
Submitted to:
THedu’13

c© W. Neuper
This work is licensed under the
Creative Commons Attribution License.

Computer Algebra implemented in Isabelle’s
Function Package under Lucas-Interpretation

— a Case Study

Walther Neuper
Institute for Software Technology

University of Technology
Graz, Austria

neuper@ist.tugraz.at

1 Introduction

The relation of this paper to “Theorem-Proving (TP) components for educational software” deserves
explanation: TP technology is designed for mechanised justification of formalised facts — so educational
software gains a prerequisite for being a “transparent system” [12] which explains itself.

Computer Algebra (CA), however, is not designed for justification (and thus leaves full responsibility
for interpreting results with the user, which over-strains students frequently), and CA is not designed for
“transparency”1. So integration of CA into TP promises to improve justification and “transparency”
of CA, provides requisites for step-wise “Lucas-Interpretation” [11], another advantage for interactive
educational software.

Integration of CA in TP also serves verification of CA, which is of great importance for extending the
scope of Formal Methods, i.e. independent of educational goals. The importance is reflected by several
kinds of integration of computational power of CA with deductive power of TP, for instance “the skeptics
approach” [5] which takes CA as an “oracle” and verifies results in TP — an approach not feasible in the
case study under consideration.

This case study was motivated by a master thesis at RISC Linz, which implemented a CA algorithm
for the greatest common divisor of multivariate polynomials [10] in SML. The SML implementation
comprises about 90 functions with about 700 lines of code. Subsequent trials with transferring the
implementation to Isabelle’s function package were surprisingly successful and lead to this report; at
the time of writing this text, the first step of transfer was done for univariate polynomials. i.e. for 41
functions of the 90 mentioned above.

2 Programming with Isabelle’s Function Package (FP)

The initial hands-on experience with Iabelle/Isar’s function package (FP)[7, 6] is pleasant, in particular
if following the tutorial [8]. The new prover IDE Isabelle/jEdit has a look-and-feel programmers are
familiar with from IDEs like Eclipse.

Translation from SML to the FP is almost one-to-one; auxiliary functions as required for CA are
available in Isabelle to the same extent as in SML: dvd, gcd and others are not present in the latter,

1Maple [9] is sometimes said to be “transparent”, but following down the traces usually ends at the in-transparent kernel;
the same is with WolframAlpha

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 TP Technology — Education

but in Isabelle/HOL. The first challenge was to identify, which SML integers represent coefficients of
polynomials, and which represent primes. The latter were represented by HOL’s nat — an instructive
exercise in precise programming.

The translation took care to use the simplest Isabelle tool possible: definition for non-recursive func-
tions (which well might comprise fold or map), primrec for primitive recursion and fun otherwise. The
latter resolves all proof obligations automatically and creates a suite of theorems: customized induction
rules *.induct and case rules *.cases required later for proofs in §4 and §5. The simplification rules
*.simps, generated as well, allow immediate testing of functions by value — most important for pro-
grammers’ approaches.

Only if implementation by fun does not succeed immediately, one expands the definition to func-
tion and resolves the proof obligations explicitly calling by pat completeness auto and postpones the
termination proof by termination sorry. Table.1 gives a survey on all functions implemented so far:

Isabelle’s tool tool’s features number of occurrences
definition no recursion 21
primrec primitive recursion 1
fun automated proofs 10
function interactive proof 9
total of function definitions 41

Table 1: Kinds of function definitions for the univariate gcd.

Defining functions in the FP is almost trivial but not in all cases of 41 above, which seem typical for
CA. The first function which really challenged the programmer was the following one, which decides
divisibility (dvd) for univariate polynomials (up, actually lists of integers, i.e. of exponents). The iden-
tifier for the function is declared as infix with priority 70 in line 01, the function is implemented by two
patterns in line 02 and in line 03:

01 function dvd up :: ”unipoly⇒ unipoly⇒ bool” (infixl ”%|%” 70) where
02 ”[d] %|% [p] = (|d| ≤ |p| ∧ p mod d = 0)”
03 | ”ds %|% ps =
04 (let
05 ds = drop lc0 ds; ps = drop lc0 ps;
06 d000 = (List.replicate (List.length ps - List.length ds) 0) @ ds;
07 quot = (lcoeff ps) div2 (lcoeff d000);
08 rest = drop lc0 (ps minus up (d000 mult ups quot))
09 in
10 if rest = [] then True
11 else if quot 6= 0 ∧ List.length ds ≤ List.length rest then ds %|% rest else False)”
12 by pat completeness auto
13 termination sorry

