
General Concept Inclusion Absorptions for
Fuzzy Description Logics: A First Step

Fernando Bobillo1 and Umberto Straccia2

1 Dpt. of Computer Science & Systems Engineering, University of Zaragoza, Spain
2 Istituto di Scienza e Tecnologie dell’Informazione (ISTI - CNR), Pisa, Italy

Email: fbobillo@unizar.es, straccia@isti.cnr.it

Abstract. General Concept Inclusion (GCIs) absorption algorithms have
shown to play an important role in classical Description Logics (DLs)
reasoners, as they allow to transform GCIs into simpler forms to which
apply specialised inference rules, resulting in an important performance
gain. In this work, we develop a first absorption algorithm for fuzzy DLs,
and evaluate it over some ontologies.

1 Introduction

GCI Absorption is a technique that allows to transform General Concept In-
clusion axioms (GCIs) into simpler forms to which apply specialised inference
rules [1, 11, 12, 18–20, 24], such as the so-called lazy unfolding rules.

While absorption algorithms have shown to provide an important perfor-
mance gain for classical DLs reasoners, no such algorithms have been developed
so far in the context of fuzzy DLs [14], i.e., DLs in which the truth of axioms
may not be bivalent, but graded instead, e.g., a truth value in [0, 1]. Another
benefit may consist in the posssibility to transform a non acyclic knowledge base
into an acyclic one. This is important from a computational point of view, as
e.g., the satisfiability problem under Lukasiewicz logic is correct and complete
for acyclic TBoxes, while the general GCIs case is undecidable [5] (see [4] for
more undecidability results). Also note that the absorption method holds for
the case of finite linearly-ordered truth space as well, for which the satisfiability
problem is decidable if the same problem for the corresponding classical DL is.
Therefore, the absorptions can be beneficial for finitely-valued DLs as well.

The aim of this paper is to work out an absorption algorithm for fuzzy DLs,
and evaluate it over some ontologies using the fuzzyDL reasoner [2]3. In the
following, we first recap some basic fuzzy DLs definitions, then in Section 3 we
illustrate our GCI absorption algorithm, while Section 4 provides an evaluation of
it. Eventually, Section 5 concludes and illustrates some future research directions.

2 Fuzzy DLs Basics

We recap here some basic definitions we rely on. We refer the reader to e.g., [14],
for a more in depth presentation.

3 http://www.straccia.info/software/fuzzyDL/fuzzyDL.html

dcba
0

1

x cba
0

1

x ba
0

1

x ba
0

1

x

(a) (b) (c) (d)

Fig. 1. (a) Trapezoidal function trz (a, b, c, d), (b) triangular function tri(a, b, c), (c)
left shoulder function ls(a, b), and (d) right shoulder function rs(a, b).

Mathematical Fuzzy Logic. Fuzzy Logic is the logic of fuzzy sets. A fuzzy set R
over a countable crisp set X is a function R : X → [0, 1]. The trapezoidal (Fig. 1
(a)), the triangular (Fig. 1 (b)), the L-function (left-shoulder function, Fig. 1
(c)), and the R-function (right-shoulder function, Fig. 1 (d)) are frequently used
to specify membership functions of fuzzy sets.

Although fuzzy sets have a far greater expressive power than classical crisp
sets, its usefulness depends critically on the capability to construct appropri-
ate membership functions for various given concepts in different contexts. The
problem of constructing meaningful membership functions is a difficult one and
we refer the interested reader to, e.g., [13, Chapter 10]. However, one easy and
typically satisfactory method to define the membership functions is to uniformly
partition the range of, e.g., salary values (bounded by a minimum and maximum
value), into 5 or 7 fuzzy sets using either trapezoidal functions (e.g., as illustrated
on the left in Figure 2), or using triangular functions (as illustrated on the right
in Figure 2). The latter is the more used one, as it has less parameters.

Fig. 2. Fuzzy sets over salaries using trapezoidal or triangular functions.

In Mathematical Fuzzy Logic [9], the convention prescribing that a statement
is either true or false is changed and is a matter of degree measured on an ordered
scale that is no longer {0, 1}, but e.g., [0, 1]. This degree is called degree of truth
of the logical statement φ in the interpretation I. For us, fuzzy statements have
the form 〈φ, α〉, where α∈ (0, 1] and φ is a statement, encoding that the degree
of truth of φ is greater or equal α. Usually, the truth space is L = [0, 1]. Another
popular truth space is the finite truth space Ln = {0, 1

n−1 , . . . ,
n−2
n−1 , 1} for some

natural number n > 1. Of course, L2 is the usual classical two-valued case.
A fuzzy interpretation I maps each atomic statement pi into [0, 1] and is

then extended inductively to all statements: I(φ∧ψ) = I(φ)⊗I(ψ), I(φ∨ψ) =
I(φ) ⊕ I(ψ), I(φ → ψ) = I(φ) ⇒ I(ψ), I(¬φ) = 	I(φ), I(∃x.φ(x)) =
supy∈∆I I(φ(y)), I(∀x.φ(x)) = infy∈∆I I(φ(y)), where ∆I is the domain of I,
and ⊗, ⊕,⇒, and 	 are so-called t-norms, t-conorms, implication functions, and
negation functions, respectively, which extend the Boolean conjunction, disjunc-
tion, implication, and negation, respectively, to the fuzzy case.

