
An Eclipse-Based Authoring Tool For Developing Model-
Based Adaptive Service Frond-Ends

Safdar Ali, Umair Javed
Human Computer Interaction Laboratory, SAP AG

Bleichstr. 8, 64283 Darmstadt, Germany
{firstname.lastname}@sap.com

ABSTRACT
This paper describes the initial results of our research
within the context of Serenoa project, where we have
developed the first version of an authoring tool, which has
been developed as a plugin for the widely used Eclipse IDE
in the industry and academia. This authoring tool supports
all the CRUD (Create, Retrieve, Update, and Delete)
operations for the adaptation rules and front-end UIs
development for the service definitions at Abstract level.
The adaptation rules and the front-end UIs are developed
using the model-based languages, namely the Advanced
Adaptation Logic Description Language (AAL-DL) and the
Advanced Service Front-End Description Language
(ASFE-DL), respectively, which have been developed in
the project.

Author Keywords
Serenoa Project, Authoring Tool, Adaptive Service
Frontends, Model-Driven Architectures, Eclipse-Plugin

ACM Classification Keywords
Algorithms, Design, Languages

General Terms
Algorithms, Design, Languages, Theory

INTRODUCTION AND BACKGROUND
Model-based approaches mainly aim at helping the
developers to understand user needs and design solutions in
an effective way. Nowadays, many industrial and academic
initiatives for implementing context-aware adaptation of
user interfaces rely on model-based approaches for UI
design [1] and Model-Based Integrated Development
Environments (MB-IDEs) [2]. The purpose of model-based
design is to identify high-level models, which allow
designers to specify and analyze interactive software
applications from a more semantic oriented level rather than
starting immediately to address the implementation level.
This allows them to concentrate on more important aspects
without being immediately confused by many
implementation details and then to have tools which update

the implementation in order to be consistent with high-level
choices. Thus, by using models which capture semantically
meaningful aspects, designers can more easily manage the
increasing complexity of interactive applications and
analyze them both during their development and when they
have to be modified [3].

Serenoa Project [4] is aimed at developing a novel, open
platform for enabling the creation of context-sensitive or
adaptive SFEs. A context-sensitive SFE provides a user
interface (UI) that exhibits some capability to be aware of
the context and to react to changes of this context in a
continuous way. As a result such a UI will be adapted to a
person’s devices, tasks, preferences, and abilities, thus
improving people’s satisfaction and performance compared
to traditional SFEs based on manually designed UIs.
Serenoa will provide domain-independent reference models
and languages (ASFE-DL, AAL-DL) devoted to simplify
the development of adaptive SFEs. It is developing the
ASFE-DL language targeted to the specification of context-
sensitive SFEs that can adapt to different platforms,
modalities or users in ubiquitous computing environments.
Also, it is developing AAL-DL as a high level description
language for expressing advanced adaptation logic (Rules).
The adaptations of SFEs are carried out according to these
rules. Furthermore, Serenoa is aimed to provide the
technology for the automatic generation of context-sensitive
SFEs with user involvement and machine learning.

An authoring tool is a software package which developers
use to create and package content deliverable to end users.
It is a software that allows (usually non-programmer) users
to create their own courseware, web page, or multimedia
applications and the associated navigating tools. It requires
less technical knowledge to master and is used exclusively
for applications that present a mixture of textual, graphical
and audio data. It could be developed as a plugin or it could
be developed as a web based application as well.

AUTHORING TOOL AND ARCHITECTURE
In Serenoa project, we have developed an Eclipse-Plugin
based authoring tool, where our objective was to develop
two editors, namely the Service Editor and the Rules Editor
to create the service definitions and context rules,
respectively. The Service Editor can be used to create
Abstract-level service descriptions, while the Rules Editor
supports creating the context-sensitive transformation rules
using the Design and/or Code views. Another important

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

objective was to allow the authoring tool to communicate
with a remote repository via RESTful Web Services based
interface and support all the CRUD (Create, Retrieve,
Update, and Delete) operations on the service definitions
and context-dependent transformation rules.

Figure 1: Authoring Tool in Eclipse Plugin Environment

Figure 1 shows the high-level implementation architecture
of the authoring tool plugin, which shows how the two
different views, namely Code view and the Design view
have been implemented along with the plugin specific
perspective. On the other hand, Figure 2 shows the
screenshot of Rules editor with the Design view (the
description of each part of the editor is explained in the
caption of the figure). The important thing is that the Action
element of the rule can include nested rules and the
Condition element can be made as complex condition
(nested conditions) with different logical and arithmetic
operators. The Rules Editor is designed as a multi-page
editor with Graphical Editor and XML Editor to facilitate
the creation and editing of rules in graphical and code
views, as shown in Figure 2. The Code View is displayed
simply in an XML Editor as the model languages are based
on XML as underlying language. The Graphical editor is
developed using GEF, which internally uses MVC [5]
architectural pattern and provides technology to create rich
graphical editors and views for Eclipse Workbench UI. The
languages schemas and example rule files provided by the
project partners helped us in designing the graphical part of
the rules editor.