In this function the FP had problems with by pat completeness auto which required a couple of
interventions by the (very supportive) Isabelle developer team. The respective experiences are worth to
be communicated, but out of scope of this abstract. The successful outcome looks as follows:

01 function (sequential) dvd up :: ”unipoly⇒ unipoly⇒ bool” (infixl ”%|%” 70) where

W. Neuper 3

:
09 in
10 rest = [] ∨ (quot 6= 0 ∧ List.length ds ≤ List.length rest ∧ ds %|% rest))
12 by pat completeness auto
13 termination sorry

3 Using Isabelle’s Code Generator

For the working programmer automated code generation for relevant target languages is a major motiva-
tion. And indeed motivating, following the tutorial [4] and executing

export code ”gcd up” (* gcd for *u*nivariate *p*olynomials *) in SML
module name GCD Univariate file ”˜/codegen/gcd univariate.ML”

immediately led to successfully running SML code: just evaluate the two lines in an auxiliary theory
importing GCD Poly FP.thy, which holds gcd up and the preceding definitions. Inspection of the au-
tomatically generated code was the next pleasant surprise: the original SML code (i.e. the model for
translation into Isabelle’s FP) and the generated code are almost identical.2.

Further investigations on the efficiency of the generated code are planned, in particular with respect
to the indefinite precision integers and naturals in comparison with the original SML code.

4 Proving Termination

Admittedly, generating code from Isabelle definitions with termination sorry (as done in §2 and §3 above)
is a bad practice in terms of software verification in HOL: On termination, even when stated with sorry,
i.e. omitting a proof, the theorems mentioned in §2 are created and seduce to inappropriate use. However,
as already mentioned, this case study started from a programmers perspective which considers automated
generation of code a major success — while the generated code is not less trustworthy than the original
SML code.

The obligation to prove termination, as imposed by the FP, marks the transition from naive pro-
gramming to software engineering. Isabelle’s FP supports this transition with much automation: Table.1
shows that from 41 functions only 9 require an explicit termination proof:

Termination proof number of occurrences
not necessary (definition, primrec) 22
done automatically by FP (fun) 10
by lexicographic order 1
by relation measure 2
by size change 0
did not yet succeed 6
total of function definitions 41

Table 2: Success of explicit termination proofs.

2The final paper will show some examples.

4 TP Technology — Education

The ration between automated proof and interactive proof of termination seems typical for CA: recur-
sion is not structural with respect to some datatype, rather depends on specific mathematical knowledge.
In this case study the crucial function for proving termination is

function next prime not dvd :: ”nat⇒ nat⇒ nat”

which determines a prime with a certain property greater than a given number. Isabelle2013 lacks respec-
tive knowledge, however, the Isabelle development already started to fill this gap3. So we look forward
to have completed all termination proofs at the end of the case study.

5 Verifying CA Algorithms in Isabelle

This task has not begun at the time of writing this extended abstract. For sake of efficiency in development
and of coherence of Isabelle’s knowledge the first step of this task will be to adopt Isabelle’s multivariate
Polynomials4 — from the side of Isabelle development respective tools are already under construction5

for supporting this task.
Transferring the gcd algorithm completely to Isabelle’s FP and verifying it seems essential: there

seems no way to produce a certificate for the property of being the greatest common divisor. Thus,
in order to get a computable gcd into the Isabelle distribution, verification of some algorithm seems
necessary.

6 Making CA transparent by Lucas-Interpretation

Lucas-Interpretation [11] is a TP-based technology, which maintains both, an environment (for compu-
tation) and a logical context (for deduction) and thus allows step-wise execution of algorithms, where a
student is free at any step to investigate the underlying knowledge, to suggest a next step (where deriv-
ability is proved automatically from the context) or to ask the system for a next step.

While the benefits for education seem evident, the benefits for implementing CA are not. On com-
pletion the case study is expected to produce detailed requirements for debugging (with inspection of
environment and context) and experiences, how Lucas-Interpretation might support verification of the
underlying CA algorithm.

7 Conclusion

The steps already done in this case study suggest, that Isabelle’s function package is ready for implemen-
tation of comprehensive algorithms in Computer Algebra. Furthermore, the experiences with “program-
ming in Isabelle” are promising such, that integrative support for “Domain Engineering” (as an offspring
of Formal Methods) [1, 2, 3] might come into sight within some years.

