
Semantic Word Processing for Content Authors
Marcelo Tallis

Teknowledge Corporation.
4640 Admiralty Way

Marina del Rey, CA, USA
email mtallis@teknowledge.com

ABSTRACT
Document authors cannot routinely afford the overhead
imposed by current semantic annotation tools. Some char-
acteristics of their task can be exploited to provide them
with a tool that will reduce the effort required to create
both the document content and their accompanying seman-
tic annotations.

SemanticWord is such a semantic annotation tool. Seman-
ticWord is an environment based in MS Word that inte-
grates content and markup authoring, providing customiza-
ble tools that allow simultaneous generation of content and
semantic annotations, an annotation scheme that allows
annotations to be reused when content is reused, a custom-
izable library of templates containing partially annotated
text, and an automatic information extraction system with
the tools for refining and augmenting its output.

Keywords
SemanticWord, Semantic Annotations, Semantic Web,
Markup Authoring Tools, COTS integration.

INTRODUCTION
The vast amount of information contained in the web is
beyond any individual’s grasp. Unfortunately, its content is
primarily tailored to human consumption and not suitable
for automatic semantic interpretation. The semantic web
addresses this problem by allowing content to be annotated
with machine understandable semantic descriptions.
Although current annotation tools take care of the annota-
tions syntax and the proper reference and use of ontology
terms ([4][5][6]), authoring semantic annotations remains a
tedious and expensive process.
While this cost may be affordable to people who author
web documents sporadically (e.g., a teacher authoring her
homepage) it would be prohibitive to those who author and
update documents routinely (e.g., an intelligence analyst
writing intelligence reports).
Automatic Information Extraction systems have been sug-

gested as an alternative method for generating semantic
annotations. Unfortunately, this technology is only able to
extract sufficient information to fill in a flat template and
cannot capture the relationship graph that connects the in-
stances ([5][7]).
Clearly, current markup authoring tools are inadequate for
the task of routinely authoring content. Fortunately, some
characteristics of this task, as it applies to some authors,
can be exploited to reduce the cost of producing these an-
notations. Some of these characteristics are:

• The documents to be authored are primarily con-
fined to a few topics. In this case it is worthwhile
to spend some effort in setting up an environment
tailored to these topics. The savings from produc-
ing multiple documents will more than recoup the
tailoring cost.

• There is a high degree of content reuse. For exam-
ple, different documents include common actors
and places, share the same context, or update on
previous accounts. This characteristic can be ex-
ploited to reuse the annotations along with the
content.

SemanticWord is a semantic annotation tool designed with
this kind of task in mind. Some of the features included in
SemanticWord are:

• An environment that integrates content and
markup authoring. This environment is based in
MS Word, a product that is already familiar to
many authors.

• Customizable tools for simultaneous generation of
content and semantic annotations.

• An annotation scheme that allows for annotations
to be reused when content is reused.

• A customizable library of templates containing
partially annotated text. Authors can include tem-
plates in their documents to speed up both content
and annotation production.

• An automatic information extraction system and
the tools for refining and augmenting its output.

SEMANTIC WORD
SemanticWord offers an environment for authoring anno-
tated text documents based in MS Word. Its aim is to re-
duce the burden involved in authoring semantic annota-

tions. Authors are given a familiar and uniform environ-
ment where the creation of content and semantic descrip-
tions can be freely interleaved. In many case both of them
can be achieved in a single operation.

