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ABSTRACT 
This article presents an automatic information extraction 
method from poor quality specific-domain corpora. This 
method is based on building a semi-formal ontology in 
order to model information present in the corpus and its 
relation. This approach takes place in four steps: corpus 
normalization by a correcting process, ontology building 
from texts and external knowledge, model formalization in 
grammar and the information extraction itself, which is 
made by a tagging process using grammar rules. After a 
description of the different stages of our method, experi-
mentation on a French bank corpus is presented. 
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INTRODUCTION 
This research stems from the need for information extrac-
tion from a poor quality corpus (without punctuation, with 
poor syntax and a lot of abbreviations). In our approach, 
the modeling of information needed and its identification in 
the corpus carry out information extraction. The modeling 
uses external knowledge sources to construct a semi-formal 
ontology, which covers a part of the corpus domain, i.e. 
only the knowledge actually described in corpus. This on-
tology is used to extract information. 
After a brief presentation of different ontology-building 
methods, a presentation of our method is made by a de-
scription of its different stages: a corpus partial correction, 
ontology building from this corrected corpus and external 
knowledge, the ontology representation by a grammar and 
the information extraction engine based on this grammar. 
The results are evaluated and analyzed. 
We work on a French corpus composed of bank texts. 
These texts are compilations of interviews between bank 
employees and clients. Our goal is to automatically extract 

specific information about clients (future plans, evolution 
of their family situation, etc.) to expand a database. 

1 ONTOLOGY BUILDING METHODS 
There are a lot of methods to build ontology from corpora. 
Most of them are based on text content. In these ap-
proaches, texts are the main source for knowledge acquisi-
tion [10]. Concepts and relations result only from a corpus 
analysis, without external knowledge. Aussenac-Gilles and 
al. [1] follow this point of view but affirm that there can be 
other knowledge sources than corpus. Such an approach 
includes two steps. The first one consists of the construc-
tion by a corpus terminological and linguistic analysis, of a 
first set of concepts that corresponds to terms (conceptual 
primitives [10]) and the extraction of lexical relations. The 
result of this stage is a base of primitive concepts and first 
concept relations (terminological knowledge base [1] & 
[9]). In this stage, the designer has to select terms and rela-
tions that will be modeled, those that are relevant and in the 
case of several meanings for one term or relation, which 
one must be kept. The second step is based on conceptual 
modeling by a study of the semantic relations between 
terms. This analysis gives new concept relations and new 
concepts, which are added to the first one. This new set of 
concepts and relations is also structured into a concept se-
mantic network. An expert of the corpus domain must vali-
date this network to express which relations are relevant 
(normalization [5]). The result of the entire process is a 
hierarchical structure of a set of terms of the domain [12]. 
This model is also an ontology, which can be formalized by 
a formal or semi-formal representation. 
Using such a method is powerful for syntactically correct 
texts but not for poor quality corpora. The terminological 
step is conceivable after corpus partial correction but lexi-
cal and semantic relation extraction are impossible. Indeed 
linguistic tools are highly ineffective on syntactical and 
lexical poor corpora. 
So for such poor quality corpora, our approach can be 
based on a terminological analysis for first concept identi-
fication but a solution other than classical methods must be 
found for the other modeling steps (terminological knowl-
edge base and semantic network building). 

 

 



2 CORPUS CORRECTION 
The texts from our corpus are distinguished by a lot of ty-
pological errors, spelling mistakes and the use of non-
standard abbreviations.  
These characteristics make a correction and normalization 
step necessary. Indeed using the texts directly without cor-
rection gives a lot of undesirable information and causes a 
poor coverage of information. Therefore modeling and 
information extraction starts from the corrected corpus. 
This step concerns value formats (normalization of num-
bers with unit), dates (unique numeric representation and 
specific abbreviation treatment such days or month), ab-
breviation standardization (substitution of abbreviations 
specific to the texts or the writers by a unique one) and 
orthographical correction of lexical and typological errors.  
This correction process is carried out with a set of contex-
tual rules written after a lexical study of the corpus. Auto-
mata are used on the texts to applied rules.  

3 DOMAIN MODEL BUILDING 
According to Bachimont [3], there are no independent con-
cepts from context or current problems, which allow build-
ing the whole knowledge of a particular domain. Ontology 
works like a theoretical framework of a domain and is built 
according to a current problem. The modeling process de-
scribed here is based on this definition. Ontology is built 
from knowledge found in the corpus and from external 
knowledge (experts). 