The graphical part is designed to have a tool palette which
contains elements’ list for creating rules. The element list is
divided into three categories as Event, Condition and
Actions (the structure used for specifying Rules). The
drawing area is used to drag and drop elements from the
palette and displays the rules in a graphical representation
(in the form of boxes). This helps the developers to easily
and quickly develop the rules for Adaptive SFE
applications. The editor can also display the Outline View in
the form of tree structure and provides displaying and easy
navigation feature for the Rules drawn in the drawing area.

The Property View shows the properties associated with
each element that can be set in the fields. The miniature
view of the drawing area provides an overview of when
editing in the XML editor. The Graphical editor also
provides features such as Selection, Moving, and Resizing
of elements, Actions (like Redo, Undo, Delete, and Zoom),
keyboard shortcuts, context menu, drag and drop, cut and
paste. Both the XML editor and the Graphical editor are
synchronized to reflect changes made at any time in their
respective views.

IMPLEMENTED FUNCTIONALITIES
Currently the following functionalities have been
implemented and supported by the authoring tool in the
form of wizards for each of the functionality.

Creation of a Serenoa Project
In order to create rules or UI definitions for the services,
first of all a project must be created, which will serve as a
container for holding other project related elements. In
order to do this, the user creates a Serenoa project with the
help of a wizard, where the user can set different properties
and structure.

Loading of XML Schemas and Data Type Definitions
In order to create rules or UI definitions for the services, the
relevant XML schemas and DTSs files are loaded and used
by the respective wizard to create the desired depth or
hierarchy of the structure of the rule.

Creation of AAL-DL Rules
Once the XML schemas and DTSs have been loaded in the
project, the user can create adaptation rule, either with the
help of provided wizard, or simply creating an XML file in
the project. After this step, the user opens this file in AAL-
DL Editor, as shown in Figure 1, for creating new rules or
editing the existing ones.

Creation of ASFE-DL Service Definition Locally
Once the XML schemas and DTSs have been loaded in the
project, the user can create UI definitions for the services.
Currently, only the Abstract UI definitions are supported,
but in later versions, the editor will support creating the
Concrete and Final UI definitions.

Creation of ASFE-DL Service Definition Remotely
Once the Abstract UI definitions have been created locally,
they can be stored by creating a new service on a remote
repository via RESTful services interface. In order to do
this, the user selects the service folder from the project
explorer and presses Shift + C, which opens a dialog where
the user selects the respective files and finishes the process
by clicking on Create button.

Deletion of Rules and Service Definition
The user can delete adaptation rules or service definitions
not only from the local project, but also from the remote

Figure 2: The Design View of the Rules Editor of the authoring tool plugin. On the right hand side, the Palette block shows the
elements that can be dragged and dropped on the design canvas in the middle. These elements include, mainly, Rule, Event,
Condition and Action, where all the elements can be dropped inside a Rule element. Multiple rules can be created, as shown in this
figure. In the bottom, the Properties View shows the respective properties which a user can set by selecting an element. On the left
hand side, The Project Explorer shows the project and all the files of rules and UI definitions created in it. Also, the Outline area
shows the tree view of the rules and the Miniature View shows the miniaturized view of the design view

repository by pressing Shift + D as well.

Retrieval of Rules and Service Definition
The adaptation rules or service definitions can be retrieved
or downloaded from a remote repository. First of all, the
user selects the project, where the Service should be
downloaded to, and then presses Shift + G.

Updating Rules and Service Definition
After the retrieval of adaptation rules or service definitions,
the user can make changes to them. After saving it locally,
the user can update them on remote repository by pressing
Shift + U and then selecting the updated rules and service
definitions files.

CONCLUSION
We have developed the first version of Eclipse-Plugin
based authoring tool. The current implementation
comprises of two editors, namely the Service Editor and the
Rules Editor to create the service definitions and context
rules, respectively. Currently, the Service Editor can be
used only to create Abstract-level service descriptions,
while the Rules Editor supports creating the context-
dependent transformation rules using the Design and/or
Code views. The authoring tool is able to communicate
with a remote repository via RESTful Web Services based
interface and support all the CRUD (Create, Retrieve,
Update, and Delete) operations on the service definitions
and context-dependent transformation rules.

FUTURE WORK
In future, the authoring tool will support the editing of SFEs
at Concrete and Final levels along with testing of SFE
designs on a variety of target environments, e.g. through a
means to emulate those environments (e.g. mobile, tablet,
desktop, etc.) for different interaction modalities, e.g.
graphics, voice, touch etc.

ACKNOWLEDGMENT
This work received funding from the European
Commission within the context of Serenoa Project
(http://www.serenoa-fp7.eu/) under grant agreement
number 258030 (FP7-ICT-2009-5).

REFERENCES
1. Fabio Paternó; Model-based Design and Evaluation of

Interactive Applications; Springer Verlag, November
1999, ISBN 1-85233-155-0

2. Puerta, A.R; A Model-Based Interface Development
Environment; IEEE Software, 14(4), July/August 1997,
pp. 41-47.

3. Fabio Paternó; Model-based Tools for Pervasive
Usability; Interacting with Computers, Elsevier, May
2005, Vol.17, Issue 3, pp. 291-315.

4. EU FP7 Serenoa Project; http://www.serenoa-fp7.eu/
5. Model View Controller (MVC) Design Pattern;

http://en.wikipedia.org/wiki/Model%E2%80%93view%
E2%80%93controller