Overview
SemanticWord extends MS Word in several dimensions
(see Figure 1). First, MS Word GUI is augmented with
toolbars that support the creation of semantic descriptions
(or annotations) that are attached to text regions. The GUI
is also extended to show these annotations embedded
within the text and to support their direct manipulation
through mouse gestures. Second, SemanticWord extends
Word’s reach by opening a channel to the Semantic Web.
Content from the Semantic Web (both ontology definitions
and factual descriptions) is brought into SemanticWord to
compose annotations that are later dumped back into the
Semantic Web. Third, SemanticWord extends Word ser-
vices by integrating AeroDAML, an automated information
extraction system. AeroDAML analyzes and annotates the
text of the document as it is being typed, appearing to the
author as a service analogous to Word’s spelling and
grammar checking. Finally, SemanticWord supports the
rapid composition of annotated text through template in-
stantiation.
The above extensions were implemented using standard
Microsoft extensibility technology. Annotations are ren-
dered with ActiveX controls that can be placed in a docu-
ment, implement their own behavior, control their GUI,
and save their internal state. Automatic text analysis is
driven by SmartTags technology that supports background
parsing and tagging of the document text as it is being
typed. The rest is supported by an Office COM Add-in that
responds to MS Office/MS Word built-in events (e.g.,
DocumentOpen) and extend Word’s menus and toolbars.
The document content is manipulated through Word’s
COM API.

Semantic Annotations
SemanticWord annotations are based in the DAML+OIL
language [3]. DAML+OIL is a knowledge representation

language developed for the Semantic Web that supports the
definition of machine-readable ontologies and the linking
of terms in documents to ontologies.
SemanticWord annotations are attached to regions of text,
not to the document as a whole. There are two types of
annotations: instances references and triple bags. An in-
stances reference associates a text region with a “referen-
cable” instance of a class. Triple bags describe the content
of a text region with a collection of triples that follow
DAML+OIL’s subject-predicate-object model. The subject
is an instance, the predicate is a property defined in an on-
tology, and the object can either be an instance or a value.
SemanticWord Annotations are retained across text
copy/cut and paste operations.
Figure 2 illustrates a fragment of an annotated document.
An instance reference is rendered by enclosing the anno-
tated text between square brackets and with an icon adja-
cent to the closing bracket. A triple bag is rendered by en-
closing the annotated text between square brackets and
displaying a checkbox and a triples table adjacent to the
closing bracket. The checkbox allows the user to display or
hide the table. To facilitate the handling of heavily anno-
tated documents, the text associated to an individual anno-
tation can be highlighted and all annotation marks can be
made invisible.
An Instance reference icon can be dragged and dropped
over a cell corresponding to the subject or object of a triple.
Cells filled using this method do not store a direct reference
to the dropped instance but rather establish a link with the
dragged instance reference. Updating the linked instance
reference to refer to a different instance will alter the triple
too. This level of indirection improves maintainability.
Triple cells can also be filled by picking instances and
properties from special purpose browsers called choosers
(See). Choosers can use the values already stored
in a triple to constrain the lists of choices offered to the
user. For example, if the subject and object of a row are
already filled in then the corresponding property chooser
will only show the properties whose domain and range are
consistent with those entries. Because SemanticWord does
not enforce consistency, these constraints can be relaxed.
The choosers also provide other filters for constraining the
choices shown. For example, the instance chooser includes
filters for listing only the instances that have already been
referenced in the document. The instance choosers can se-
lectively list instances corresponding to preexisting seman-
tic web markup (provided by the Ontology and KB Server)
or new instances defined in the current document. They
also allow users to create new locally defined instances or
provisional instances (described below), a function that a
user would invoke if the listed choices do not include the
desired instance. SemanticWord does not impose any order
for filling in table cells, and can persist the state of tables
containing rows with one or more empty cells.

Figure 3

MS
Word

AeroDAML
(IE)

Ontology
and KB
Server

Wor
(Text +

d Document
 Annotations)

