in Deep Thought, a propositional logic tutor.
Generating hints automatically removes a large amount of
development time for new tutors, and it also useful for al-
ready existing computer-aided instruction systems that lack
intelligent feedback. We focus on a series of problems, after
which, the control group is known to be 3.5 times more likely
to cease logging onto an online tutor when compared to the
group who were given hints. We found a consistent trend
in which students without hints spent more time on prob-
lems when compared to students that were provided hints.
Exploration of the interaction networks for these problems
revealed that the control group often spent this extra time
pursuing buggy-strategies that did not lead to solutions.

1. INTRODUCTION
Problem solving is an important skill across many fields, in-
cluding science, technology, engineering, and math (STEM).
Working open-ended problems may encourage learning in
higher ’levels’ of cognitive domains [2]. Intelligent tutors
have been shown to be as e↵ective as human tutors in sup-
porting learning in many domains, in part because of their
individualized, immediate feedback, enabled by expert sys-
tems that diagnose student’s knowledge states [10]. How-
ever, it can be di�cult to build intelligent support for stu-
dents in open problem-solving environments. Intelligent tu-
tors require content experts and pedagogical experts to work
with tutor developers to identify the skills students are ap-
plying and the associated feedback to deliver [7].

In problem solving environments where students complete
many diverse steps to solve a single problem, even labeling
all correct and incorrect approaches is a large burden. There
are many computer-based educational problem-solving envi-
ronments, that have already been developed and can benefit
from data-driven approaches to providing intelligent feed-
back. We hope to contribute toward data-driven techniques
to automatically generate intelligent feedback based on pre-

viously recorded data from such environments, as well as
methods to visualize and analyzes the large amounts of data
present in student-log files.

Barnes and Stamper built an approach called the Hint Fac-
tory to use student data to build a graph of student problem-
solving approaches that serves as a domain model for auto-
matic hint generation [8]. Hint factory has been applied
across domains [6]. Stamper et al. found that the odds
of a student in the control group dropping out of the tu-
tor were 3.5 times more likely when compared to the group
provided with automatically generated hints [9]. The hints
also a↵ected problem completion rates, with the number of
problems completed in L1 being significantly higher for the
hint group by half of a standard deviation, when compared
to the control group. Eagle and Barnes have abstracted
this domain model into an Interaction Network for problem-
solving data analysis. Their preliminary results show that
applying graph mining techniques to Interaction Networks
can help uncover useful clusters that represent diverse stu-
dent approaches to solving a particular problem [5].

2. THE DEEP THOUGHT TUTOR
We perform our analysis on data from the Deep Thought
propositional logic tutor [3]. Each problem provides the
student with a set of premises, and a conclusion, and asks
students to prove the conclusion by applying logic axioms to
the premises. Deep Thought allows students to work both
forward and backwards to solve logic problems [4]. Working
backwards allows a student to propose ways the conclusion
could be reached. For example, given the conclusion B, the
student could propose that B was derived using Modus Po-
nens (MP) on two new, unjustified propositions: A ! B,A.
This is like a conditional proof in that, if the student can
justify A ! B and A, then the proof is solved. At any
time, the student can work backwards from any unjustified
components, or forwards from any derived statements or the
premises.

2.1 Data
We perform our experiments on the Spring and Fall 2009
Deep Thought logic tutor dataset as analyzed by Stamper,
Eagle, and Barnes in 2011[9]. In this dataset, three di↵er-
ent professors taught two semesters each of an introduction
to logic course, with each professor teaching one class with
hints available and one without hints in the Deep Thought
tutor. In the spring semester there were 82 students in the
Hint group and 37 students in the Control group; in the fall



semester there were 39 students in the Hint group and 83 in
the Control group. Students for which application log-data
did not exist were dropped from the study; resulting in 68
and 37 students in the Hint group, and 28 and 70 students
in the Control group for the first and second semesters re-
spectively. This results in a total of 105 students in the Hint
group and 98 students in the Control group. Students from
the 6 sections of an introduction to logic course were assigned
13 logic proofs in the deep thought tutor. The problems are
organized into three constructs: level one (L1) consisting of
the first 6 problems assigned; level two (L2) consisting of the
next 5 problems assigned; and level three (L3) consisting of
the last two problems assigned. We refer to the group that
received hints as the Hint group, and the group that did not
receive hints as the Control group.

We are interested in the usage of hints from students in the
hint group. Deep Thought has been modified to include
John Stamper’s Hint Factory [1], and provides four levels of
automatically generated hints. The first level suggests the
premise to be used, the second level provides more content,
the third level provides the logic rule to be applied, and the
fourth hint is the bottom-out hint explaining the exact pro-
cedure. We investigated two di↵erent components regarding
hint usage in Deep Thought. The first is the average num-
ber of hints per level, per problem. That is, for example,
the number of level two hints requested on problem 1-4. We
also investigated hint coverage in the Deep Thought tutor as
provided by the Hint Factory for each problem and the over-
all. In Deep Thought, the Hint Factory can either generate
a hint, in which case all four levels of hints are generated or
a hint cannot be generated in which case no hints will exist
for some given step in the problem.

3. RESULTS
In order to investigate the increased rate of drop-out between
the hint group and the control group. We concentrate on the
first 5 problems from L1 of the Deep Thought Tutor. We fo-
cus here as, while the groups started with similar completion
and attempt rates, after level 1 the groups diverge on both
completion and problem attempt rates. Since investigation
of the interaction networks for these problems revealed that
the control group often pursue buggy-strategies, which do
not result in solving the problem, we hypothesized that their
would be di↵erences in the amount of time spent in tutor
between the groups.

We performed analysis on the student-tutor interaction logs.
For each student we calculated the summation of their elapsed
time per interaction. To control for interactions in which the
student may have idled we filtered any interactions that took
longer than 10 minutes. The descriptive statistics for this
are located in table 1, Prob represents the problem number,
H and C represent the Hint group and the Control group.

The large standard deviations are a sign that perhaps this
data is not normal. Exploring the data with Q-Q plots re-
veals that the data is in fact, not normally distributed. This
prevents us from performing between-group statistical tests,
such as the student’s t-test, as our data violates the assump-
tion of normality. To normalize the data, we use a logarith-
mic transformation (common log) to make the data more
symmetric and homoscedastic. Observation of the Q-Q plot

Table 1: Descriptive Statistics for Time (in seconds)
Spent in Each Problem

N M SD
Prob H C H C H C
1.1 104 93 765.89 1245.24 956.41 1614.30
1.2 88 76 761.65 1114.37 911.24 1526.91
1.3 90 67 664.17 1086.09 733.95 2119.19
1.4 87 71 754.60 1266.39 1217.06 1808.53
1.5 84 67 710.62 1423.22 1192.43 2746.54

and histogram of the transformed data reveal that we had
addressed the normality concerns. The results are presented
in table 2.