About advantages of Lucas-Interpretation for the implementation of CA nothing can be said at the
time of writing this extended abstract; results are expected on completion of the case study for the final
publication in autumn 2013.

3See the development branch at http://isabelle.in.tum.de/reports/Isabelle/rev/7f864f2219a9.
4http://isabelle.in.tum.de/dist/library/HOL/HOL-Library/Polynomial.html
5See the development branch at http://isabelle.in.tum.de/reports/Isabelle/rev/3cc46b8cca5e.

http://isabelle.in.tum.de/reports/Isabelle/rev/7f864f2219a9
http://isabelle.in.tum.de/dist/library/HOL/HOL-Library/Polynomial.html
http://isabelle.in.tum.de/reports/Isabelle/rev/3cc46b8cca5e

W. Neuper 5

References
[1] Dines Bjørner (2006): Software Engineering. Texts in Theoretical Computer Science 3, Springer, Berlin,

Heidelberg.
[2] Dines Bjørner (2009): Domain Engineering. Technology Management, Research and Engineering. COE

Research Monograph Series 4, JAIST Press, Nomi, Japan.
[3] Dines Bjørner (2013): Domain Science and Engineering as a Foundation for Computation for Humanity,

chapter 7, pp. 159–177. Francis & Taylor. In: J.Zander & P.J.Mosterman (eds.), Computational Analysis,
Synthesis, and Design of Dynamic Systems.

[4] Florian Haftmann (2013): Code generation from Isabelle/HOL theories. Theorem Proving Group at TUM,
Munich. Available at http://isabelle.in.tum.de/dist/Isabelle2013/doc/codegen.
pdf. Part of the Isabelle distribution.

[5] John Harrison & Laurent Thèry (1998): A sceptic’s approach to combining HOL and Maple. J. of Automated
Reasoning 21, pp. 279–294.

[6] Alexander Krauss (2006): Partial recursive functions in higher-order logic. In Ulrich Furbach & Natara-
jan Shankar, editors: Automated Reasoning (IJCAR 2006), Lecture Notes in Artificial Intelligence 4130,
Springer Verlag, pp. 589–603, doi:10.1007/11814771 48.

[7] Alexander Krauss (2010): Partial and Nested Recursive Function Definitions in Higher-order Logic. J.
Autom. Reasoning 44(4), pp. 303–336, doi:10.1007/s10817-009-9157-2.

[8] Alexander Krauss (2013): Defining Recursive Functions in Isabelle/HOL. Theorem Proving Group TUM,
Munich. Available at http://isabelle.in.tum.de/dist/Isabelle2013/doc/functions.
pdf. Part of the Isabelle distribution.

[9] Douglas Meade (2009): Getting Started with Maple, 3rd ed. Wiley.
[10] Diana Meindl (2013): Implementation of an Algorithm Computing the Greatest Common Divisor for Multi-

variate Polynomials. Master’s thesis, Reserach Institute for Symbolic Computation (RISC) Linz.
[11] Walther Neuper (2012): Automated Generation of User Guidance by Combining Computation and Deduc-

tion. Electronic Proceedings in Theoretical Computer Science 79, Open Publishing Association, pp. 82–101,
doi:10.4204/EPTCS.79.5.

[12] Walther Neuper (2013): On the Emergence of TP-based Educational Math Assistants. 7, pp. 110–129.
Available at https://php.radford.edu/˜ejmt/ContentIndex.php#v7n2. Special Issue “TP-
based Systems and Education”.

http://isabelle.in.tum.de/dist/Isabelle2013/doc/codegen.pdf
http://isabelle.in.tum.de/dist/Isabelle2013/doc/codegen.pdf
http://dx.doi.org/10.1007/11814771_48
http://dx.doi.org/10.1007/s10817-009-9157-2
http://isabelle.in.tum.de/dist/Isabelle2013/doc/functions.pdf
http://isabelle.in.tum.de/dist/Isabelle2013/doc/functions.pdf
http://dx.doi.org/10.4204/EPTCS.79.5
https://php.radford.edu/~ejmt/ContentIndex.php#v7n2

	Introduction
	Programming with Isabelle's Function Package (FP)
	Using Isabelle's Code Generator
	Proving Termination
	Verifying CA Algorithms in Isabelle
	Making CA transparent by Lucas-Interpretation
	Conclusion

