
Corpus Analysis to Extract Information
Fabrice Even

IRIN - University of Nantes
2 rue de la Houssinière
44322 Nantes, France

even@irin.univ-nantes.fr

ABSTRACT
This article presents an automatic information extraction
method from poor quality specific-domain corpora. This
method is based on building a semi-formal ontology in
order to model information present in the corpus and its
relation. This approach takes place in four steps: corpus
normalization by a correcting process, ontology building
from texts and external knowledge, model formalization in
grammar and the information extraction itself, which is
made by a tagging process using grammar rules. After a
description of the different stages of our method, experi-
mentation on a French bank corpus is presented.

Keywords
Information extraction, modeling, building ontology, poor
quality corpus, corpus correction.

INTRODUCTION
This research stems from the need for information extrac-
tion from a poor quality corpus (without punctuation, with
poor syntax and a lot of abbreviations). In our approach,
the modeling of information needed and its identification in
the corpus carry out information extraction. The modeling
uses external knowledge sources to construct a semi-formal
ontology, which covers a part of the corpus domain, i.e.
only the knowledge actually described in corpus. This on-
tology is used to extract information.
After a brief presentation of different ontology-building
methods, a presentation of our method is made by a de-
scription of its different stages: a corpus partial correction,
ontology building from this corrected corpus and external
knowledge, the ontology representation by a grammar and
the information extraction engine based on this grammar.
The results are evaluated and analyzed.
We work on a French corpus composed of bank texts.
These texts are compilations of interviews between bank
employees and clients. Our goal is to automatically extract

specific information about clients (future plans, evolution
of their family situation, etc.) to expand a database.

1 ONTOLOGY BUILDING METHODS
There are a lot of methods to build ontology from corpora.
Most of them are based on text content. In these ap-
proaches, texts are the main source for knowledge acquisi-
tion [10]. Concepts and relations result only from a corpus
analysis, without external knowledge. Aussenac-Gilles and
al. [1] follow this point of view but affirm that there can be
other knowledge sources than corpus. Such an approach
includes two steps. The first one consists of the construc-
tion by a corpus terminological and linguistic analysis, of a
first set of concepts that corresponds to terms (conceptual
primitives [10]) and the extraction of lexical relations. The
result of this stage is a base of primitive concepts and first
concept relations (terminological knowledge base [1] &
[9]). In this stage, the designer has to select terms and rela-
tions that will be modeled, those that are relevant and in the
case of several meanings for one term or relation, which
one must be kept. The second step is based on conceptual
modeling by a study of the semantic relations between
terms. This analysis gives new concept relations and new
concepts, which are added to the first one. This new set of
concepts and relations is also structured into a concept se-
mantic network. An expert of the corpus domain must vali-
date this network to express which relations are relevant
(normalization [5]). The result of the entire process is a
hierarchical structure of a set of terms of the domain [12].
This model is also an ontology, which can be formalized by
a formal or semi-formal representation.
Using such a method is powerful for syntactically correct
texts but not for poor quality corpora. The terminological
step is conceivable after corpus partial correction but lexi-
cal and semantic relation extraction are impossible. Indeed
linguistic tools are highly ineffective on syntactical and
lexical poor corpora.
So for such poor quality corpora, our approach can be
based on a terminological analysis for first concept identi-
fication but a solution other than classical methods must be
found for the other modeling steps (terminological knowl-
edge base and semantic network building).

2 CORPUS CORRECTION
The texts from our corpus are distinguished by a lot of ty-
pological errors, spelling mistakes and the use of non-
standard abbreviations.
These characteristics make a correction and normalization
step necessary. Indeed using the texts directly without cor-
rection gives a lot of undesirable information and causes a
poor coverage of information. Therefore modeling and
information extraction starts from the corrected corpus.
This step concerns value formats (normalization of num-
bers with unit), dates (unique numeric representation and
specific abbreviation treatment such days or month), ab-
breviation standardization (substitution of abbreviations
specific to the texts or the writers by a unique one) and
orthographical correction of lexical and typological errors.
This correction process is carried out with a set of contex-
tual rules written after a lexical study of the corpus. Auto-
mata are used on the texts to applied rules.