Table 2: Descriptive Statistics After Common Log
Transformation

N M SD
Prob H C H C H C
1.1 104 93 2.63 2.79 0.48 0.55
1.2 88 76 2.59 2.73 0.54 0.54
1.3 90 67 2.62 2.72 0.44 0.48
1.4 87 71 2.66 2.89 0.40 0.41
1.5 84 67 2.55 2.75 0.48 0.60

To test for di↵erences between the two groups on each prob-
lem, we subjected the common log transformed data to t-
test. The results from this test are presented in table 3.
There are significant di↵erences for problems 1, 4, and 5.
The ratio is calculated by taking the di↵erence between the
hint group mean and the control group mean. As lg(x) �
lg(y) = lg(x

y

) the confidence interval from the logged data
estimates the di↵erence between the population means of
log transformed data. Therefore, the anti-logarithms of the
confidence interval provide the confidence interval for the
ratio. We provide the C:H ratios and confidence intervals in
table 4.

Table 3: Ratio Between Groups (H:C) in the Origi-
nal Scale

95% Confidence Interval
Prob Ratio low high p-value t
1.1 0.69 0.50 0.97 0.03 -2.18
1.2 0.72 0.49 1.06 0.10 -1.68
1.3 0.78 0.56 1.10 0.15 -1.43
1.4 0.58 0.44 0.78 0.00 -3.61
1.5 0.62 0.42 0.93 0.02 -2.31

In order to explore what these di↵erences mean, we shall
transform the data back to our original scale (seconds.) The
transformed data is provided in table 5. These are the Geo-
metric Means, which are often closer to the original median,
than they are the mean. The ratios from tables 3 and 4
are easily interpreted as the log of the ratio of the geomet-
ric means. For example in problem 1.4, in the common log
scale, the mean di↵erence between hint and control group is
-0.23. Therefore, our best estimate of the ratio of the hint
time and control time is 10�.23 = 0.58. Our best estimate of
the e↵ect of Hint is it takes 0.58 times as many seconds as
the control group to complete the problem. The confidence
interval reported above is for this di↵erence ratio.



Table 4: Ratio Between Groups (C:H) in the Origi-
nal Scale

95% CI
Prob Ratio low high
1.1 1.44 1.04 2.01
1.2 1.39 0.94 2.05
1.3 1.27 0.91 1.78
1.4 1.71 1.28 2.30
1.5 1.60 1.07 2.40

Figure 1: Cumulative average time (in seconds) per
problem across the tutor.

The geometric mean of the amount of seconds needed to
solve problem 1.4 for the hint group is 0.58 (95% CI: 0.44
to 0.78) times as much as that needed for students in the
control group. Stated alternatively, students in the control
group spend 1.71 (95% CI: 1.07 to 2.40) times as long as the
Hint group in problem 1.4.

Table 5: Geometric Means and Confidence Intervals
in Seconds

95% CI 95% CI
P H low high C low high
1 428.66 347.14 529.31 618.19 478.60 798.51
2 387.07 297.97 502.82 537.80 405.75 712.82
3 413.80 335.89 509.78 527.18 405.05 686.13
4 454.43 374.38 551.61 778.01 624.48 969.29
5 352.90 278.06 447.89 565.61 405.34 789.24

Exploring the total time spent between all five problems also
required a log transformation. The total time spent on the
first 5 problems between the hint group (M = 3.34, SD =
0.4) and the control group (M = 3.44, SD = 0.51) was not
significant, t(198) = 1.41, p = 0.16. This corresponds to a
H:C ratio of 0.81 (95% 0.60 to 1.09), and a C:H ratio of 1.24
(95% CI: 0.92 to 1.66).

In order to explore di↵erences in overall time in tutor be-
tween the two groups, we subjected the total elapsed time
on all 13 problems. The total time in tutor between the hint
group (M = 3.75, SD = 0.43) and the control group (M =
3.72, SD = 0.58) was no significant, t(200) = 0.40, p = 0.694.

3.1 Hint Usage and Coverage

Figure 2: Average time (in seconds) spent per prob-
lem.

We investigated the average hint usage per student, per
problem. Table 6 depicts the average number of hints per
student for each hint level, for each problem. Note that
these values are for a single problem, which requires multi-
ple steps. This means that requesting a level four hint allows
a student to skip a single step, of many, for a single problem
and not an entire problem.

Table 6: Average Hint Use per Problem
Problem H1 H2 H3 H4
1.1 1.61 0.94 0.66 0.23
1.3 1.79 1.46 1.13 0.77
1.4 2.96 1.66 1.18 0.32
2.2 3.44 2.27 2.04 1.08
2.3 5.56 3.09 2.44 1.00
2.4 1.45 0.99 0.90 0.51
2.5 3.66 1.91 1.66 0.88

In table 7 we provide the hint coverage for each problem.
The hint coverage is calculated by taking the number of
fulfilled hint requests divided by the number of total hint
requests for a problem.

Table 7: Hint Coverage Rates
Hint

Problem Coverage
1.1 0.74
1.3 0.62
1.4 0.81
2.2 0.82
2.3 0.81
2.4 0.88
2.5 0.80
Overall 0.78

4. DISCUSSION
The results of this analysis show that students in the con-
trol group are overall not spending significantly more time
in the tutor during these first five problems. However, the
control does spend significantly more time in some prob-
lems compared to the hint group. Problems 1, 3 and 4
provided students with the automatically generated hints.
While problem 2 and 5 had no hints for either group. We



would expect there to be di↵erences in time to solve for the
hint group, and this was the case for problem 1. We would
also expect that having no hints on problem two would not
display an e↵ect, as the second problem is too early to ex-
pect di↵erences to emerge between the groups. Problem 1.3
is interesting as this problem is the first in which the groups
begin to show preferences towards di↵erent solution strate-
gies. With the control group preferring to work backwards,
and the hint group preferring to work forwards (hints are
only available for solutions working forward). Problem 1.4
and 1.5, both of which showed significant di↵erences in time
spent, showed a large portion of control group student in-
teractions to be perusing buggy-strategies.

