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Abstract

It is proposed that the restriction in the OpenMath standard that an OMBIND element
must have exactly three children should be lifted, to support more general binder symbols.
The case of logics with generalised quantifiers is described in some detail, since these
turn out to not have a natural encoding within OpenMath 2.0, because of precisely this
restriction. That restricting quantifiers to a single body should have such consequences is
not trivial, but follows from a theorem in the Logic branch of Philosophy.

1 Introduction

In the OpenMath standard, there are four kinds of non-basic OpenMath objects: application
(OMA), attribution (OMATTR), binding (OMBIND), and error (OME). Errors clearly have
a special standing as denoting an exception state, and attributions are highly fluid in that
flattening or unflattening a sequence of attributions has no effect on its semantics. This leaves
the job of encoding the structure of a formula to application and binding objects: application
is the main workhorse, whereas binding objects are built where a variable is being bound.
OMA and OMBIND have considerable similarities. Both have as first child a ‘head’ object
(often a dedicated symbol) that determines the detail semantics of the construction as a whole;
remaining children may typically be though of as something upon which the head acts. For
several mathematical concepts, such as integrals, sums, and limits, formalising one as a binder
acting upon an expression or as an application acting upon a function may be equally natural
choices. Thorough textbooks defining integrals may for example [9] start with defining ‘definite

integral f: f of a function’ using upper and lower sums, and only when that whole machinery is

in place switch to the more colloquial ‘definite integral ff f(x) dz of an expression’; the former
is an application, the latter is a binder, but the mathematical content is the same.

There is however one factor in the OpenMath standard that prevents viewing an OMBIND
simply as an OMA beefed-up with the additional power to bind variables, namely that an OMA
can have any number of children, whereas an OMBIND must have exactly three: the head, an
OMBVAR containing the variables to be bound, and one body object; a structural analogy with
OMA would rather require that there could be zero or more body objects. Not having that
freedom becomes a noticeable restriction quite soon beyond the most elementary integral and
sum concepts, since it is quite common in calculations that these carry conditions (involving
the bound variables) which are as important as the integrand itself for how one should proceed.
These conditions are not natively part of the integrand (even if it can be useful to introduce
devices that let one so incorporate them [7]), so they should intuitively appear as a separate
child of the OMBIND.

Not surprisingly, this problem has been noticed and discussed before [5], in the context of
aligning OpenMath and MathML, since MathML 2 allowed dedicated <condition> elements on
integrals. The outcome of this alignment was however not to enhance OpenMath, but rather to
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semi-deprecate the likes of <condition> by leaving them out of Strict Content MathML, instead
prescribing for them a rewrite-to-SCMML procedure by way of <domainofapplication> and
setl1#suchthat that thereby becomes the normative definition of their semantics. In other
words, a view got to reign that the addition of a condition clause in a binding object does
not represent a switch to a different but related symbol (such as between arithl#minus and
arithl#tunary_minus), but rather a streamlined presentation of a more complex formula (the
condition really figures in the calculation of a restricted domain of application).

This view represents a feasible way of formalising concepts such as sums with conditions, but
whether it also provides a faithful representation of these symbols with respect to the practices
for how they are manipulated is quite a different matter. In for example
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the key idea is that the left double sum mechanically translates to a combined sum with con-
dition 0 < 7 < n A i < k < n whereas mechanical translation of the right double sum yields
the condition 0 < k <n A 0 < i< k—both of which are neatly summarised as 0 < i < k < n.
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or even

the step grows longer, mostly because it becomes necessary to reverse the introduced ordering
of the bound variables. It likewise becomes much less straightforward to argue that a summand
may be rewritten subject to some piece of information expressed in a condition when that
condition is two steps further away from the sum.