3 DOMAIN MODEL BUILDING
According to Bachimont [3], there are no independent con-
cepts from context or current problems, which allow build-
ing the whole knowledge of a particular domain. Ontology
works like a theoretical framework of a domain and is built
according to a current problem. The modeling process de-
scribed here is based on this definition. Ontology is built
from knowledge found in the corpus and from external
knowledge (experts).

3.1 Initial ontology definition
The information searched is first informally expressed (in
natural language) and next converted into predicates. These
predicates are described by information patterns. This work
must be done with domain experts or information extrac-
tion final users with a wide knowledge of the domain and
who are able to express exactly what information must be
extracted. This step gives a set of concept hierarchies. This
set is the first sub-ontology (initial ontology), which is
composed of predicative relations between concepts (there
is a relation between two concepts when one of them is an
attribute of the other). These relations are in accordance
with the Attribute Consistency Postulate [8]: in each predi-
cative relation, any value of an attribute is also an instance
of the concept corresponding to that attribute.

3.2 Terminology definition
The terminology is built from the union of two sets of
terms. The first is made by a terminological study of texts
by linguistic tools as ANA [6]. The other is built by a set of
documents about domain terminology where terms that can
be used in texts are found (domain technical documents for
example).

3.3 Normalization
There is not a direct correspondence between each term
and a concept from initial ontology. But these concepts

have to be bound to corpus terms, so a normalization proc-
ess is necessary. This process takes place in three steps:
initial ontology extension, terminological knowledge base
(TKB) building and unification of models.

3.3.1 Initial ontology extension
Initial ontology is revised with domain experts. Some new
concepts that stemmed from this first set of concepts are
defined and added to hierarchy. This gives an extended
initial ontology.

3.3.2 TKB building
With these same experts and domain specific documents, a
new set of concepts is built from terminology: the basic
concepts. From these basic concepts, others are defined
recursively by inheritance. The result is a set of small hier-
archies with, for each one a unique ancestor whose last heir
is a basic concept. These hierarchies are normalized: each
father is divided into sons by a unique criterion. They also
respect the Guarino-Rigid-Property [7].

3.3.3 Models Unification
The two precedent processes give ontology linked to the
current problem and a hierarchical structure linked to texts.
We proceed to the unification of these two models. The
extended initial ontology is unified with a hierarchy if it
ancestor is a concept of the initial ontology or if a relation
can be built between this ancestor and concepts from this
ontology.

After these three steps, domain model is obtained, which
covers all concepts relevant for information searching. An
oriented graph diagram first describes this model. This
model defines a semi-formal ontology because it is not
dependent on a representation language [4].

4 FORMAL REPRESENTATION
To make the model usable, it is formalized into a grammar.
As seen in last section, two relation types are found in this
model: hierarchical relations and predicative relations. The
grammar must represent these two types of relation. Also
two sorts of rules are defined. On the one hand, constituent
rules, which represent hierarchical relations, are defined.
When we have a hierarchical relation between two con-
cepts A and B, with B a son of A, we say that B constitutes
A. On the other hand predicative rules are defined to repre-
sent predicative relations. When we have a predicative rela-
tion between two concepts C and D, D is an attribute of C
(the type of attribute depends on the relation). All these
rules are written with a BNF-like description.

4.1 Constituent rules
A concept C is defined by a set of rules Def(C). These rules
concern terms or concepts. For each X from Def(C), X
only defines C, never another concept. The notation for
these rules is C ::= Def(C). There are three sorts of con-

stituent rules: select rules, conjunctive rules and disjunc-
tives rules.