A
Te

nnotated
mplates

Semantic
Word

Figure 1. SemanticWord Architecture

Locally defined instances are instances that cannot be ref-
erenced from outside the document. Provisional instances
are an artifact to postpone the identification of an instance
that is being used to describe relationships. Ultimately,
provisional instances must be replaced by references to
external or locally defined instances. SemanticWord keeps
track of the provisional instances and assists users in re-
placing them.
One obstacle that we noticed in other systems when com-
posing a triple is that the role of the instances in the triple
cannot be established before examining the definition of
the predicate property. For example, determining who is
the subject and who is the object in the relationship be-
tween an employee and her employer depends on how the
property that relates both of them is (arbitrarily) defined.
Assigning an instance to the subject or the object of a triple
prematurely might preclude the possibility of establishing
the relationship. To avoid this problem in SemanticWord,
the property chooser can optionally list reversed properties.
Reversed properties are ordinary properties that assume the
subject and the object of a triple are switched. Reversed
properties is only an artifact to add another degree of lib-
erty in the order in which the triple arguments are filled --
the generated DAML markup switches the subject and ob-
ject of a triple when a reversed property was selected.

Taming Annotation Authoring
SemanticWord was conceived with the goal of minimizing
the burden involved in authoring semantic annotations.
This burden is reduced through several techniques.

Non Intrusive Annotation Environment
SemanticWord provides an environment for authoring se-

mantic annotations that is tightly integrated to MS Word.
Word is the most massively adopted product for authoring
text documents. SemanticWord includes a set of tools that
economize the production of semantic descriptions and
exploit opportunities for the simultaneous generation of
text and annotations. Two examples of these tools are per-
sonal class toolbars and the cascading class menus, both
illustrated in Fig . ure 4
Personal Class Toolbars: Personal Class Toolbars consti-
tutes a convenient tool for generating both content and an-
notations together with just one mouse click. Users can
create any number of Personal Class Toolbars, each one of
them tied to a single class. Each personalized class toolbar
contains an instance selection combo box and buttons to
create instance references corresponding to the selected
instance or a new one. If at the time the user creates an
instance reference the document contains a selected region
of text, then the instance reference will be attached to that
region. If no text is currently selected, then both the “label”
of the instance reference will be inserted in the document at
the current text insertion point, and the new reference will
be associated with the inserted text.
Personal class toolbars save effort when a small percentage
of classes or instances account for a substantially larger
percentage of the instance references that an author will
need.
Classes Cascading Menu: A cascading class menu in-
cludes an entry for every named class in the ontology at-
tached to the document. This menu gives users access to
most of the operations related to ontology classes, includ-
ing defining new instances, creating personal class tool-
bars, and opening instance choosers. When a user executes

Figure 2. Fragment of an annotated document.

The circular icon containing an I Bar (like that adjacent to “BAGRAM”) references an external instance
from the semantic web. A smiley face icon (like that adjacent to “weapons cache”) references a locally de-
fined instance. The boxed legend below the “weapons cache” instance reference is its tool tip. If the instance
icon in the subject or object column of a table is overlapped by a small arrow in its lower left corner (like the
one in the object column of the first row) then the cell is linked to an instance reference annotation. Modify-
ing or deleting the linked instance reference will affect the triple too. If the instance icon is not overlapped
by a small arrow (like the one the subject column of the first row) then the cell contains a direct reference to
an instance.

Automatic Information Extraction any of these functions from this menu, the menu entry cor-
responding to the selected class is duplicated and placed at
the top of the menu so the user can access it easily the next
time that she needs it. The cascading hierarchy is deter-
mined by the subclass hierarchy of the ontology. Classes
with multiple superclasses appear in the cascade under each
superclass.

SemanticWord integrates an information extraction system
(IES). Automatic information extraction technology prom-
ises to significantly reduce the human overhead involved in
the semantic annotation task. Although this technology has
not reached a level of sophistication required to capture
deep relationships in text ([5][7]), it can provide useful
annotation fragments. The approach taken in Semantic-
Word is to supply the tools that would allow users to aug-
ment the annotation provided by an IES.

Direct Manipulation of Annotations: Direct manipulation
of annotations is another method of simplifying the produc-
tion of semantic annotations. In SemanticWord users can
compose semantic annotations by manipulating other anno-
tations that are placed within the document. For example,
the subject and object of a triple can be filled by dragging
instance references annotations over the triple. For some
users this method is faster and more natural than searching
for those same instances in instance browsers.