This is interesting as the control group is spending at least
as much, and often more, time in tutor and yet meeting with
less overall success. The control students are not becoming
stuck in a single bottleneck location within the problems
and then quitting, which would result in lower control group
times. The control students are actively trying to solve the
problems using strategies that do not work. The hint group
is able to avoid these strategies via the use of the hints. The
hint group students also develop a preference for solving
problems forward, as that is the direction in which they can
ask for hints. It is interesting to see that these preferences
remain, even when hints are not available.

The e↵ect of the automatically generated hints appear to let
the hint group spend around 60% of the time per problem
compared to the control group. Or stated di↵erently, the
control group requires about 1.5 times as much time per
problem when compared to the hint group. These results
show that the hints provided by the Hint Factory, which
are generated automatically, can provide large di↵erences in
how long students need to solve problems.

Regarding average hint use, table 6 suggests that problem
2.3 is likely the most di�cult as it has the highest levels of
hint usage for nearly all levels. Table 6 also suggests there
is little gaming behavior occurring in the Deep Thought tu-
tor from students. As previously stated a single problem
requires multiple steps, so to see level four hints at values
around one and below is encouraging.

5. CONCLUSIONS AND FUTURE WORK
This paper has provided evidence that automatically pro-
duced hints can have drastic e↵ects on the amount of time
that students spend solving problems in a tutor. We found
a consistent trend in which students without hints spent
more time on problems when compared to students that were
provided hints. Exploration of the interaction networks for
these problems revealed that the control group often spent
this extra time pursuing buggy-strategies that did not lead
to solutions. Future work will explore other data available
on the interaction level, such as errors, in order to get a bet-
ter understanding of what the control group is doing with
their extra time in tutor. We will also look into the develop-
ment of further interventions that can help students avoid
spending time on strategies that are unlikely to provide so-
lutions.
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Abstract. Formative feedback for a learner typically uses human or artificial 
intelligence to draw an inference about a learner’s knowledge state from the 
learner’s actions, and select a learner-directed response. To tackle cases when 
such intelligence is not easily available, we are exploring ways of providing 
implicit formative feedback: A learner’s action is to respond to an explanation 
prompt, and the learner-directed response is to provide an instructional 
explanation. We consider explanations for correct examples to mathematics 
exercises, but the exciting implications will be for less well-defined domains 
that are challenging for cognitive tutors to model. To motivate learners to 
explain and to increase implicit feedback, we also explore prompts to compare 
the self-generated and instructional explanations. 

Keywords: explanation, self-explanation, learning, comparison, formative 
feedback 

1   Introduction 

Traditionally, feedback to students has often been summative, such as midterm 
scores and state exams, where even the application of advanced psychometric 
techniques leads to measures that provide a summary assessment of some attribute. 
The pen- and paper- tests typically administered and the time needed for another 
human to grade and assess places a natural delay between a student’s behavior(s) and 
the provision of feedback about that behavior.  

Now that learners’ behavior is increasingly in a computerized or online 
environment, there are three key implications. The first is that many tests and 
measures typically considered as (summative) assessments can be analyzed 
instantaneously and automatically. The second is that online digital environments 
allow for the delivery of sophisticated instruction and formative feedback. The third is 
that the constant logging of data on a computer means that a much wider range of 
student behaviors is available as fodder for ‘assessments’, which can then be analyzed 
and used to provide formative feedback to students. 

As evidenced by the current workshop and extensive research in the learning 
sciences [1] [2] [3], great progress has been made in developing formative 
assessments and feedback. However, the issue of providing formative feedback raises 
two core challenges.  

The first is that providing formative feedback that helps learning seems to be 
constrained by how accurately an automatic system can diagnose a learner’s 



knowledge state, infer what instructional tactic is likely to deliver formative feedback 
that moves the learner to a more effective knowledge state, and ensure the learner 
successfully uses this instruction or formative feedback. While there have been great 
strides in developing the data mining and artificial intelligence capacities to achieve 
all three of these goals, is there a way to mitigate these constraints through a 
complementary approach to the problem of providing formative feedback? 

The second challenge is that – even if the above issues could be solved – learners 
may not learn general metacognitive skills of self-regulation – to identify gaps in their 
knowledge, consider how to fill them or seek out new information, and engage in 
effective learning strategies that move their understanding forward. 

One potential way to address both of these issues is to provide information from 
which learners can generate implicit formative feedback, and structure the 
instructional environment to support learners in generating and using this feedback.  

This paper outlines a paradigm for doing this and reports the design of an ongoing 
study. Learners are asked or prompted to self-generate explanations, then are provided 
with normative answers or instructional explanations that respond to the same prompt, 
and finally are guided to compare their self-generated explanations with the 
instructional explanations provided. This draws together work in education and 
psychology on the benefits of self-explanation [4] [5], on how to provide appropriate 
instructional explanations for students [6] [7], and on the benefits of comparison for 
learning [8]. 

Context for introducing implicit feedback: Worked example 
solutions in Khan Academy mathematics exercises 

While the general framework can be applied to many contexts, the current study 
examines the generation, consideration, and comparison of explanations in the 
KhanAcademy.org exercise framework (www.khanacademy.org/exercisedashboard).  
This provides a large collection of mathematics exercises with a similar format, used 
by tens of thousands of students. It is therefore a widely applicable context in which 
to develop a paradigm for providing implicit feedback from self-generated and 
instructional explanations.  

Figure 1 shows an example of an exercise we have augmented. The typical (non-
augmented) exercise starts with a statement of a problem for the student to solve, 
which is outlined in the box surrounded by a dark black line. When ready, students 
can type in a proposed answer and then receive feedback on its correctness. At any 
point, students can also request a hint, which reveals the next step of a worked 
example solution to the problem. Students have to enter the correct problem to 
advance, but because every problem provides on-demand “hints” which step-by-step 
reveal the solution, they can eventually do so (the last step is simply the answer).  

This design already builds in some form of implicit feedback, if it is assumed that 
students first try to consider steps in the problem’s solution before requesting hints. A 
hint or solution step can therefore give them implicit feedback about the 
appropriateness of what they were considering before.  



Incorporating self-generated and instructional explanations 

The template for Khan Academy’s mathematics exercises ensures that students 
must generate or simply be told the correct answer by the end of each exercise. Our 
augmentation of the exercises all occurs after the student receives feedback that they 
have entered the correct answer – whether they generate it themselves, are helped by 
hints, or need to go to the very end of the solution to see the answer. 

As shown in Figure 1, the typical Khan Academy math exercise (labeled practice-
as-usual) is augmented using three instructional tactics: (1) Including prompts for 
students to self-generate explanations; (2) Including instructional explanations 
directed at these prompts, ostensibly from another student or teacher; (3) Asking 
students to compare their self-generated explanations to the instructional 
explanations. 

