
Lurch : A Word Processor that Can Grade
Students’ Proofs

Nathan C. Carter1 and Kenneth G. Monks2

1 Bentley University, Waltham, MA, USA
ncarter@bentley.edu

2 University of Scranton, Scranton, PA, USA
monks@scranton.edu

Abstract. Lurch [1] is a free word processor that can check the mathe-
matical reasoning in a document. Most notably, it can check the steps of
a mathematical proof, even one not written in a formal style. The cur-
rent version works best for undergraduate introduction-to-proof courses,
and this paper covers our goals, current interface, and some results of
classroom testing.3

1 Introduction

1.1 Background

Lurch is a free word processor that can check the steps of a mathe-
matical proof, and we have focused the current version on the needs of
introduction-to-proof courses, covering topics such as logic, introductory
set theory, and number theory. As we add features it becomes more able
to handle a wider variety of mathematics courses.

Lurch is built on OpenMath [2, 3] (as well as several other technolo-
gies, including Qt [4]) and is a free and open-source desktop application
for Windows, Mac, and Linux. Section 2 gives a brief overview of the user
interface. It has been tested at the two institutions at which the authors
teach, and results from that testing are discussed briefly in Section 3.

1.2 Goals

The Lurch project has a two-part mission statement; we state and explain
each part here.

3 Lurch was supported from 2008-2012 in part by the National Science Foundation’s
Division of Undergraduate Education, in the Course, Curriculum, and Laboratory
Improvement program (grant #0736644). Views expressed in this document are not
necessarily those of the National Science Foundation.



Mission Statement, Part 1: Lurch should be as indistinguishable from
the ordinary activities of mathematics as possible, except for the ad-
ditional services it provides. That is, it should only add to your math
experience, not change your math experience.

This is our user interface guideline. Users should be able to write math
in whatever style or notation they prefer, with exposition inserted where
they feel it’s helpful. They can already do so on a chalkboard, on paper,
or in LATEX, and especially in a pedagogical context it is important for
the software to match the textbook and lecture notes, so as not to be an
obstacle for the student. So mathematics in Lurch must be as similar as
possible to mathematics in the other media just mentioned. Except, of
course, that pencil and paper won’t tell the user whether his or her proof
is correct, but Lurch will, in addition to the other benefits that any word
processor provides, such as cut and paste.

Mission Statement, Part 2: Lurch should provide the software infras-
tructure the mathematical community needs for validating rigorous
mathematics. That is, it should validate mathematical content cre-
ated by you—a “spell-checker” for mathematical rigor.

Of course, there are several impressive pieces of software in existence
(e.g., Mizar [5] or Coq [6]) for validating rigorous mathematics, and Lurch
is not claiming that it will supersede these offerings. Our goals are very
different from those of proof checkers like Mizar and Coq, and thus Lurch
is not trying to compete with those packages. We list here the important
differences between our goals and theirs.

1. More flexibility
Most existing proof checkers require the user to learn a specific lan-
guage and rules, while Lurch lets the user (or his or her instructor)
define the rules from scratch. This includes adding new definitions,
or even replacing the rules of logic themselves with new ones. Future
versions will also allow the user to define the mathematical language
(i.e., notation, syntax) as well.

2. No help with proofs
Proof checkers automate some proof steps, and an ongoing field of
research furthers the frontiers of this capability. Lurch has no such
capabilities, nor should it, because if it did proofs for the student,
that would defeat the purpose of teaching the student how to do
them. In Lurch, the student types his or her work while Lurch grades,
encourages, and coaches.



3. Familiar user interface
Proof checkers often have interfaces requiring advanced users, such
as those familiar with the command line or shell scripts. Lurch is for
the typical student, and its user interface is therefore a familiar one:
It is a word processor that gives feedback visually in the document.
We want typical mathematics students to encounter no learning curve
except what the mathematics itself presents, not Lurch.