3.1 Initial ontology definition 
The information searched is first informally expressed (in 
natural language) and next converted into predicates. These 
predicates are described by information patterns. This work 
must be done with domain experts or information extrac-
tion final users with a wide knowledge of the domain and 
who are able to express exactly what information must be 
extracted. This step gives a set of concept hierarchies. This 
set is the first sub-ontology (initial ontology), which is 
composed of predicative relations between concepts (there 
is a relation between two concepts when one of them is an 
attribute of the other). These relations are in accordance 
with the Attribute Consistency Postulate [8]: in each predi-
cative relation, any value of an attribute is also an instance 
of the concept corresponding to that attribute. 

3.2 Terminology definition 
The terminology is built from the union of two sets of 
terms. The first is made by a terminological study of texts 
by linguistic tools as ANA [6]. The other is built by a set of 
documents about domain terminology where terms that can 
be used in texts are found (domain technical documents for 
example). 

3.3 Normalization  
There is not a direct correspondence between each term 
and a concept from initial ontology. But these concepts 

have to be bound to corpus terms, so a normalization proc-
ess is necessary. This process takes place in three steps: 
initial ontology extension, terminological knowledge base 
(TKB) building and unification of models. 

3.3.1 Initial ontology extension 
Initial ontology is revised with domain experts. Some new 
concepts that stemmed from this first set of concepts are 
defined and added to hierarchy. This gives an extended 
initial ontology. 

3.3.2 TKB building 
With these same experts and domain specific documents, a 
new set of concepts is built from terminology: the basic 
concepts. From these basic concepts, others are defined 
recursively by inheritance. The result is a set of small hier-
archies with, for each one a unique ancestor whose last heir 
is a basic concept. These hierarchies are normalized: each 
father is divided into sons by a unique criterion. They also 
respect the Guarino-Rigid-Property [7]. 

3.3.3 Models Unification 
The two precedent processes give ontology linked to the 
current problem and a hierarchical structure linked to texts. 
We proceed to the unification of these two models. The 
extended initial ontology is unified with a hierarchy if it 
ancestor is a concept of the initial ontology or if a relation 
can be built between this ancestor and concepts from this 
ontology. 

After these three steps, domain model is obtained, which 
covers all concepts relevant for information searching. An 
oriented graph diagram first describes this model. This 
model defines a semi-formal ontology because it is not 
dependent on a representation language [4]. 

4 FORMAL REPRESENTATION 
To make the model usable, it is formalized into a grammar. 
As seen in last section, two relation types are found in this 
model: hierarchical relations and predicative relations. The 
grammar must represent these two types of relation. Also 
two sorts of rules are defined. On the one hand, constituent 
rules, which represent hierarchical relations, are defined. 
When we have a hierarchical relation between two con-
cepts A and B, with B a son of A, we say that B constitutes 
A. On the other hand predicative rules are defined to repre-
sent predicative relations. When we have a predicative rela-
tion between two concepts C and D, D is an attribute of C 
(the type of attribute depends on the relation). All these 
rules are written with a BNF-like description. 

4.1 Constituent rules 
A concept C is defined by a set of rules Def(C). These rules 
concern terms or concepts. For each X from Def(C), X 
only defines C, never another concept. The notation for 
these rules is C ::= Def(C). There are three sorts of con-



stituent rules: select rules, conjunctive rules and disjunc-
tives rules. 

4.1.1 Select rules 
The form of select rules is: C ::= B1 | B2 | ... . The concept 
C is defined by B1 or by B2 but not by both of them at the 
same time.  
Examples: 
<VEHICLE> ::= <CAR> | <MOTO>     
   | <OTHER_VEH> 
<CAR> ::= ford | mercedes | … 

4.1.2 Conjunctive rules 
 The form of conjunctive rules is: C ::= B1 + B2 + ... .  
The concept C is defined by a set of concepts in which all 
concepts are necessary to define C.  
Example: <MORTGAGE> ::= <DC_LOAN> + 
<PROPERTY> 

4.1.3 Disjunctive rules 
The form of disjunctive rules is: C ::= B1 v B2 v ... .      
The concept C is defined by B1 or by B2 or by both of 
them.  
Example: <PERSON> ::= <NAME> v <FIRST_NAME> 

4.2 Predicative rules 
These rules describe predicative concepts (also called 
predicate). These are concepts with attribute. Predicative 
relations define links between these concepts and their at-
tributes. These rules define a predicate by one descriptor 
and one main attribute: the object. For a predicate, the de-
scriptor is a unique concept, this mean that a concept can-
not be the descriptor for more than one rule. The object is 
one of a set of possible concepts (this set is defined by the 
model). 
These rules can have some optional attributes. These at-
tributes give more information on the predicate but are nei-
ther necessary nor sufficient to define it. 
Predicative rules are written: P ::= (descriptor = D; object = 
O1 | O2 | O3 | ... ; option1 = A1 | A2 | A3 | ... ; option2 = 
B1 | B2 | ... ; ...) 
Example: PURCHASE predicate is described by figure 1.  
 