The self-generate explanation prompt appears beside a solution step, in a 
distinctive purple font and accompanied by a text box for students to type their 
response. The example in Figure 1 has the prompt “Explain what this step means to 
you:”. The instructional explanation can be shown in a similar position, such as 
“Another student explained this as:…”. The compare judgment solicits a comparison 
of the student’s own explanation with the instructional explanation which was 
supposedly provided by someone else: “How similar is your explanation to the other 
student’s explanation?”. 



 

Figure 1: Illustration of worked example solution in typical Khan Academy exercise, 
and how the problem can be augmented with: (1) a prompt to self-generate an 
explanation for the correct answer, (2) An instructional explanation, ostensibly from 
another student, (3) A request for a learner to compare his/her explanation with the 
instructional explanation. The practice-as-usual exercise can be found at 
https://www.khanacademy.org/math/probability/statistics-
inferential/normal_distribution/e/z_scores_1 
 



Experiment 

The ongoing study will be conducted using a convenience sample of adults recruited 
from Amazon Mechanical Turk, as well as undergraduate students. The goal is to 
investigate this paradigm in a controlled laboratory setting, and then extend it to a 
realistic educational environment with students in a high school, or introduce it on the 
actual Khan Academy platform, in an extension of an ongoing collaboration with 
Khan Academy. 

The study independently manipulates whether or not learners are prompted to self-
generate explanations for the correct answer (once it is obtained), and whether or not 
they are provided an instructional explanation for the correct answer. This results in 
four conditions:  

Practice-as-usual with the typical Khan Academy exercise and no self-generated 
or instructional explanation. 

Self-generated explanation (but no instructional explanation) which includes the 
prompt to explain why the answer is correct. 

Instructional explanation (but no prompt to self-generate an explanation) which 
provides an explanation that is supposed to come from another student. 

Self-generated and instructional explanations. This condition is key to evaluating 
whether learning can be improved through using explanations to provide implicit 
formative feedback for learners. As described in the next section, several variables are 
manipulated in this condition to investigate the most effective means of combining 
self-generated and instructional explanations. 

Self-generated and instructional explanations: Order & Comparison 

To further investigate the learning benefits of self-generated and instructional 
explanations, the condition in which participants receive both a self-generated and 
instructional explanation is made of four nested conditions. These are generated by 
experimentally manipulating the order of self-generated and instructional explanation 
(self-generated prompt first, then instructional explanation, vs. instructional then self-
generated) and whether or not a comparison is requested (no comparison prompt, vs. 
a comparison prompt). The comparison prompt asks learners to rate similarity of self-
generated and instructional explanations, such as can be seen in Figure 1: “How 
similar is your explanation to the other student’s explanation?”, rated on a scale from 
1 (not at all) to 5 (very similar).  

It should be noted that the self-generated and instructional explanation are never 
onscreen at the same time, to avoid simple copying or rote responses. Whichever is 
presented first simply disappears on the appearance of whichever is presented second. 

The design therefore produces four conditions: Self-Instructional, Instructional-
Self, Self-Instructional-Compare, Instructional-Self-Compare. The manipulations that 
produce these conditions allow us to investigate whether and when learners receive 
implicit formative feedback from generating explanations, receiving instructional 
explanations, and engaging with prompts to compare these explanations. 



Summary 

The study outlined here aims to investigate whether the proposed combinations of 
self-generated and instructional explanations have a beneficial impact on learning. 
The study can shed light on how to design a learning environment to provide implicit 
formative feedback, by examining how accuracy and speed in exercises is influenced 
by the relative effects of self-generating explanations, receiving instructional 
explanations, doing both, and comparing one’s self-generated effort with an 
instructional explanation. More generally, the software adaptation of the Khan 
Academy exercise framework provides a setting to ask an even broader range of 
issues: such as changing the type of explanation prompts, features of the instructional 
explanations, the kinds of comparison prompts used (listing vs. rating, analyzing 
differences vs. similarities, contrasting explanation quality by identifying pros & cons 
of each, or by grading or rating different explanations). 
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ABSTRACT
Self-regulated learners are successful because of their abil-
ity to select learning strategies, monitor their learning out-
comes and adapt them accordingly. However, it is not easy
to measure the outcomes of a learning strategy especially
while learning. We present an architecture that allows stu-
dents to gauge the e↵ectiveness of learning behavior after
the learning episode by using an interface that helps them
recall what transpired during the learning episode more ac-
curately. After an annotation process, the profit sharing
algorithm is used for creating learning policies based on stu-
dents’ learning behavior and their evaluations of the learning
episode’s outcomes. A learning policy contains rules which
describe the e↵ectiveness of performing actions in a par-
ticular state. Learning policies are utilized for generating
feedback that informs students about which actions could
be changed or retained so that they can better adapt their
behavior in future learning episodes. The algorithms were
also tested using previously collected learning behavior data.
Results showed that the approaches are capable of building
a logical learning policy and utilize the policy for generating
appropriate feedback.

Keywords
delayed feedback, self-regulated learning, profit sharing

1. INTRODUCTION
Students often learn on their own when they study for tests,
make assignments and perform research as part of their aca-
demic requirements. They also learn by themselves when
they investigate topics which may not be directly related to
class discussions but are interesting to them. When students
learn alone, they encounter many challenges related to the

⇤also a�liated with: Center for Empathic Human-Computer
Interactions, College of Computer Studies, De La Salle Uni-
versity, Manila, Philippines

learning task, as well as challenges that are meta-cognitive
and a↵ect related.

Students who can self-regulate are capable of overcoming
these challenges better compared to those who cannot. One
reason for this is that self-regulated students know how to
select and adapt their learning strategies depending on the
current situation. However, this is a complex task because
it requires attention and sophisticated reasoning to know
which learning strategies to apply, to monitor the outcomes
of a learning strategy and to know when a strategy needs to
be changed [13].

In this research, we discuss an architecture for helping stu-
dents manage their learning behavior by helping them be-
come aware of the outcomes of the learning strategies they
employed and by helping them identify which strategy is
e↵ective in a particular situation.

2. RELATED WORK
Self-regulated learners can be di↵erentiated from less self-
regulated learners by looking at the learning behaviors they
exhibit. They are characterized by their diligence and re-
sourcefulness, their awareness of the skills they possess, their
initiative to seek out information and their perseverance to
continue learning and find ways to overcome obstacles [13].