Still, it will likely remain dependent on point of view whether the conditioned sum in
is technically an expression of the form or rather just something equivalent to it. Because
K-14 mathematics undeniably provides for these kinds of binding-reduced presentations, it is
hard to argue within that context that a more general OMBIND is necessary. Therefore, if one
wishes to drive home such a point of necessity, one should rather look beyond the K—14 horizon,
and in particular at contexts that do not have set theory and lambda calculus built in. Such
contexts exist, and one may even add the prerequisite that they have practical applications,
but they are probably not what one would call “part of mainstream mathematics”, since the
relevant literature tends to rather be classified as computer science or philosophy. (But then
again, so is much of lambda calculus and set theory.)

Next, Section |2| gives an introduction to a body of theories where generalised binders are
common and important. Section [3| then details the enhancements of the OpenMath standard
here proposed, and finally Section [4] discusses some objections that have been raised in the past.

2 General quantifiers

Quantifiers are concepts of which different mathematicians seem to have unusually varied un-
derstandings. A very striking example of this is provided by the Encyclopaedia of Mathematics
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entry [I0] on the subject, where the original entry basically states that ‘quantifier’ is the com-
mon term for V and 3, but the supplementary comment describes the subject as ‘far more
involved than suggested above’; a nice overview of what it contains is given in [II]. What can
currently be found in the official OpenMath content dictionaries does not go beyond the former
view, but the standard as such should be able to encode also everything brought up in the
latter.

Part of the difference in views may be due to that the contexts in which one tends to
encounter quantifiers other than the basic ¥V and 3 (and “shorthand” variants of these, such
as the unique existence quantifier 3!) are not that of mathematics in general, but rather some
specialised subsets of mathematics. The best-known example of such a subset is probably the
use of Monadic Second-Order (MSO) logic within formal language theory, where several classes
of languages have been characterised using MSO logic (see for example [T [2]). The idea here
is that every element of a formal language (e.g. every string, if considering word languages)
is taken as defining a model for some logic, and a typical theorem might be that a language
belongs to a particular class if and only if there is some formula in the logic under consideration
which is true for precisely those models which correspond to elements of the language.

In second-order logic, one may quantify over predicates (“relation symbols”) as well as
variables, but the ‘monadic’ imposes the restriction that the predicates being quantified may
only have one argument. Since a relation with one argument is essentially a set (P(a) <= a €
P), this means MSO logic gives one the power to quantify over sets of atoms (but not over
for example sets of pairs of atoms) without introducing any primitives of set theory as such,
since that would let the logic express far too much for these purposes. The point is not to
build a formal theory and start deriving theorems stated in MSO logic, but to use that logic
to describe classes of models. For suitably weak logics, truth may well be an algorithmically
decidable property.

Quite a lot can be done in MSO logic with just the (possibly second order) universal and
existential quantifiers, but the fact that these bind “set variables” suggests a range of additional
conditions that can be imposed. One might quantify with respect to the finite sets, the sets
of even cardinality, or the sets of prime cardinality. Having the same quantifier bind several
variables, one can quantify with respect to pairs of sets of equal cardinality. None of these
things are beyond what OpenMath 2 supports, but they are mentioned here to give a hint of
how useful expressive power can be built into the quantifiers of a language, rather than provided
via predicates or functions.

What OpenMath 2 does not support is Lindstrom quantifiers,® since these bind variables
in several subformulae simultaneously; if @, is a Lindstrom quantifier and ¢4 (x),. .., ¢r(x) are
well-formed formulae, then

Qrx [901 (:L‘), AR (Pk(x)} (3)

is a well-formed formula in which there are no free occurrences of . The natural encoding of
this formula in OpenMath (XML) would be

<OMBIND>
(encoding of Q)
<OMBVAR>
<OMV name="x"/>

I There seems to be some disagreement about terminology here. In [I], the Q- of formula would be called
‘a generalised quantifier of type (1,...,1)’, whereas the term ‘Lindstrom’ in addition is taken to suggest that
several variables are being bound simultaneously (polyadic quantifier). Other authors seem to use it regardless
of the number of variables bound. For OpenMath, it is rather the number of subformulae that the quantifier
combines that is the novelty.
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</0MBVAR>
(encoding of ¢1(x))