SemanticWord uses AeroDAML, an IES developed at
Lockheed Martin [7]. AeroDAML processes text and pro-
duces DAML markup that relates instances and values to
Ontology classes and types. AeroDAML relies on a high
performance commercial information extraction system
called AeroText. The default AeroDAML is based in the
default AeroText which includes “domain independent”
extraction rules capable of extracting many proper nouns
and frequently occurring relations. AeroText and conse-
quently AeroDAML can be tailored to particular domains
through training sessions with annotated corpuses.

Flexible commitment order
Authors should not be forced to follow a strict order in
carrying out the many steps involved in authoring semantic
descriptions. Many of the features that support this princi-
ple have been introduced before. These features are sum-
marized in this section. SemanticWord provides an environment for refining and

augment the result of IESs. We observed that the default
AeroDAML does a good job at recognizing and categoriz-• Elements of a triple can be entered in any order.

Even the determination of which instance is the
subject and which is the object can be postponed
by means of the reversed properties. New in-
stances can be created from the instance choosers
avoiding a disruption of the triple’s composition
process. Unlike other annotation tools, triples are
laid out in a tabular structure rather than in a tree
or other structures that impose a topological de-
pendency among its nodes.

Property Chooser

Instance Chooser (Object)

Figure 3. Property and Instance Choosers.
The choices correspond to the filling of the property and
object columns of the second row of the triples table of

. The listed choices are constrained by the content
of the other cells of the selected triple. These filters can be
relaxed by toggling the buttons on the top toolbars. The
Instance chooser also supports the definition of new in-
stances.

Figure 2

• Consistency is not enforced. A user is free to com-
pose a triple that violates ontology constraints.
The user can make the changes that would fix this
conflict at a time convenient to her. Consistency is
taken into account when filtering suggested
choices for composing a triple, but the user can
deactivate these filters with a single button click.

• Instance identification can be postponed but the
instance can still be used to describe relationships.
This is achieved through the use of provisionary
instances, which can be used wherever definitive
instance can but remind the user of the uncon-
cluded task. SemanticWord will assist users in as-
signing identity to these instances.

Annotation Reuse
Annotations are attached to text regions and are going to be
reused when those regions are reused. In particular, annota-
tions are carried over along text cut/copy and paste opera-
tions and when fragments of a document are reused else-
where in the same document in other documents based on
the same ontology.

ing proper nouns but their classification tends to be overly
general. It also fails to recognize most of the relations be-
tween instances. For example, AeroDAML succeeds in
classifying Kabul as a Place but failed in finding the more
specific class City, perhaps because there was nothing in
the text that might clue AeroDAML about this fact. Se-
manticWord let AeroDAML to recognize and classify
proper nouns but expects the user to refine the classifica-
tion and to specify their relationships.
SemanticWord drives the information extraction process on
the fly. As the user types the content of the document, a
background thread feeds new or modified text to Aero-
DAML in paragraph units (roughly), obtains the extracted
entities with their position in the text, and underlines those
text regions with a blue wiggly line. This procedure is car-
ried out in a way that resembles Word spelling and gram-
mar checking and is implemented in terms of Microsoft
SmartTags technology.
The user can examine the extracted entities and convert
them into instance reference annotations. As part of this
conversion the user has the option of refining the extracted
type. Once an extracted entity has been transformed into an
instance reference it behaves just like a natively created
instance reference. In particular, it can be dragged and
dropped onto cells of triple bags to describe the relation-
ships that AreoDAML missed.