4.1.1 Select rules
The form of select rules is: C ::= B1 | B2 | The concept
C is defined by B1 or by B2 but not by both of them at the
same time.
Examples:
<VEHICLE> ::= <CAR> | <MOTO>
 | <OTHER_VEH>
<CAR> ::= ford | mercedes | …

4.1.2 Conjunctive rules
 The form of conjunctive rules is: C ::= B1 + B2 +
The concept C is defined by a set of concepts in which all
concepts are necessary to define C.
Example: <MORTGAGE> ::= <DC_LOAN> +
<PROPERTY>

4.1.3 Disjunctive rules
The form of disjunctive rules is: C ::= B1 v B2 v
The concept C is defined by B1 or by B2 or by both of
them.
Example: <PERSON> ::= <NAME> v <FIRST_NAME>

4.2 Predicative rules
These rules describe predicative concepts (also called
predicate). These are concepts with attribute. Predicative
relations define links between these concepts and their at-
tributes. These rules define a predicate by one descriptor
and one main attribute: the object. For a predicate, the de-
scriptor is a unique concept, this mean that a concept can-
not be the descriptor for more than one rule. The object is
one of a set of possible concepts (this set is defined by the
model).
These rules can have some optional attributes. These at-
tributes give more information on the predicate but are nei-
ther necessary nor sufficient to define it.
Predicative rules are written: P ::= (descriptor = D; object =
O1 | O2 | O3 | ... ; option1 = A1 | A2 | A3 | ... ; option2 =
B1 | B2 | ... ; ...)
Example: PURCHASE predicate is described by figure 1.

5 EXTRACTION ENGINE
The extraction engine is based on the grammar modeling of
the domain. It proceeds in four steps: rules database crea-
tion, two tagging processes and information collection.
Rules database is composed of two sets of rules (constitu-
ent and predicative) inferred from the grammar. Constitu-
ent tagging is based on database constituent rules (each
term and concept is tagged according to database rules).
Second tagging is based on predicative database rules for
instantiate predicates. After these step, information is col-
lected directly. This information will expand a database.

5.1 Constituent tagging
Constituent tagging find terms, and then concepts in the
text by recursive applications of constituent rules. Each
time a concept is found, a tag marks it up.
Some specific concepts (with a known syntax) such as
sums, rates or dates are tagged first. After that, tagging
takes place in two steps: term tagging then concept propa-
gation.
Some select rules define concepts from terms. In term tag-
ging, these rules are applied to the corpus (for each rule C
::= t, tags of concept C mark the term t in the text). When
all these rules are applied, every term in the grammar is
tagged by concepts.
With concept propagation, some new concepts are found.
When a rule A ::= B exists, tags of A are added to tags of B
in the corpus. So concept A is marked in the texts.
Conceptual rules are applied until none of them is applica-
ble. Then the corpus is completely tagged by constituent
rules (cf. figure 2).

5.2 Predicative tagging
Application of predicative rules detects in the texts the in-
stances of grammar predicates. Each time a predicate de-

<PURCHASE> ::=
 (
 descriptor = <DC_PURCHASE> ;
 object = <PROPERTY>
 | <VEHICLE>
 | <BANK_PRODUCT>;
 date = <DATE>;
 amount = <SUM>
 location = <PLACE>
)

Figure 1: PURCHASE predicate

The text “buy studio london in 2003” becomes after
constituent tagging:

<DC_PURCHASE>buy</DC_PURCHASE>
<PROPERTY><APARTMENT>studio
</APARTMENT><PROPERTY>
<PLACE><CITY>london</CITY></PLACE>
in <DATE>2003</DATE>

with the rules :
<DC_PURCHASE> ::= buy | bought

<APARTMENT> ::= studio | apartment | loft

<CITY> ::= london | paris | tokyo

<PROPERTY> ::= <APARTMENT> | <HOUSE>

<PLACE> ::= <COUNTRY> | <CITY> | <REGION>

Figure 2: Example of predicative tagging

scriptor is found, the process search one of the concepts
defined as possible object for this predicate.
Predicates are instantiated until it is impossible to do. This
proceeds as follow. Text is processed from left to right.
When a predicate's descriptor is recognized, the process
looks for a correct object (concept or predicate) for this
predicate before the next concept that is a descriptor of
another untreated predicate instance. If a correct object is
found, the attribute object is given a value for this predicate
instance. Next the process tries to give a value to the op-
tional attributes by looking at correct concepts in the text
located between the descriptor of this predicate and the
next one. After that, the system treats the next descriptor in
the text.
 If no correct object is found, this descriptor is left and the
system immediately treats the next descriptor. This process
is made right to the end of text. At this point, if untreated
descriptors (that define predicate instance without a found
object) are left, the process is repeated from the text's be-
ginning. The operation is repeated until there are no de-
scriptors left to treat or only those that cannot be treated. If
such descriptors are left, they are marked as defining empty
predicate instances (instances without an object).