(encoding of g (z))
</0OMBIND>
but this is currently not allowed, since the number of children of the <OMBIND> is 2 + k rather
than exactly 3.
The matter of how an interpretation is assigned to such a quantifier Q. is admittedly
somewhat involved; for a fully rigorous definition see [8, Ch. 5], [6], Ch. 12], or [11I]. What one
must supply is a rule which assigns a truth value to the satisfaction relation

(A,v) [ Qrz[p1(@),..., pu(@)]

where A is a model (giving interpretations to all predicates, functions, and constants) and v is
a valuation (a map from the set of variables to the domain A of A; these are used as the values
of the variables at their free occurrences). Denoting

a if x =y,

vlz/a(y) = {

v(y) otherwise,

one can define for each formula ¢(x) a set

rir={aca] (Avfe/a) E o) |,

i.e., the set of values for x that render this formula satisfied. The rule for @), is then that

(A) = Qraler(@), ... pn(@)] iff TB(A Ry R;‘k@g),

that is, 7 is essentially a table of those combinations of domain elements and corresponding
truth values for argument formulae that satisfy this quantifier. (The reason the domain A is
included in the tuples of 7 is that when the quantifier is defined in this generality, the “relational
system” 7 is required to be closed under isomorphism; if (A, Ry,...,R;) € T and f: A — B
is a bijection, then (B, f(R1),..., f(Rk)) € T as well.)

As an example of this, consider the Hdrtig quantifier Qg for which the rule is

(A0) [ Qualei (@), pa(a)] iff |RAT] = [RATY),

i.e., Qualp1(x), p2(x)] if and only if there are as many x satisfying ¢1(x) as there are x
satisfying @o(z) (which is quite different from ¢1(x) and @2 (x) being satisfied by the same x).
As a relational system,

H={(APQ) | PCAQCAIP =|Q|}.
Another such quantifier is Q,,0s, Where
most = { (A,P,Q) | PCAQCA,|IPNQ|>|P\Q|},

i.e., Qmostz[¢1(z), p2(x)] could be read as ‘most x such that ¢;(z) satisfy pa(z)’ or in less
formulaic language ‘most ¢ are @3’ (compare ‘most continuous functions are nowhere differen-
tiable’). By [I1, Th. 19.4], this Qmest quantifier is not definable in terms of any set of quantifiers
of type (1) (i.e., acting upon only one subformula)! Hence it is not expressible using present
OpenMath with less than that one introduces the primitives of set theory, which however throws
all hope of something like algorithmic decidability out the window.

4
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3 Standard Enhancement Proposal

As hinted at above, the PROPOSAL is that the restriction on a binding OpenMath object that
it must have exactly one body subobject should be lifted. In the normative Relax NG schema
for the OpenMath XML encoding, that corresponds to the change

—--- openmath2.rng 2013-06-03 17:20:57.000000000 +0200
+++ openmath2+polybind.rng 2013-06-03 17:23:24.000000000 +0200
0Q -144,9 +144,11 Q@
<!-- binding constructor -->
<define name="0OMBIND">
<element name="OMBIND">
<ref name="compound.attributes"/>
<ref name="omel"/>
<ref name="OMBVAR"/>
<ref name="omel"/>
<zeroOrMore>

<ref name="omel"/>
</zeroOrMore>
</element>
</define>

+ o+ o+

It is not clear that there are any use-cases for the ‘no bodies’ edge case, but it should not hurt
to allow it, and it could conceivably turn up as a base case for some sort of “n-ary binder”.

Note that the proposed change, both for the XML encoding and for the binary encoding,
is strictly a matter of relaxing the syntax; it does not require any new delimiters or separators
for disambiguating. In the XML encoding, this is because the list of variables being bound is
already bundled into one OMBVAR element. In the binary encoding, token identifiers 28 and
29 similarly delimit the sequence of variables being bound.