Annotated Templates
Annotated text templates reduce the amount of work in-
volved in authoring both semantic annotations and docu-
ment content. A template consists of a text fragment anno-
tated with semantic and template related descriptions, and

persists as a (typically quite small) word document.
A template may be inserted into a document just like any
other document. Both the text and annotations of the tem-
plate are copied into the target document. After insertion,
the copy can still be subjected to further editing and anno-
tating.
Templates are authored in SemanticWord in template de-
sign mode. All annotations tools described previously are
also available for annotating templates in template design
mode plus an additional toolbar that includes the template
specific authoring tools described below. We expect that
non-programmers would be able to author templates.
Instance Placeholder: An instance placeholder annotates a
region of text that needs be replaced by an instance refer-
ence when the template is used in a document. It also
serves as the surrogate for an instance reference, and as
such, it can participate as the subject or the object of one or
more triples in the template’s triple bags.
An instance placeholder is rendered like an instance refer-
ence annotation but with a different icon. In design mode
this icon can be dragged over triple tables to compose the
semantic annotations that describe the template. It can also
be dragged over another instance placeholder to specify a
co-reference requirement. In instantiation mode, this icon is
a drop site for the concrete instance that is going to be
bound to the instance placeholder.
When an instance placeholder is bound to an instance ref-
erence, the label of the instance reference replaces the tem-
plate’s text and all co-referential instance placeholders are
bound to that instance.
Optional group: An optional group delimits a region of

Figure 4. Toolbars and Menus.

The last two toolbar rows belong to SemanticWord. The first row contains two juxtaposed personal class toolbars. The
first one is tied to the class “Terrorist Organization” and has selected the instance “al Qaeda”. The second one is tied to
“Country” and has selected “Afghanistan”. Clicking in the Check button will generate both the text and the annotation
corresponding to the selected instance. The other buttons are for defining new instances before inserting their text and
annotation. The last toolbar row has its classes cascading menu opened. This menu provides access to several class
related functions. The most recently chosen classes get added to the top of the menu (like Weapon, Terrorist Organiza-
tion, and Country) for easy access.

text in the template that can be optionally included in the
instantiation of the template. The text delimited by an op-
tional group can contain annotations and other groups. In
particular, it can contain instance placeholders. Opting to
delete an optional group from an instantiated template will
automatically remove any triples having a cell linked to an
instance placeholders within the deleted group.
Repeated group: Like an optional group, repeated group
annotation delimits a region of text and can also contain
other groups and annotations. During instantiation the user
can ask that a repeated group be replicated any number of
times. Each replication of the group creates its own incar-
nation of the instance placeholders that it contains. When
the group is replicated, all triples with cells linked to the
instance placeholders contained in the group are replicated
as well.
The utility of annotated templates is enhanced by the IES
described above. The IES analyses the document and gen-
erates instance reference annotations corresponding to the
concrete entities mentioned in the text. These instance ref-
erences can be dragged over the template instance place
holders to instantiate the template and generate instantiated
triples describing their relationships.

ANNOTATING TEXT REGIONS
In SemanticWord, semantic descriptions are distributed
throughout the document and attached to text regions that
“support” their content. This is not a requirement for the
semantic web. Most of the semantic markup authoring
tools reported in the literature do not adopt this practice.
The descriptions they produce are associated only with a
document, not with portions of that document.
We speculate that relating a semantic description to the text
that supports it has advantages in terms of annotation au-
thoring, reuse, maintenance, and validation. However, we
also recognize that this practice might introduce unneces-
sary complications.
Some of the advantages of attaching semantic descriptions
to text are:

• Descriptions can be reused if the text is reused.
Annotations are carried over along text cut/copy
and paste operations and when document frag-
ments are reused in other documents.

• Conformity between the semantic descriptions and
the content of the document can more easily be
validated and maintained.

• Authors might find it natural to find annotations
by finding, through familiar text search/scroll
mechanisms, the text to which the annotations are
attached. Contrast this with browsing the semantic
markup directly. For example, in SemanticWord
authors compose triples by dragging around in-
stance references placed within the text.

• Markup that is tied to text fragments disappears if
the text fragment, or a region containing it, is de-
leted. Generally, this is desirable because the
document’s content no longer supports the state-
ment formalized by the deleted annotation.