Research such as that of Kinnenbrew, Loretz and Biswas
[8] has shown these di↵erences in behavior. In their work,
they investigated students’ learning behavior while using
Betty’s Brain, a computer-based learning environment in
the science domain that helped students develop learning
strategies. They processed log data from student interac-
tions and mapped them to canonical actions. Action se-
quences were then mined using sequential pattern mining
and episode mining to discover learning behaviors. Their
results showed that high performing students showed sys-
tematic reading behavior and frequent re-reading of relevant
information which was not seen in low performing students.

In the work of Sabourin, Shores, Mott and Lester [10], the
authors also observed di↵erences in the students’ behavior as
they interacted with Crystal Island, a game-based learning
environment developed for the microbiology domain. While
interacting with the environment, students were prompted
to report their mood and status. These were later processed
and used to categorize the students’ goal setting and goal



reflection behavior. They were then given an overall self-
regulated learning (SRL) score based on their reports and
assigned into low, medium or high SRL category. Students
in the high SRL category frequently used in-game resources
that provided task-related information and resources that
allowed them to record notes. They also spent less time
using resources for testing their hypothesis and had higher
learning gains.

MetaTutor is a hypermedia learning environment developed
for the biology domain that identifies students’ SRL pro-
cesses and also helps them use these processes [2]. Students
who used the system indicated the SRL processes they used
by selecting it from the list of SRL processes in the system’s
interface. Pedagogical agents also gave them prompts to use
certain SRL processes depending on the current situation
(i.e., student information, time on page, time on current
sub-goal, number of pages visited relevance of the current
page to the sub-goal, etc.) and also gave them feedback re-
garding how they used these processes. Students who used
the version of the system with prompts and feedback were
reported to have higher learning e�ciencies compared to stu-
dents who used a version of the system without prompts and
feedback.

3. SYSTEM ARCHITECTURE
Learners often have di�culty in selecting, monitoring and
adapting learning strategies because of its high cognitive
load requirement. This is especially true for complex do-
mains such as science, math, engineering and technology.
The approach we take in this work involves helping students
understand the outcomes of their learning behavior better
by helping them recall what transpired in a recently con-
cluded learning episode. The advantage of recalling is that
after the learning episode, students do not need to worry
about the learning task and can focus on analyzing their
learning behavior. Students will also have a more complete
and accurate measurement of their learning behavior’s e↵ec-
tiveness because they can observe both short and long term
e↵ects on learning. This information will be useful for stu-
dents in future learning episodes because when they monitor
and adapt learning strategies, they can base their decisions
on the current context as well as their predictions of what
could happen according to their reflections from previous
learning episodes.

Asking students to recall a recently concluded learning episode
presents two issues. First, students will not be able to
completely remember what transpired during the learning
episode. We addressed this in our previous work wherein
we developed a tool called Sidekick Retrospect, which took
screenshots of the students’ desktop and video frames from
a video of their face during a learning episode [7]. Students
who used the software in our experiment reported that they
were able to discover things about their behavior that they
were previously unaware of. It was also enough to help them
reflect on what transpired so that they were able to identify
problems with their learning behavior and think of probable
solutions. Figure 1 shows a screenshot of the system’s inter-
face which are presented to the students after the learning
episode. A timeline of the entire learning episode is shown
together with desktop and webcam video screenshots rela-
tive to the mouse’s position in the timeline.

Figure 1: Sidekick Retrospect Annotation Interface

An issue we encountered from our previous work was that
students who used the software seemed to focus only on the
most significant aspect of the learning episode. They did
not reflect as much on other instances during the learning
episode even when they employed other learning strategies
that also had an impact on their learning. This may have
been the case because students were already too tired to
spend more time analyzing each event in depth.

The architecture presented in Figure 2, integrates the method-
ology we used in our previous work with our current ap-
proach for helping students recall what transpired during
the learning session and helping them discover more insights
about their learning behavior. We designed our system so
that students would not be bound by a specific environment
or domain and keep the learning environment as natural as
possible. Students were allowed to learn using any tool or
application on or o↵ the computer. However, they had to
stay in front of the computer so it could take desktop and we-
bcam video screenshots of their activities and so they could
annotate the data after the learning episode. The entire pro-
cess was split into three phases which are each discussed in
the following subsections.

3.1 Interaction Phase
The interaction phase begins by first asking students to in-
put their learning goals for the current learning episode.
Data collection starts right after students finish inputting
their goals. The system then starts logging the applications
used by the students, the title of the current application’s
window and the corresponding timestamps. Screenshots of
the desktop and the webcam’s video feed are also taken and
stored using the same timestamp as that of the log data.

3.2 Annotation Phase
In the annotation phase, students are asked to annotate their
intentions, activities and a↵ective states. Intentions can ei-
ther be goal related or non-goal related relative to the goals
that were set at the start of the learning episode. Activi-
ties referred to any activity the student did while learning
which could either be done on the computer (e.g., using a
browser) or out of the computer (e.g., reading a book). Two
sets of a↵ect labels were used for annotating a↵ective states



Figure 2: System architecture

wherein goal-related activities were annotated as either de-
lighted (DEL), engaged (ENG), confused (CNF), frustrated
(FRS), bored (BRD), surprised (SRP) or neutral (NUT) and
non-goal related activities were annotated as either delighted
(DEL), sad (SAD), angry (AGY), disgusted (DIS), surprised
(SRP), afraid (AFR) or neutral (NUT). Academic emotions
[4] are used for annotating goal related intentions because
they give more contextual information about the learning
activity. However, academic emotions might not capture
other emotions outside of the learning context so Ekman’s
basic emotions [5] were used to annotate non-goal related
intentions.

The system’s annotation interface helps students recall what
transpired during the learning episode by showing desktop
and webcam screenshots depending on the position of the
mouse on the timeline. The actual annotations can be cre-
ated by using the mouse to select a time range then clicking
on the corresponding intention, activity and a↵ective state
buttons. Students are also allowed to input a description of
the activity when it was done outside of the computer.

While annotating, students inherently recall what transpired
allowing them to identify the appropriate annotation. Going
through the entire learning episode sequentially also helps
the students annotate more accurately because they can see
how and why their activities change. Furthermore, they
also see the outcomes of these activities. It is possible that
students might not annotate the data correctly for fear of
judgment or lower scores. However, reassuring them that the
results will not be used as part of their grades or telling them
that accurately annotating their data will help them become
more self-regulated and e↵ective could help minimize these
cases.