We’re targeting students in their first proof-based courses, giving fre-
quent, immediate, clear feedback on the steps in their work. That’s the
part of the mathematical community we’re excited about reaching. Other
projects are working on some of these same goals, such as simpler and
more flexible notation for provers [7, 8] and integration of a prover into
a graphical user interface [9]. But to our knowledge, no one is writing a
learning tool like Lurch for our target audience.

Existing research on educational technology suggests that our goals
make sense and are achievable. Investigations into the effects of auto-
mated assessment systems (AiM [10] and MyMathLab [11]) show the
value of computers in giving high-frequency, individualized, and immedi-
ate feedback ([12–15]). The value of such feedback is well-documented in
educational research (reviewed in [16]). This research matches our com-
mon sense that more feedback, delivered in immediate response to each
of the student’s actions, is better for learning.

This feedback is also noteworthy in another respect. When we think
of students’ experiencing mathematical objects on a computer, we tend
to think of interactive graphs with sliders, rotating three-dimensional sur-
faces, or other flashy graphics. In Lurch, students experience a far more
abstract mathematical object. The positive and negative feedback they
get while working within a logical system is their experience of that sys-
tem, including its rules, axioms, and theorems. In Section 3, quotes from
student surveys support this assertion.

2 Current Interface

This section summarizes briefly how far we have come (as of this writing)
towards achieving the goals in Section 1.2.

2.1 A word processor with semantics

First, we have built a word processor that supports mathematical expres-
sions with actual mathematical semantics. Consider the screenshot of the



Mac version of our application in Figure 1. The red, yellow, and green
icons interspersed throughout the user’s document are Lurch’s feedback
on the correctness of each step of the user’s work. (This feedback can be
hidden to obtain a clean view for printing.)

Green thumbs-up icons follow a correct step of work that is correctly
justified, red thumbs-down icons follow a step that contains an error or
is incorrectly justified, and yellow lights follow mathematical expressions
that are used as premises to justify later steps of work, but for which the
user provided no justification (e.g., the hypotheses in a proof).

Students can hover their mouse over any of these colored icons for a
brief explanation of its meaning, or double-click it for a detailed report. In
order to provide this kind of feedback, Lurch needs to know the meaning
of the mathematical expressions in the document, and from the fact that
the feedback in Figure 1 is correct, you can see that it does.

Fig. 1. A Lurch screenshot explained in Section 2.1. Although this screenshot was
captured on a Mac, Lurch is free and open-source for all three major platforms, Mac,
Windows, and Linux. The default view uses three colors of “traffic lights,” but the
thumb icons shown here are a variant useful to colorblind users and in black-and-white
printing.



Lurch knows the meanings of mathematical expressions in the sense
that it is aware of the rules defined elsewhere in the same document (or
documents on which it depends), and those rules define the valid uses
of each type of expression. It is only this sense in which Lurch knows
mathematical meaning; it knows the valid ways to work with each type
of expression. A fuller description of meaning and validation in Lurch
appears in [17]. So how does Lurch read the user’s meaning?

2.2 The bubble interface: Marking expressions as meaningful

The second major component of what we have built so far is the user in-
terface through which users tell Lurch the meaning of the mathematics in
their documents. Of course, the ideal interface would be for the computer
to read a document and, without any help from a human, infer correctly
which parts are meaningful and what their meanings are.4

Not only do current limitations on technology for natural language
processing make this a great challenge, but there are actually pedagogi-
cal benefits to be derived from expecting the user to be involved in the
process. But it is essential that Lurch not require much of the user beyond
simply typing in their document, so that he or she is not distracted from
the mathematics, and his or her work is slowed only in the slightest. To
solve this problem, we employ a user interface paradigm we call bubbles.