 

 
 
 
 
 
 
 
 

5 EXTRACTION ENGINE 
The extraction engine is based on the grammar modeling of 
the domain. It proceeds in four steps: rules database crea-
tion, two tagging processes and information collection. 
Rules database is composed of two sets of rules (constitu-
ent and predicative) inferred from the grammar. Constitu-
ent tagging is based on database constituent rules (each 
term and concept is tagged according to database rules). 
Second tagging is based on predicative database rules for 
instantiate predicates. After these step, information is col-
lected directly. This information will expand a database. 

5.1 Constituent tagging 
Constituent tagging find terms, and then concepts in the 
text by recursive applications of constituent rules. Each 
time a concept is found, a tag marks it up.  
Some specific concepts (with a known syntax) such as 
sums, rates or dates are tagged first. After that, tagging 
takes place in two steps: term tagging then concept propa-
gation.  
Some select rules define concepts from terms. In term tag-
ging, these rules are applied to the corpus (for each rule C 
::= t, tags of concept C mark the term t in the text). When 
all these rules are applied, every term in the grammar is 
tagged by concepts.  
With concept propagation, some new concepts are found. 
When a rule A ::= B exists, tags of A are added to tags of B 
in the corpus. So concept A is marked in the texts.  
Conceptual rules are applied until none of them is applica-
ble. Then the corpus is completely tagged by constituent 
rules (cf. figure 2). 

 

5.2 Predicative tagging 
Application of predicative rules detects in the texts the in-
stances of grammar predicates. Each time a predicate de-

<PURCHASE> ::= 
 ( 
 descriptor = <DC_PURCHASE> ; 
 object = <PROPERTY>  
  | <VEHICLE>  
  | <BANK_PRODUCT>;  
 date = <DATE>;  
 amount = <SUM> 
                 location = <PLACE> 
) 

Figure 1: PURCHASE predicate 

The text “buy studio london in 2003” becomes after 
constituent tagging: 
 

<DC_PURCHASE>buy</DC_PURCHASE>  
<PROPERTY><APARTMENT>studio 
</APARTMENT><PROPERTY>  
<PLACE><CITY>london</CITY></PLACE>  
in <DATE>2003</DATE> 

with the rules :  
<DC_PURCHASE> ::= buy | bought 

<APARTMENT> ::= studio | apartment | loft 

<CITY> ::= london | paris | tokyo 

<PROPERTY> ::= <APARTMENT> | <HOUSE> 

<PLACE> ::= <COUNTRY> | <CITY> | <REGION> 

Figure 2: Example of predicative tagging 



scriptor is found, the process search one of the concepts 
defined as possible object for this predicate.  
Predicates are instantiated until it is impossible to do. This 
proceeds as follow. Text is processed from left to right. 
When a predicate's descriptor is recognized, the process 
looks for a correct object (concept or predicate) for this 
predicate before the next concept that is a descriptor of 
another untreated predicate instance. If a correct object is 
found, the attribute object is given a value for this predicate 
instance. Next the process tries to give a value to the op-
tional attributes by looking at correct concepts in the text 
located between the descriptor of this predicate and the 
next one. After that, the system treats the next descriptor in 
the text. 
 If no correct object is found, this descriptor is left and the 
system immediately treats the next descriptor. This process 
is made right to the end of text. At this point, if untreated 
descriptors (that define predicate instance without a found 
object) are left, the process is repeated from the text's be-
ginning. The operation is repeated until there are no de-
scriptors left to treat or only those that cannot be treated. If 
such descriptors are left, they are marked as defining empty 
predicate instances (instances without an object).  

 
A predicate P1 can be the object of another one (P2). In 
this case those of P2 give values to attributes of P1 when 
possible. 

Predicate instantiation is made through a text tagging proc-
ess. The system tags the descriptor by a predicate reference 
(the predicate name and an instance number to distinguish 
different instances of the same predicate). Each predicate 
attribute is tagged by the predicate reference and its type 
(Object, Date, Location...). 
Example: from the extract described in figure 2, after ap-
plying the predicative rules, we obtain the tagging text and 
the predicate instance described by figure 3. 