What would require new delimiters is however the informal function-style syntax used to
define OpenMath objects in Chapter 2 of the standard, since this presently employs a flat list
of head, variables, and body as in Subsection 2.1.3 Clause (iv):

binding (B, v, ..., v, C)

It is thus further PROPOSED that the punctuation before and after the list of variables in a
binding is changed to a semicolon, like so:

binding(B;v1,...,v,;C) and binding(B;v1,...,v,;C1,...,Ch)

This places the semicolons in the same positions as the tokens 28 and 29 in the binary encoding.
The second semicolon is of course necessary to mark the boundary between the two variable-
length sections. The first semicolon has the merit of highlighting the boundary between the
head—where occurrences of the variables vy, ...,v, are not bound by this binding—and the
rest of the binding object—where these variables are bound by it (in the sense of participating
in a-conversion). Since the latter is a somewhat subtle point, highlighting this boundary should
enhance readability. Introducing semicolons as a new punctuation mark is furthermore not a
very dramatic step, since these formulae already employ spaces as the secondary punctuation
mark separating attribution symbols from their attribute value; commas never were the only
punctuation marks around.
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4 Anticipating Certain Objections

Since there has been a previous enhancement proposal [4] much to the same end as this one, it
can be anticipated that objections raised back then will be put forth again. Hence there is a
point in considering these objections and the problems with them.

4.1 The Dummy Helper Application

One line of reasoning holds that it is unnecessary to allow
binding(B;v1,...,v,;C1,...,Cn) (4)
since the same information can be encoded as
binding(B;v1,. .., v,; application(D, Cy,...,Cy,))

where D is some new application symbol—a single new symbol could suffice for all binders.
Proponents of this view might even think that vindicates it, since the brackets there is a
perfect match for this D application.

What the latter part of this argument overlooks is that the brackets in are a purely
notational device—much like the parenthesis in ‘ f(x,y, z)’. Content-wise, the problem with the
above argument is that it introduces into the formula an OpenMath object which is a purely
syntactic device; a theory encompassing the generalised binder B will have interpretations for all
of C1,Cs, ..., C,,, and as a whole, but there will not in general be anything that semantically
corresponds to the application(D,C1,...,Cy,) (even if there can be in specific cases). Hence
this approach would prevent formulae from having a native expression in OpenMath, rather
requiring them to be encoded into OpenMath (just like OpenMath in turn tends to be encoded
into XML).

The dummy helper argument—that a multiplicity of objects can instead be encoded as a
single application object—also begs the question of why error should be allowed to take an
arbitrary number of non-heads, when binding is not. If minimality is the argument against
generalised binders, then it should apply equally much against the present errors.

4.2 The Universal Lambda

Another line of reasoning holds that fnsi1#1lambda is the only binder anyone really needs—
that every other binder can be rewritten to a combination of lambda and an application—and
moreover that doing so is The Future. Therefore any changes made in this area should rather
be in the direction of deprecating all binders that are not fns1#1lambda.

It is difficult to view this argument as being anything but primarily ideological: a statement
of what one would [ike people to do, possibly for aesthetic reasons, rather than a conclusion
founded in utility. It is quite true that binders are awkward to formalise (and I for one have
much affinity for variable-free formalisms), but what is awkward about binders is the binding
of variables as such rather than the concepts that the binder seeks to encode. Therefore the
‘one lambda fits all’ approach succeeds rather in combining the worst of both worlds: none of
the conceptual unity that a specialised binder can bring, but all of the formal complications
that are inherent in binding variables! Perhaps it is rationalised by viewing phrasebooks mostly
as thin wrappers over an implementation language having lambda (but no other binders) as a
primitive, since in that case having no other binders around makes life easier for the phrasebook
implementor, but that would be a narrow-minded view. It cannot be the role of a general

6
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standard such as OpenMath to say that some styles of doing math (e.g. the functional style)
are good and others (e.g. using binders) are bad, even if individual phrasebooks of course may
choose to support the symbols of one style but not those the other.