A predicate P1 can be the object of another one (P2). In
this case those of P2 give values to attributes of P1 when
possible.

Predicate instantiation is made through a text tagging proc-
ess. The system tags the descriptor by a predicate reference
(the predicate name and an instance number to distinguish
different instances of the same predicate). Each predicate
attribute is tagged by the predicate reference and its type
(Object, Date, Location...).
Example: from the extract described in figure 2, after ap-
plying the predicative rules, we obtain the tagging text and
the predicate instance described by figure 3.

6 INFORMATION RETRIEVING
After constituent and predicative tagging, tags make con-
cepts and relations clearly readable in the corpus. In the
retrieving step, all that has to be done to specify the con-
cepts to be searched. With the tags, the system can easily
locate these concepts and their different attributes. In this
step empty predicates are ignored. This information feeds a
database in which tables correspond to grammar predicate.

7 RESULTS
We have a corpus with around one million records. Each
record is taken from an interview between a client and a
bank employee. It is composed of a numerical heading and
a text area. In the heading, there is an identification number
and the recording date. The text area is filled with the in-
terview report written by the employee. The text size varies
from record to record: from a few to thirty words. Before
text analysis, the text area is treated to make it in confor-
mity with Data Protection Act. Terminological extraction
with ANA defines a first set of 15000 term-candidates.
After creaming off this set, 1300 remain. Terminological
documents (which contain about 350 terms) give 200 new
terms. So the terminological step gives us a set of 1500
terms.

7.1 Evaluation method
The goal of this research is to extract client events. These
events are client projects and the proposition refusals (from
the bank or from the client). The result is a set of searching
predicate instances. As there are different attributes for a
predicate, three degrees of precision are defined, which
depend upon the way these attributes are given a value.
A predicate instance is called valid if the value is correct
for attributes, which are given a value (not all the attributes
need to be given a value). The validity rate is the number of
valid instance per number of instances found.
A valid instance is called totally valid if all of these attrib-
utes are given a value and partially valid if one or more
attribute is not given a value.
A partially valid instance is called incomplete when one or
more attributes is not given a value because of a process
mistake and complete when all of the attributes are not
given a value because of a lack of information in the cor-
pus.

<PURCHASE_1>

 <DC_PURCHASE>buy</DC_PURCHASE>
</PURCHASE_1>
<PURCHASE_1 ARG=object>
 <PROPERTY>
 <APARTMENT>studio</APARTMENT>
 <PROPERTY>
</PURCHASE_1 ARG=object>
<PURCHASE_1 ARG=location>
 <PLACE><CITY>london</CITY></PLACE>
</PURCHASE_1 ARG=location>
in
</PURCHASE_1 ARG=date>
 <DATE>2003</DATE>
</PURCHASE_1 ARG=date>

Therefore we obtain this instance of PURCHASE predicate:

<PURCHASE_1>

[

 DESCRIPTOR = buy
 OBJECT = studio

DATE = 2003
LOCATION = london
AMOUNT = ∅

]

Figure 3: Example of predicative tagging

7.2 Experimentation
Our experiment focuses on a representative sample of
10,000 records taken at random in the corpus. The experi-
ment has been carried out with the aim of extracting the
clients' projects from this sample. The results found are
validated by experts who have aligned the sample with the
table PROJECT in the database filled by our system. Ac-
cording to them, 651 projects are in this sample. The sys-
tem detects 623 instances of the predicate PROJECT.
These instances are detailled as follow : 589 valid instances
of which 72 are totally valids. Also the system found 517
partially valid instances of whom 385 are complete and 132
are incomplete.