After the annotation process, students are asked to give a
learning e↵ectiveness rating between one to five, indicating
how good they felt the learning episode was. This rating is
likely to be accurate because of the level of detail in which
students reviewed their learning episode.

3.3 Modeling and Feedback Phase
In the modeling and feedback phase, students’ data are an-
alyzed to create and update the student’s list of e↵ective
learning behavior or policy. Students’ behavior in the cur-
rent learning episode can be compared to the policy to iden-
tify e↵ective and ine↵ective behavior that can be adapted in
succeeding episodes.

3.3.1 Learning policy creation

Self-regulation can be viewed as cyclic phases of forethought,
performance and self-reflection [14] wherein reflections about
the outcomes of behavior after a learning episode can be used
to increase the e↵ectiveness of future learning episodes (e.g.,
discarding or modifying ine↵ective behavior). The ideal ef-
fect of would be for learning outcomes to continually improve
over time.

We fit this incremental perspective of adapting behavior into
a reinforcement learning (RL) problem in machine learning
which searches for the best actions to take in an environment
(i.e., learning behavior) to maximize a cumulative reward
(i.e., learning e↵ectiveness) [11].

Profit sharing is a model-free RL approach that is capable of
converging even in domains that do not satisfy the Marko-
vian property [1]. We decided to use this approach primarily
because we deal with human behavior in a non-deterministic
and uncontrolled environment. Profit sharing’s reinforce-
ment mechanism allows it to learn e↵ective, yet sometimes
non-optimal, policies quickly compared to other algorithms.
This is ideal for our situation because we need to give policy-
based feedback using minimal data.

Profit sharing di↵ers from other RL techniques because it re-
inforces e↵ective rules instead of estimating values from suc-
ceeding sequential states. A rule consists of a state-action
pair (Ot,At) which means performing At when Ot is ob-
served. We consider these rules as learning behaviors. An
episode n is a finite sequence of rules wherein the entire se-
quence is awarded the reward R based on its outcome. After
each episode, the weights of each rule in the sequence is up-
dated using (1) where function f(R, t) is a credit assignment
with t being the rule’s distance from the goal. Note that it
is possible for a rule’s weight to be updated more than once
if it appears more than once in a sequence. The set of all
rules and their corresponding weights is called a policy. A
policy is rational or guaranteed to converge to a solution
when the credit assignment fuction satisfies the rationality
theorem (2) with L being the number of possible actions. In
our work, we used a modified version of the rational credit
assignment function (3), which was adapted from [1] so that
the rules’ weights will be bound by the reward value.

Wn+1(Ot, At) Wn(Ot, At) + f(R, T ) (1)

8t = 1, 2, 3..., T. L

tX

j=0

f(R, j) < f(R, t) (2)

fn+1(R, t) = (R�Wn(Ot, At))(0.3)
T�t (3)

According to Winne’s [12] SRL model, students adapt their



strategies based on the results of metacognitive monitoring
and evaluation. When the outcome of a task satisfies a stu-
dent’s expectations, then they may continue performing the
current task or proceed to the next task. On the other hand,
when a task does not achieve its expected outcomes, stu-
dents can adapt their strategies accordingly. Unfortunately,
we did not have access to students’ metacognitive evalua-
tions in our data. However, Carver and Scheier’s [3] model
theorized that the results of metacognitive evaluations can
be observed in students’ emotion. When the outcome of
a task is according to a student’s expectation, then neu-
tral a↵ect is experienced. However, when the outcome does
not satisfy expectations then negative a↵ect is experienced.
On the other hand, when the outcome exceeds expectations
then positive a↵ect is experienced. Based on these assump-
tions, we represented our states using the triple <activity,
a↵ect, duration>. Apart from a↵ect which approximated
students’ metacognitive evaluation, we included activity to
indicate the task performed by the student and duration to
indicate how long it was performed by the student.

The data showed that students performed similar activities
but used di↵erent applications (e.g., browsing websites with
Google Chrome vs. Mozilla Firefox). Instead of treating
these separately, we categorized the students’ activities into
six types: information search [IS] (e.g., using a search en-
gine), view information source [IV] (e.g., reading a book,
viewing a website), write notes [WN], seek help from peers
[HS] (e.g., talking to a friend), knowledge application [KA]
(e.g., paper writing, presentation creation, data processing)
and o↵-task [OT] (e.g., playing a game).

Durations were even more varied ranging from one second
(e.g., clicking a link from a search results page) to 53 min-
utes (e.g., watching a video). Using this directly will result
in a large state space so we categorized them into short,
medium or long duration. The duration values were posi-
tively skewed so evenly partitioning the data according to
the number of elements or frequency would cause both short
and medium groups to have small and similar values. The
long duration group on the other hand, would have values
with high variation. We decided to use k-Means to catego-
rize the duration values into three clusters (i.e., k = 3) and
using a Euclidean distance formula as described in [6]. Clus-
tering produced groups with elements having similar dura-
tion values and whose values were di↵erent from the other
groups. Elements in the cluster with the smallest values
were labeled short duration, elements in the cluster with the
biggest values were labeled long duration and the elements
in the remaining cluster were labeled with medium duration.
The centroids identified by k-means for short, medium and
long durations were 69.4 seconds (1.15 minutes), 614.5 (10.2
minutes) seconds and 1999.4 seconds (33.3 minutes) respec-
tively. 90.83% of the duration values were short, 8.17% were
medium and 0.10% were long.

In the learning context, actions would refer to changing from
one activity to the other. So, we used the same eight activity
categories as actions. However, we added a change informa-
tion source [CS] action to handle cases when students would
either view a di↵erent website or change to or from a physical
information source (e.g., book, printed conference paper).

In this representation, there would be no consecutive rules
with states having the same values unless they were paired
with di↵erent actions. Otherwise, these rules were merged
and their durations added. An example of a rule would have
the form (<IV, CNF, short>, CS).

The student’s rating of the learning episode’s e↵ectiveness
can directly be used as the reward value. Data from learning
episodes can then be converted into rule sequences and be
used to update each rule’s weight incrementally using (1)
with the corresponding reward values. The rules’ weights
are expected to converge to the reward value it is commonly
associated with.

3.3.2 Learning policy-based feedback

According to Pressley, Levin and Ghatala [9], adult stu-
dents who were given information regarding the utility of
two learning strategies and a chance to practice them were
capable of validating its outcomes and were reported to use
the more e↵ective strategy. In our case, the utility of per-
forming an action in a certain state is its weight value (i.e.,
applying the rule will likely lead to a learning e↵ectiveness
rating that is at least the weight value). Information about
the utility of two or more competing rules (i.e., rules refer-
ring to the same state but with di↵erent actions) can be used
to give students feedback at the end of a learning episode
so they can verify and adapt them accordingly in succeed-
ing episodes. When students used more e↵ective rules, it
is assumed to result in better learning e↵ectiveness ratings
which will reinforce the rule in the learning policy.