6 INFORMATION RETRIEVING 
After constituent and predicative tagging, tags make con-
cepts and relations clearly readable in the corpus. In the 
retrieving step, all that has to be done to specify the con-
cepts to be searched. With the tags, the system can easily 
locate these concepts and their different attributes. In this 
step empty predicates are ignored. This information feeds a 
database in which tables correspond to grammar predicate.  

7 RESULTS 
We have a corpus with around one million records. Each 
record is taken from an interview between a client and a 
bank employee. It is composed of a numerical heading and 
a text area. In the heading, there is an identification number 
and the recording date. The text area is filled with the in-
terview report written by the employee. The text size varies 
from record to record: from a few to thirty words. Before 
text analysis, the text area is treated to make it in confor-
mity with Data Protection Act. Terminological extraction 
with ANA defines a first set of 15000 term-candidates. 
After creaming off this set, 1300 remain. Terminological 
documents (which contain about 350 terms) give 200 new 
terms. So the terminological step gives us a set of 1500 
terms. 

7.1 Evaluation method 
The goal of this research is to extract client events. These 
events are client projects and the proposition refusals (from 
the bank or from the client). The result is a set of searching 
predicate instances. As there are different attributes for a 
predicate, three degrees of precision are defined, which 
depend upon the way these attributes are given a value. 
A predicate instance is called valid if the value is correct 
for attributes, which are given a value (not all the attributes 
need to be given a value). The validity rate is the number of 
valid instance per number of instances found. 
A valid instance is called totally valid if all of these attrib-
utes are given a value and partially valid if one or more 
attribute is not given a value. 
A partially valid instance is called incomplete when one or 
more attributes is not given a value because of a process 
mistake and complete when all of the attributes are not 
given a value because of a lack of information in the cor-
pus. 

<PURCHASE_1> 

     <DC_PURCHASE>buy</DC_PURCHASE>   
</PURCHASE_1> 
<PURCHASE_1 ARG=object> 
     <PROPERTY> 
          <APARTMENT>studio</APARTMENT> 
     <PROPERTY> 
</PURCHASE_1 ARG=object> 
<PURCHASE_1 ARG=location> 
     <PLACE><CITY>london</CITY></PLACE>  
</PURCHASE_1 ARG=location> 
in  
</PURCHASE_1 ARG=date> 
    <DATE>2003</DATE> 
</PURCHASE_1 ARG=date> 

Therefore we obtain this instance of  PURCHASE  predicate:  

 

<PURCHASE_1> 

[ 

 DESCRIPTOR = buy 
 OBJECT = studio 

DATE = 2003 
LOCATION = london 
AMOUNT = ∅ 

]  

 

Figure 3: Example of predicative tagging 



7.2 Experimentation 
Our experiment focuses on a representative sample of 
10,000 records taken at random in the corpus. The experi-
ment has been carried out with the aim of extracting the 
clients' projects from this sample. The results found are 
validated by experts who have aligned the sample with the 
table PROJECT in the database filled by our system. Ac-
cording to them, 651 projects are in this sample. The sys-
tem detects 623 instances of the predicate PROJECT. 
These instances are detailled as follow : 589 valid instances 
of which 72 are totally valids. Also the system found 517 
partially valid instances of whom 385 are complete and 132 
are incomplete. 

7.3 Analysis 
The coverage rate is not revealing because a lot of records 
do not contain projects (95%). The recall rate (number of 
both instances found per number of instances in the corpus) 
and the validity rate (respectively 95.7% and 94.5%) are 
both very satisfactory but a lot of instances are partially 
valid (88% of valid projects). 74.5% of these instances are 
partially valid because of corpus non-fulfillment but the 
other 25.5% are imputable to the system. We are working 
at present to reduce the number of incomplete partially 
valid instances. For this, after a predicative tagging from 
left to right, we are considering repeating the process from 
right to left to first complete optional arguments of predi-
cate instances found and last to try treating the predicate 
descriptors left by left to right process (defining new predi-
cate instances by detecting objects and arguments). After 
this right to left step we'll have to repeat the process from 
left to right because some arguments of new instances can 
be located on the left of the descriptor.  

CONCLUSION 
As usual information extraction processes are unusable on 
poor quality texts, we described a method to extract infor-
mation from this type of corpus. This approach is based on 
ontology building led by the type of information to be 
searched in texts. Good results have been obtained with a 
very wide cover of information in each record, even for 
record containing very little information. This method can 
easily be applied to other corpora and to other domains. 
The different parts of our system are based on generic 
methods and do not need modifications to be used with 
another corpus. Currently experimentations are being car-
ried out to that end. 
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