Among the difficulties of this approach we found:
• If an entity (e.g., a person or place) is mentioned

several times within the text, it might be necessary
to duplicate its annotation too.

• Some concepts might be implicit or too abstract to
be located in the text.

• As changes are made to text within an annotated
region – particularly at its boundaries – heuristics
must be used to adjust the boundaries. The use of
paired brackets for rendering these regions keeps
the user informed of the result of these heuristics.

Although SemanticWord is biased toward the attachment
semantic annotations to text, it does not mandate it, open-
ing a whole spectrum of hybrid compromises. For example,
authors might choose to attach instance references to text
but to describe their relationships in a single global triple
bag. Moreover, not even the instance reference annotations
are required because the triples can be filled directly from
instance choosers. More serious use of SemanticWord will
be required to weigh the pros and cons of this approach..

RELATED WORK
Research in semantic annotations is still in its infancy. A
number of systems have been developed to date that dem-
onstrate different capabilities. However, the approaches
adopted by these systems do not necessarily compete
against each other but rather address different issues.
Ont-O-Mat ([4][5]), one of the first annotation systems to
appear, is the concrete implementation of CREAM [4], an
annotation and content authoring framework conceived for
the easy creation of relational metadata (i.e., relations be-
tween instances). Ont-O-Mat includes its own HTML
document editor for viewing and composing the content of
the document being annotated and an ontology and fact
browser for visualizing the markup collected by a crawler
and for authoring the markup that annotates a document.
Like SemanticWord, Ont-O-Mat also provides mechanisms
that simplify the creation of markup, document content, or
both. For example, dragging text from the document editor
and dropping it on top of a class listed in the ontology and
fact browser could automatically create an instance of that
class with the dragged text filling some property of the
created instance (e.g., its name). Similarly, dragging an
instance listed in the ontology and fact browser and drop-
ping it at some location within the document editor could
insert in that location the text corresponding to the filler of
some property of the dropped instance and eventually
could attach to that text a hyperlink that describes the in-
stance further. A meta ontology specifies the type of ac-

tions to be carried out through the dragging and dropping
operations.
S-CREAM [5] extends the CREAM framework with an
information extraction component for the semi-automatic
generation of annotations. In S-CREAM manual annotation
is supported by Ont-O-Mat while automatic information
extraction is supported by Amilcare [1], an adaptive infor-
mation extraction system (IES). Because the IES is unable
to capture relationships in a graph that connects the indi-
viduals described in the text, the output of the IES has to be
mapped into a Discourse Representation (dependent on the
domain) before generating a set of markup hypotheses.
This technique is still very rudimentary.
SMORE [6] provides an environment for composing the
content and the inline semantic annotation of web pages,
email, and other online documents. Like SemanticWord,
SMORE aims to support semantic annotation without dis-
rupting the document creation process. Toward this end
SMORE supports practices like using place holders to de-
fer the final determination of the markup, referencing mul-
tiple ontologies that can be brought to bear when the need
arises, and extending ontologies if none of the known on-
tologies fit the user needs. SMORE also integrates several
unique capabilities, like the ability to annotate parts of im-
ages using SVG, an advance ontology search capability,
web scraping, and a Semantic Virtual Portal that provides
links to semantically related material
MnM [8] and Melita [2] are environments that streamline
the automatic production of semantic annotations using an
information extraction system (IES). The process supported
by these systems comprises several activities, including
manually annotating web pages (for training the IES),
training the IES using the annotated pages, tuning the per-
formance of the trained system, and running the IES to
automatically annotate a set of pages. MnM implements a
generic process model which is also generic with respect to
the specific ontology server and information extraction tool
used. Melita is a demonstration system that seamlessly in-
tegrates manual annotation, incremental training, and auto-
matic information extraction in a timely and non-intrusive
way. These systems have demonstrated that is possible to
highly automate the generation of semantic annotations.
Unfortunately, the scope of these annotations is restricted
to only filling in one information template per document.
Both systems use Amilcare as their IES.
Among the described annotation tools only SemanticWord
provides an environment for document authoring and se-
mantic annotation that extends a COTS product that au-
thors have already adopted (MS Word). SemanticWord is
also the only one that associates semantic annotations
within text regions and consequently facilitates annotation
reuse and maintainability.