As more rules are observed and added into the learning pol-
icy, some rules may not be relevant to a particular learning
episode. The rules with their corresponding utilities should
first be filtered before they are presented to the student.
In the first learning episode, the learning policy will still
be empty so feedback will be unavailable. When a policy
already contains rules, each rule employed in the current
learning episode can be compared to the rules in the learn-
ing policy and provide relevant feedback. The pseudo code
presented below describes how three types of feedback can
be given to the student. First, when students perform an
action with a worse utility based on the policy, the system
can remind the student to select the better action. Second,
if the student performs an action which isn’t in the policy
but has lower utility than the best action in the policy, the
student is told that the action may be ine↵ective. Lastly,
if the student performs an action which isn’t in the policy
but has a higher utility than the best action, the student
is informed that a better action has been found compared
to the previous best action. Whenever a student performs
the best action according to the policy, feedback is no longer
given because it is assumed that the student already knows
this and is the reason why the action was selected. In cases
when the student performs an action in an unknown state,
feedback cannot be given as well because of insu�cient in-
formation.

Initialize set of weighted rules X
Copy old policy P into P’
For each (Ot, At) in the current learning episode

Update W (Ot, At) in P’ using (1)



For each (Op, Ap) in policy P
If Ot = Op,i

Add W (Op,i, Ap,i) into X
End

End
End
For each (Ot, At) in the current learning episode

If (Ot, At) not in X
Unknown utility

Else if (Ot, At) not in P
If W (Ot, At) < max(W (Op,i0 , Ap,i0)) in X

Inform student that Ap,i0 > At

Else
Inform student that At > Ap,i0

End
Else

If At <> Ap,i0 where max(W (Op,i0 , Ap,i0)) in X
Inform student that Ap,i0 > At

End
End

End

A cause for concern is that the learning policy might not
have converged yet resulting in incorrect feedback (e.g., telling
the student to perform an action which is actually ine↵ec-
tive). Again according to Pressley et. al. [9], despite being
given incorrect utility information adults are able to select
better strategies after practice wherein they are able to ob-
serve the strategy’s actual utility. As students constantly se-
lect e↵ective actions (i.e., as a result of their own evaluation),
the policy will be updated to reinforce these actions and de-
crease the chance of providing incorrect feedback. This em-
phasizes the need for students in this environment to explore
other actions so that they can find the best actions which
will also be reflected in the policy. It also then becomes nec-
essary for other mechanisms to encourage exploration such
as looking at other students’ learning policies for possible
actions or using expert knowledge.

4. LEARNING BEHAVIOR DATA
The methodology described in the interaction and annota-
tion phases of the architecture was used in collecting the
data in our previous work [7]. The data was collected from
four students aged between 17 and 30 years old, conducting
research as part of their academic requirements. Three of
the students were taking Information Science while one stu-
dent was taking Physics. During the data collection period,
two of the students were writing conference papers and two
made power point presentations about their research. They
all processed and performed experiments on their collected
data, searched for related literature and created a report or
document. Although their topics were di↵erent, they per-
formed similar types of activities. Two hours of annotated
learning behavior data in five separate learning episodes
were collected from each student over a one week period.
The annotation data was processed using the method de-
scribed in Section 3.3.1 resulting in five separate learning
episodes for every student and each episode consisting of
the sequenced rules. On average, students used 54.35 rules
per session (N=20; �=27.71) including repeated rules.

Table 1: Rule Categories

# Type State Action Reward
1 PRL ENG, IV, short KA 0.360000
2 PRL ENG, IV, short CS 0.004154
3 CDH CON, IV, short CS 0.441939
4 CDH CON, IV, short KA 2.34E-05
5 CDH CON, IV, short OT 9.16E-15
6 RLX ENG, KA, long, OT 1.830000
7 RLX ENG, KA, long, HS 0.009720
8 RLX ENG, KA, long, IV 2.13E-06
9 RSL DEL, OT, short KA 0.389484
10 RSL DEL, OT, short IV 2.00E-18
11 RSL DEL, OT, short HS 9.57E-26

5. RESULTS AND ANALYSIS
The learning policies generated by the profit sharing algo-
rithm on the learning behavior data consisted of rules based
on the state and action representation used. There were
many rules due to our selected state-action space, but we
observed four categories after analyzing the data– Prolonged
learning (PRL), Cognitive disequilibrium handling (CDH),
Relaxation (RLX) and Resumed learning (RSL). Table 1
presents examples of each category which were taken from
the learning policy of the doctoral physics student who was
experimenting with her data and used its results for writing
a conference paper.

PRL rules refer to states wherein students feel engaged while
performing a learning-related activity and switch to another
learning-related activity. It describes how long a certain
type of activity could be e↵ective and what other activities
may complement it. Taking the physics student’s data as an
example, let us consider that she was looking into di↵erent
concepts for data manipulation because she needed it for
writing her conference paper. According to rules 1 and 2, it
was better for her to try and run an experiment on her data
(i.e., apply knowledge), before shifting to a di↵erent concept
(i.e., view information source). This would allow her to have
a better understanding of the concept and allow her to write
the paper more easily.

CDH rules refer to states wherein students adapt their be-
havior to handle negative a↵ect (e.g., confusion or boredom)
while learning. These give an idea how long to stay in a con-
fusing or bored learning state before shifting to an activity
that will probably alleviate the problem. For example, rule
3 indicates that it is probably better to find a di↵erent in-
formation source if it is confusing instead of spending a lot
time trying to understand it. Rule 5 also indicates that it is
not a good idea to just engage in o↵-task activities when it
is di�cult to understand a certain information source.

RLX rules refer to states wherein students relax or shift
to o↵-task activities after learning. According to rule 6, it
was e↵ective for the student to relax after spending a long
time learning. This supports claims that o↵-task activities
or relaxation are important for continued learning [7].

RSL rules refer to cases wherein students shift back to learn-
ing from an o↵-task activity. It seemed that the utility for
performing actions in this category are context-dependent.