7.3 Analysis
The coverage rate is not revealing because a lot of records
do not contain projects (95%). The recall rate (number of
both instances found per number of instances in the corpus)
and the validity rate (respectively 95.7% and 94.5%) are
both very satisfactory but a lot of instances are partially
valid (88% of valid projects). 74.5% of these instances are
partially valid because of corpus non-fulfillment but the
other 25.5% are imputable to the system. We are working
at present to reduce the number of incomplete partially
valid instances. For this, after a predicative tagging from
left to right, we are considering repeating the process from
right to left to first complete optional arguments of predi-
cate instances found and last to try treating the predicate
descriptors left by left to right process (defining new predi-
cate instances by detecting objects and arguments). After
this right to left step we'll have to repeat the process from
left to right because some arguments of new instances can
be located on the left of the descriptor.

CONCLUSION
As usual information extraction processes are unusable on
poor quality texts, we described a method to extract infor-
mation from this type of corpus. This approach is based on
ontology building led by the type of information to be
searched in texts. Good results have been obtained with a
very wide cover of information in each record, even for
record containing very little information. This method can
easily be applied to other corpora and to other domains.
The different parts of our system are based on generic
methods and do not need modifications to be used with
another corpus. Currently experimentations are being car-
ried out to that end.

REFERENCES
[1] Aussenac-Gilles N., Biébow B. and Szulman S., Cor-

pus analysis for conceptual modeling. Proceeding of
EKAW'2000, pp. 13-20, Juan-les-Pins, France, 2000.

[2] Aussenac-Gilles N., Bourrigault D., Codamines A. and
Gross C., How can knowledge acquisition benefit from
terminology. Proceeding of the Ninth Knowledge Ac-
quisition for Knowledge-Based Systems Workshop
(KAW '95), Banff, Canada, 1995

[3] Bachimont B., Modélisation linguistique et modélisa-
tion logique des ontologies : l'apport de l'ontologie for-
melle, Proceeding of IC2001, pp. 349-368, Grenoble,
France, 2001.

[4] Barry C., Cormier C., Kassel G. and Nobécourt J.,
Evaluation de langages opérationnels de représentation
d'ontologies. Proceeding of IC'2001, pp. 309-327,
Grenoble, France, 2001.

[5] Bouaud J., Bachimont B., Charlet J. and Zweigenbaum
P., Methodological Principles for Structuring an On-
tology. Proceeding of IJCAI-95 Workshop on Basic
Ontological Issues in Knowledge Sharing, Montreal,
Canada, 1995.

[6] Enguehard C. and Pantéra L., Automatic Natural Ac-
quisition of a Terminology. Journal of quantitative lin-
guistics, Vol. 2, n°1, pp.27-32, 1995.

[7] Guarino N. and Welty W., A Formal Ontology of
Properties. Proceedings of the ICAI-00 Work-shop on
Applications of Ontologies and Problem-Solving
Methods, pp. 12/1-12/8, Las Vegas, United States,
2000.

[8] Guarino N., Concepts, Attributes and Arbitrary Rela-
tions : Some Linguistic and Ontological Criteria for
Structuring Knowledge Bases. Data & Knowledge
Bases Engineering, Vol. 8(2), pp. 249-261, 1992.

[9] Lame G. Knowledge acquisition from texts to-wards
an ontology of French law. Proceedings of
EKAW'2000, pp. 53-62, Juan-les-Pins, France, 2000.

[10] Nobécourt J., A method to build formal ontologies
from texts. Proceedings of EKAW'2000, pp. 21-27,
Juan-les-Pins, France, 2000.

[11] Nestorov S. & al., Representative objects : concise
representation of semistructured, hierarchical data.
Proceedings of International Conference on Data En-
gineering, pp. 79-90, Birmingham, United Kingdom,
1997.

[12] Swartout B., Patil R., Knight K. and Russ T., Towards
distributed use of large-scale ontologies. Proceedings
of the Tenth Knowledge Acquisition for Knowledge-
Based Systems Workshop (KAW '96), pp. 32.1-32.19,
Banff, Canada, 1996.