In order for a section of text to be treated as a mathematical expres-
sion, the user must mark it as such with a single click of a toolbar button
(or the corresponding keyboard shortcut), as illustrated in Figure 2. The
user selects a portion of text that he or she wishes Lurch to treat as
meaningful, and then clicks the “Meaningful expression” button on the
toolbar. Lurch then wraps the text in a bubble and reports the under-
stood meaning in a tag atop the bubble.5 If Lurch cannot understand the
content, it calls it a string, treating it as if it were surrounded in quotes.

Lurch draws a bubble around a mathematical expression if and only
if the user’s cursor is inside it; hence a bubble appears in Figure 2 but
none in Figure 1. So when the cursor is not in a mathematical expression,
no extra visual clutter asserts itself. But when the cursor is in one, the
interface makes this fact clear, and right-clicking a bubble exposes a menu
of actions relevant to the bubble, such as changing its formatting or asking

4 In this context, a portion of the document is “meaningful” if it is an essential part
of the mathematical structure of the user’s argument. In other words, meaningful
here means meaningful to the grading algorithm.

5 Currently only Unicode math symbols from a palette are supported; full WYSIWYG
math editing is still in progress.



After selecting the meaningful section of text,

click the toolbar button to make it meaningful.

Fig. 2. How a sentence within a Lurch document changes when a user marks a section
of text as meaningful. On the top, the user has selected a section of text. After telling
Lurch to mark it as meaningful, the red bubble shown on the bottom appears, indicating
that Lurch has read the expression, and knows that it is a universal quantification.

for help on it. This paradigm is not completely unique to Lurch; both LyX
and Word have somewhat similar interfaces for editing mathematics.

Thus it is a trivial task to mark expressions as meaningful. It is some-
thing the user will do often, and thus must take near-zero time, and
be intuitive as well. In Figure 3, you can see the toolbar in which the
“Meaningful expression” button appears. It is just as easy to mark text
as meaningful as it is to make it bold or italic; a single click or keystroke
accomplishes it. This also makes the action of marking text as meaningful
seem natural to the user, by emphasizing its similarity to familiar word
processing actions like bold, italic, and underline.

Marks expressions meaningful

Common formatting tools

Fig. 3. One of the Lurch toolbars, shown here as it appears on Mac OS X. Some of the
buttons are the typical formatting buttons one expects to see in any word processor,
such as bold, italic, and underline. The most important new one to note here is the
red button for marking text as meaningful.



2.3 What bubbles accomplish: A thin user interface layer

The bubble interface enables several important features. First, Lurch can
know which portions of the document the author considers meaningful
and which he or she does not. It does no natural language processing or
guesswork, which may be prone to misinterpreting the author’s wishes,
but the correct classification of meaningful vs. non-meaningful content is
assured, because it is fully under the user’s control.

Second, in line with the first item in our mission statement (Section
1.2), the user is stylistically free to structure their document their own
way. Because meaning is determined by what sections of text have been
bubbled, the user can arrange expository portions and mathematics how-
ever they like, from informal sentences to formal proof structures and
varying levels in between.

Third, the user is free to use any natural language, from Polish to
Portuguese, because Lurch is ignoring all of the prose, concentrating only
on mathematical expressions the user has singled out as meaningful.

Finally, there is also a pedagogical benefit. Student users, just learning
what a proof is, are forced to indicate which parts of their own proofs are
meaningful and which are not. Experience from testing shows us that this
is perhaps the clearest lesson students learn from Lurch, compared to our
experience in courses without Lurch. Students come away from a Lurch-
integrated course knowing very solidly how a proof is structured out of
statements, reasons, and premises. (In addition to marking statements as
meaningful, there are similar actions for marking which text represents
reasons and premises.) In fact, it was not until after this learning had
fully sunk in that students perceived the bubbling process as a burden.

Obviously, these four benefits come at the cost of giving the user an
added burden when typing their document into Lurch. But that burden
is nearly as minimal as one could want (assuming that Lurch is not doing
natural language processing). Furthermore, it has educational benefits as
described above, as it requires the student to be explicit about their proof
structure. And we have plans to simplify the bubble interface further.