Table 2: Rule correctness over learning episodes

Ep + - New+ New� Unknown Reward
2 0 0 1 0 3 4
3 1 0 2 1 1 3
4 12 0 5 0 1 4
5 4 51 0 1 6 2

For example, according to rule 9, it was more e↵ective to
apply knowledge probably because the goal was to write
a conference paper. Spending too much time reading in-
formation sources would help, but not directly lead to the
achievement of the goal. This e↵ect is important to consider
because if students change their goals, the policy may not be
directly applicable to the new goal. A separate experiment
needs to be conducted to observe how the architecture will
handle such scenarios. We think however that the speed in
which the algorithm adjusts the learning policy is a good
factor that can make it capable of handling such changes.

After a student completes a learning episode, an updated
learning policy can now be used to generate feedback. The
feedback will be based on five cases: the student chooses the
best action according to the policy (+), the student does
not choose the best action according to the policy (-), the
student tries a new action which has better results than the
best action in the policy (New+), the student tries a new
action which has worse results than the best action in the
policy (New�) and the student performs the only action
associated to a state in the policy or the student performs
an action in an unknown state for the first time such that
the policy will not be able to identify if there is a better
action (Unknown).

We simulated how feedback would be generated for these
five cases by testing the algorithm on data from the same
student. The student’s actions in the first learning episode
were used to build an initial policy. No feedback was gener-
ated at this point because learning policy would only contain
rules based on the current episode. Feedback for the second
episode could now be generated because it can be compared
with the learning policy created using data from the first
learning episode. The learning policy was updated using
data from the second episode, and was used to generate
feedback for the third learning episode. This was repeated
for all remaining learning episodes. Table 2 presents the
number of times each case is encountered as new learning
episodes are experienced by the student.

The table shows that the student implemented a few rules
in episode two which was caused by the student spending a
long time performing an activity. We see that her learning
policy was updated with three new rules as well as a new
e↵ective action (i.e., performing an o↵-task activity after
spending a long time experimenting with data). The high
reward value indicates that the student did well because
all actions, including those unknown actions, were e↵ective.
This was confirmed by checking her updated learning policy
generated in the fifth episode. The unknown actions were
in fact the best actions in their corresponding states (i.e.,
performing an o↵-task activity after spending some time ex-
perimenting with data, resume data experimentation after

a short o↵-task activity and consulting a friend about the
experiment after a short o↵-task activity). The student also
performed few actions in the third episode but gave it a
smaller reward value probably because she spent too much
time talking to a friend even though the other actions were
e↵ective (i.e., resuming data experimentation after a short
o↵-task activity and viewing a paper after some time ex-
perimenting with data). In the fourth episode, the student
constantly performed e↵ective actions and even discovered
a new action which probably caused the increase in reward.
Finally in the fifth episode, the student performed a lot of
ine↵ective actions which probably caused the big decrease in
the reward value. Specifically, as we have discussed earlier,
she spent short amounts of time repeatedly viewing di↵er-
ent information sources. The policy indicated that it would
have been better for her to apply knowledge, which in her
context would mean either writing the paper or experiment-
ing with her data. This could in fact be an e↵ective strategy
because she could verify and learn more about the concept
by applying it rather than moving on to another concept
right away.

Our results also showed that there was a relationship be-
tween the number of times students correctly followed rules
in their learning policy and their learning e↵ectiveness rat-
ing. Figure 3 presents graphs corresponding to each student
showing this relationship. The learning e↵ectiveness ratings
were expressed as ratios relative to the highest rating (i.e.,
five) and the number of correct actions were expressed as
ratios relative to the total number of actions in the learning
episode. The trend indicates that the learning policy was
able to identify e↵ective actions from the students’ behavior
such that when the students selected more e↵ective actions
(i.e., based on the learning policy), they also had a more
e↵ective learning episode. This means that if the student
will be able to follow the feedback provided by the system
in succeeding learning episodes, it is likely for them to have
more e↵ective learning experiences.

6. CONCLUSION AND FUTURE WORK
We have presented an architecture for collecting students’
learning behavior data, uncovering e↵ective learning behav-
iors and using them to help students manage their learning.
The approach does not require a specific learning environ-
ment so the student’s behavior is naturalistic and captures
how he/she actually learns. However, it does require stu-
dents to annotate their data. Annotation is done after learn-
ing so it does not require additional cognitive load during
the learning episode. Desktop and web cam screenshots can
help students recall the context in which they learned and
can likely improve annotation accuracy.

The profit sharing algorithm was used for building learning
policies that contained rules describing an action’s e↵ective-
ness in a particular state. Learning policies generated from
previous learning episodes can be compared with data from
the current learning episode to identify which actions were
e↵ective or ine↵ective and generate feedback accordingly.
Feedback about possible improvements can be useful for stu-
dents to adapt their actions in future learning episodes.

Simulations from actual data showed that updating the learn-
ing policy also changed the resulting feedback such that



Figure 3: Relationship between action correctness

and student rating

newer, more e↵ective actions were presented to the student.
This helps ensure that the student will always be prompted
to select the most e↵ective learning behavior. The relation-
ship between the number of e↵ective rules followed by the
student and their learning e↵ectiveness ratings indicate that
the learning policy-based feedback will have a good chance
of helping students learn more e↵ectively.

The architecture we have designed still has some issues that
need to be addressed. Our state representation did not con-
tain information regarding students’ metacognitive evalu-
ations. Although we used emotions to approximate these
evaluations, asking students to annotate them will be more
accurate and create better policies. The reward values we
used were based on students’ self-evaluations and it would
be interesting to see the di↵erence when using learning gains
instead (e.g., asking students to take a pretest and posttest).
Combining both learning gains and self-evaluation to create
the reward value may be a better measurement because it
will consider both the student’s preferred learning behavior
and knowledge gained.

Our architecture also faces a common problem in RL called
the exploration-exploitation problem. In order for the pol-
icy to be optimal, students need to try as much actions as
possible. Due to the approach’s reliance on the student’s
learning behavior, it cannot suggest actions outside of the
current learning policy. This would require mechanisms for
suggesting actions not in the learning policy such as using
other students’ learning policies or using expert knowledge.

Even though the approach can create policies that span
across learning episodes, it has only been tested with learn-
ing episodes having the same goal. In the case of our data,
students were either writing a conference paper or creating
a power point presentation. It will be more useful if it could
also be used across di↵erent learning goals. The current ap-
proach needs to be tested to see how well it fares in such a
case and necessary modifications need to be applied accord-
ingly.

The data we used was collected from adult learners and may
be e↵ective for them. However, according to Pressley et. al.

[9], children have di�culty in verifying learning strategy util-
ity even after practice. It is possible that additional feedback
may be needed to fit this approach to younger learners.
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