More down to earth, the ‘one lambda fits all’ approach to binding has several problems. One
is that using a separate single-body lambda for each C; of a generalised binding like weakens
the connection between occurrences of the same variable in different bodies, as remarked in [5].
Another problem is that it opens up for ontological contamination, both in that the use of
the lambda suggests that all variable binding ends up substituting values for the variables,
and conversely that the meaning of fnsi1#lambda as constructing an honest value-in-value-out
applicable function is diluted by using it for random binding tasks. Third, the use of lambdas
carries within it a presumption that functions are supported as first-class objects, even though
first-class status of functions is (among formalisations of mathematics) a high-end feature rather
then a basic one; domain-specific systems rather have the tendency to only accept known basic
symbols as applications (unless the system happens to embed some variant of lambda calculus).

4.3 MathML Misalignment

A third line of reasoning could be that the proposed enhancement in principle is correct, but
cannot be implemented because it is not in MathML 3. In other words, this amounts to saying
“this can’t be fixed, because the Other Standard is broken in this regard too.”

However, since (Strict Content) MathML 3 only claims to be in alignment with Open-
Math 2.0, there is no particular reason why OpenMath could not advance. To preserve in-
teroperability, one could adapt a variation on the work-around from Subsection to the
conversion of generalised OpenMath bindings to Content MathML 3; this is well on par with
other code transformations that such a conversion must perform, at least if viewed at the XML
level.

A An Afterthought

While writing about the suggested modifications to the informal syntax for OpenMath binding
objects, it occurs to me that this also opens up for unambiguously giving several subobjects
before the list of variables. Could that be useful? Very much so, since it is hard to imagine a
more straightforward encoding than

binding( [, a,b; z; f(z))

of the binding definite integral f; f(z) dzr than that! (With the physicist notation f; dz f(z)
the match is even closer.) The trick here is that since variables do not get bound before the first
semicolon (i.e., before the OMBVAR child), that will be the correct place to include subobjects
that should not be subjected to such binding, for example integral bounds. In the Relax NG
schema, the corresponding change would be

@@ -144,9 +144,13 @@
<!-- binding constructor -->
<define name="0MBIND">
<element name="OMBIND">
<ref name="compound.attributes"/>
- <ref name="omel"/>
+ <oneOrMore>
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+ <ref name="omel"/>
</oneOrMore>
<ref name="OMBVAR"/>
<ref name="omel"/>
<zeroOrMore>

<ref name="omel"/>
</zeroOrMore>
</element>
</define>

+

+ o+ o+

which is again an unambiguous relaxation.

The reason I do not up-front propose this slightly more general enhancement is that I have
thought about it too late to be comfortable that I have given all consequences a reasonable
consideration. It does for example seem plausible that it would be more disruptive to existing
phrasebooks than the PROPOSED enhancement, since it should often have seemed natural to
hardwire the knowledge that the OMBVAR is the second child of an OMBIND. The work-
around by means of a helper application is also slightly less wasteful than for the bodies, since
one can write

binding (application( [, a,b); z; f(z))

and still get by with only one symbol (even if that is a weird application symbol in returning
a binder, and moreover vulnerable to several of the arguments in Section .
This possibility is probably best discussed at the workshop.

B Binders in the Small Type System

Generalising the binders might also require a generalisation of their declarations in the Small
Type System [3], but on the other hand that (at the time of writing) seems to be somewhat
in disarray; all extant STS declarations of binders consist of the single symbol sts#binder,
and do thus not match the BIND production in [3]. Moreover, the interpretation of that BIND
production is unclear, since a full typing of even an ungeneralised binder should specify at least
three pieces of information:

1. the types of the variables being bound,
2. the type of the body subobject, and
3. the type of the binding object as a whole.

However, the BIND production only has room for two pieces of information. Thus, something
is missing anyway.
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