3 Classroom Testing

Lurch was tested throughout an introduction to formal logic class the
first author taught at Bentley University in the fall of 2008, and an in-
troduction to proofs course for mathematics and mathematics education
majors the second author taught at the University of Scranton in the
spring of 2013. In both cases, student response was very positive. Quotes



from student surveys mentioned all the main benefits that we as devel-
opers expected the software to have. We provide sample student quotes
in each of two main themes here.

On the value of frequent and immediate feedback

“I liked that we could check our work as we are doing it—it makes the
learning more immediate by providing constant feedback even outside of
class.”

“It allowed me to guarantee when I got something right, which was
helpful early on when I was unsure about what a proof was.”

“I was intimidated by proofs before taking this class, but Lurch helped
boost my confidence.”

On experiencing a mathematical system through Lurch

“It helped me learn how to do proofs through trial and error.”
“I liked using Lurch because I was able to see what was needed for

rules to work.”
“Lurch became easier as I learned the rules and definitions, so using

it in turn helped me learn those.”
“It made it easier to identify statements, reasons, and premises.”
“Really helped me learn what a proof is.”

Some of the education research cited in Section 1.2 finds that students
with access to frequent, immediate feedback spend more time working on
homework, because they do not want to turn in work that they know is
incorrect. Students mentioned this on our surveys as well, one explicitly
saying, “I worked until I was correct.”

One natural worry, given these positive student responses, is that re-
peated guesswork alone might create a proof in Lurch. With enough feed-
back, do students lose the need to be creative nor actually learn anything,
and complete their homework with persistent experimentation alone? Our
surveys asked for agreement or disagreement with the sentence “It is pos-
sible to do a proof in Lurch by experimental clicking and typing, without
thinking.” Students from 2008 (whose version of Lurch was much more
automated than the current version) responded neutrally, 3.2 on aver-
age. This latest version of Lurch, however, has significantly improved this
score to a 1.6, part way from disagree to strongly disagree.

Students also reported being surprised at how long it took them to
learn what was required to form a correct proof; that difficulty would



have consumed more of the beginning of the course if Lurch hadn’t made
it abundantly clear when their homework still contained errors. One said,
“If I did not have Lurch, I would have had a lot of incorrect proofs.”

And regarding the software learning curve, the average of student
responses disagreed with the sentence, “Learning to use Lurch took a lot
of time that I could have spent learning logic instead.”

Lurch use in the test courses was optional for each student. Instruc-
tors observed that students who did not choose to use Lurch for their
homework fell into two categories. Either they were doing very well in the
class and did not feel a need for extra help, or they didn’t like being told
that they were wrong, and thus avoided the software. This latter group
was small, and most of them immediately switched to using Lurch af-
ter their first poor homework grades. One student said that getting back
her first graded homework showed her why Lurch wouldn’t accept her
proofs—because they were wrong!6

4 Conclusion

Lurch has many opportunities for improvement, including testing in courses
not taught by the developers and new features (typeset mathematics,
more efficient validation algorithms, a type system, more attractive vi-
sual representations of premise relationships, and an even less obtrusive
bubbling interface). But the current version, despite its opportunities to
improve in many ways, shows all the signs of having been very beneficial
in the courses in which it has been used.

The Lurch team invites collaborators for writing mathematical topics
in Lurch, doing further classroom testing, and software development.

References

1. Carter, N.C., Monks, K.G.: Lurch: a word processor that can check your math.
[online] (2013) A free and open-source software project hosted on SourceForge.net,
available at http://lurch.sf.net.

2. Arsmac, O., Dalmas, S.: OpenMath INRIA C/C++ libraries. [online] (Downloaded
May 18, 2008) Available at http://www.openmath.org/software/index.html.

3. Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaëtano, M., Kohlhase, editors,
M.: The OpenMath standard, version 2.0. The OpenMath Society (June 2004)
Available at http://www.openmath.org/standard/.