CONCLUSIONS
SemanticWord integrates into a widely used COTS product
an environment for authoring document content and anno-
tations. It includes several features intended to minimize
the cost involved in authoring semantic annotations: cus-
tomizable tools for generating content and annotations si-
multaneously, direct manipulation of annotations embed-
ded in the document, reusable annotations, annotated text
templates, and an information extraction system including
support for refining and augmenting its output.

REFERENCES
[1]

[2]

[3]

Ciravegna, F. Adaptive Information Extraction from
Text by Rule Induction and Generalisation, Proc. of
17th International Joint Conference on Artificial Intel-
ligence (IJCAI 2001) , Seattle, August 2001.
Ciravegna, F., Dingli, A., Petrelli, D., and Wilks, Y.,
Timely and Non-Intrusive Active Document Annotation
via Adaptive Information Extraction, in Semantic Au-
thoring, Annotation & Knowledge Markup (SAAKM
2002), ECAI 2002 Workshop, July 22-26, 2002 ,
Lyon, France.
Connolly, D, van Harmelen, F., Horrocks, I, McGuin-
ness, D., Patel-Schneider, P., and Stein, L.
DAML+OIL (March 2001) ReferenceDescription,
W3C Note 18 December 2001
http://www.w3.org/TR/daml+oil-reference.

[4]

[5]

[6]

[7]

[8]

Handschuh, S and Staab, A. Authoring and Annotation
of Web Pages in CREAM, in Proceedings of the
WWW2002 - Eleventh International World Wide Web
Conference, Hawaii, USA, May 2002.
Siegfried Handschuh, Stephen Staab, Fabio Ciravegna,
S-CREAM -- Semi-automatic CREAtion of Metadata,
in Semantic Authoring, Annotation & Knowledge
Markup (SAAKM 2002), ECAI 2002 Workshop, July
22-26, 2002 , Lyon, France.
Aditya Kalyanpur, James Hendler, Bijan Parsia, Jenni-
fer Golbeck, SMORE - Semantic Markup, Ontology,
and RDF Editor, available at
http://www.mindswap.org/papers/SMORE.pdf
Paul Kogut, William Holmes, AeroDAML: Applying
Information Extraction to Generate DAML Annota-
tions from Web Pages , First International Conference
on Knowledge Capture (K-CAP 2001), Workshop on
Knowledge Markup and Semantic Annotation, Victo-
ria, B.C. October 21, 2001 AeroDAML.
Maria Vargas-Vera, Enrico Motta, John Domingue,
Mattia Lanzoni, Arthur Stutt1, and Fabio Ciravegna,
MnM: Ontology-Driven Tool for Semantic Markup, in
Proceedings of ECAI 2002, July, 2002 , Lyon, France.

http://www.w3.org/TR/daml+oil-reference
http://www.mindswap.org/papers/SMORE.pdf
http://www.mindswap.org/papers/SMORE.pdf
http://ubot.lockheedmartin.com/ubot/papers/publication/AeroDAML2.pdf
http://ubot.lockheedmartin.com/ubot/papers/publication/AeroDAML2.pdf
http://ubot.lockheedmartin.com/ubot/papers/publication/AeroDAML2.pdf

	INTRODUCTION
	SEMANTIC WORD
	Overview
	Semantic Annotations
	Taming Annotation Authoring
	Non Intrusive Annotation Environment
	Flexible commitment order
	Annotation Reuse
	Automatic Information Extraction
	Annotated Templates

	ANNOTATING TEXT REGIONS
	RELATED WORK
	CONCLUSIONS
	REFERENCES