6 Very rarely, a student would find a case in which Lurch incorrectly graded their work.
This happened only twice in the most recent semester of testing, and both times we
fixed the bug and did an immediate point release for the students to upgrade.



4. The Qt Project: Qt 4.8. GNU General Public License (and the lesser) version 3.0
(2012) A cross-platform application and UI framework for developers using C++,
QML, CSS, and JavaScript, available at http://qt-project.org/.

5. Grabowski, A., Korni lowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of
Formalized Reasoning (2010) Available at http://jfr.unibo.it/article/view/

1980/1356.
6. Bertot, Y., Castéran, P.: Coq’Art: the calculus of inductive constructions. Springer,

XXV, 472 p. ISBN 978-3-540-20854-9 (2004) Available at http://www.labri.fr/

perso/casteran/CoqArt/index.html.
7. Dietrich, D., Schulz, E., Wagner, M.: Authoring verified documents by interac-

tive proof construction and verification in text-editors. Springer Lecture Notes in
Computer Science Volume 5144, 2008, pp.398–414 (2008)

8. Autexier, S., Fiedler, A., Neumann, T., Wagner, M.: Supporting user-defined
notations when integrating scientific text-editors with proof assistance systems. In
Towards Mechanized Mathematical Assistants: 14th Symposium, Calculemus 2007,
6th International Conference, MKM 2007, Hagenberg, Austria, Proceedings (2007)

9. Wenzel, M.: Isabelle/jEdit — a prover IDE within the PIDE framework. In
J. Jeuring et al., editors, Conference on Intelligent Computer Mathematics (CICM
2012). Springer LNAI 7362. (2012)

10. Delius, G., Strickland, N.: AiM—assessment in mathematics. [online] (Accessed on
April 22, 2013) A free and open-source software project hosted on SourceForge.net,
available at http://sourceforge.net/projects/aimmath/.

11. Pearson Education: MyMathLab. [online] A series of mathematics courses on the
World Wide Web, available at http://www.mymathlab.com/.

12. Klai, S., Kolokolnikov, T., Van den Bergh, N.: Using Maple and the
web to grade mathematics tests. In IWALT 2000 Conference Pro-
ceedings (2000) Available at http://rc.fmf.uni-lj.si/matija/ACDCA2000/

Kolokolnikov-Klai-Bergh-pdf.pdf.
13. Sangwin, C.J.: Assessing higher mathematical skills using computer algebra mark-

ing through AiM. In Proceedings of the Engineering Mathematics and Applica-
tions Conference (EMAC03, Sydney, Australia), pages 229–234 (2003) Available
at http://web.mat.bham.ac.uk/C.J.Sangwin/Publications/Emac03.pdf.

14. Sangwin, C.J.: Assessing mathematics automatically using computer algebra and
the internet. Teaching Mathematics and its Applications, 23(1):1–14 (2004) Avail-
able at http://web.mat.bham.ac.uk/C.J.Sangwin/Publications/tma03.pdf.

15. Speckler, M.D.: Making the grade: A report on the success of MyMathLab in higher
education math instruction. Pearson Education, Boston, MA (2005) Available at
http://www.mymathlab.com.

16. Chickering, A., Gamson, Z.: Seven principles for good practice in undergraduate
education. American Association for Higher Education Bulletin, pages 3–7 (1987)
Available at http://aahebulletin.com/public/archive/sevenprinciples1987.
asp.

17. Carter, N., Monks, K.G.: Lurch: A word processor built on OpenMath that
can check mathematical reasoning. In Aspinall, D., Carette, J., Davenport, J.,
Kohlhase, A., Kohlhase, M., Lange, C., Libbrecht, P., Quaresma, P., Rabe, F.,
Sojka, P., Whiteside, I., Windsteiger, W., eds.: Proceedings of the Workshops and
Work in Progress at the Conference on Intelligent Computer Mathematics. Number
1010 in CEUR Workshop Proceedings, Aachen (2013)