One usually distinguishes three different logics, namely Lukasiewicz, Gödel,
and Product logics [9]4, with the following combination functions:

 Lukasiewicz logic Gödel logic Product logic Zadeh logic
α⊗ β max(α+ β − 1, 0) min(α, β) α · β min(α, β)
α⊕ β min(α+ β, 1) max(α, β) α+ β − α · β max(α, β)

α⇒ β min(1− α+ β, 1)

{
1 if α ≤ β
β otherwise

min(1, β/α) max(1− α, β)

	α 1− α
{

1 if α = 0

0 otherwise

{
1 if α = 0

0 otherwise
1− α

We will also use an optional subscript X ∈ {l, g, p} to identify the logic they
refer to (e.g., α ⊗g β refers to Gödel conjunction). Note that the operators for
Zadeh logic, namely α ⊗ β = min(α, β), α ⊕ β = max(α, β), 	α = 1 − α and
α ⇒ β = max(1 − α, β), can be expressed in Lukasiewicz logic. More precisely,
min(α, β) = α ⊗l (α ⇒l β),max(α, β) = 1 − min(1 − α, 1 − β). Furthermore,
the implication α ⇒kd β = max(1 − α, b) is called Kleene-Dienes implication
(denoted ⇒kd), while Zadeh implication (denoted ⇒z) is the implication α ⇒z

β = 1 if α ≤ β; 0 otherwise.
An r-implication is an implication function obtained as the residuum of a

continuous t-norm ⊗ i.e., α⇒ β = max{γ | α⊗ γ ≤ β}. Note that Lukasiewicz,
Gödel and Product implications are r-implications, while Kleene-Dienes impli-
cation is not. Note also, that given an r-implication ⇒r, we may also define its
related negation 	rα by means of α⇒r 0 for every α ∈ [0, 1].

Some additional properties of truth combination functions are the following:

Property Lukasiewicz logic Gödel Product Zadeh [23]
α⊗	α = 0 • • •
α⊕	α = 1 •
α⊗ α = α • •
α⊕ α = α • •
		α = α • •

α⇒ β = 	α⊕ β • •
α⇒ β = 	β ⇒ 	α • •
	 (α⇒ β) = α⊗	 β • •
	 (α⊗ β) = 	α⊕	 β • • • •
	 (α⊕ β) = 	α⊗	 β • • • •

α⊗ (β ⊕ γ) = (α⊗ β)⊕ (α⊗ γ) • •
α⊕ (β ⊗ γ) = (α⊕ β)⊗ (α⊕ γ) • •

The notions of satisfiability and logical consequence are defined in the stan-
dard way, where a fuzzy interpretation I satisfies a fuzzy statement 〈φ, α〉 or I
is a model of 〈φ, α〉, denoted as I |= 〈φ, α〉, iff I(φ) ≥ α.

Fuzzy ALC(D) basics. We recap here the fuzzy variant of the DL ALC(D) [17].
A fuzzy concrete domain or fuzzy datatype theory D = 〈∆D, ·D〉 consists of

a datatype domain ∆D and a mapping ·D that assigns to each data value an
element of ∆D, and to every n-ary datatype predicate d an n-ary fuzzy relation
over∆D. We will restrict to unary datatypes as usual in fuzzy DLs. Therefore, ·D
maps indeed each datatype predicate into a function from ∆D to [0, 1]. Typical
examples of datatype predicates d are the well known membership functions

4 The main reason is that any other t-norm can be obtained as a combination of them.

d := ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d) | ≥v | ≤v | =v ,

where e.g., ls(a, b) is the left-shoulder membership function and ≥v corresponds
to the crisp set of data values that are greater or equal than the value v.

Now, let A be a set of concept names (also called atomic concepts), R be
a set of role names. Each role is either an object property or a datatype prop-
erty. The set of concepts are built from concept names A using connectives and
quantification constructs over object properties R and datatype properties T , as
described by the following syntactic rules:

C → > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | C1 → C2 | ∃R.C | ∀R.C | ∃T.d | ∀T.d .

Each of the connectives u and t may also have a subscript X ∈ {g, l, p},→ may
have a subscript X ∈ {kd, g, l, p, z} and, ¬ may have a subscript Y ∈ {g, l}. The
subscript indicates the fuzzy logic the connectives refers to (see Section 2). For
instance, C u (D →l ∀R.¬gE) is a concept (if a subscript is missing, then we
assume that a a priori selected fuzzy logic X ∈ {g, l, p, z} has been selected).

An ABox A consists of a finite set of assertions of the forms 〈a:C,α〉 (meaning
that a is an instance of C to degree at least α), or 〈(a, b):R,α〉 (meaning that a
and b are related via R with degree degree at least α), where a, b are individual
names, C is a concept, R is a role name and α ∈ (0, 1] is a truth value.

A Terminological Box or TBox T is a finite set of GCIs and constraints.
A General Concept Inclusion (GCI) axiom is of the form 〈C1 v C2, α〉 (C1 is a
sub-concept of C2 to degree at least α), where Ci is a concept and α ∈ (0, 1]. A
primitive GCI is one of the form 〈A v C,α〉, where A is a concept name and C
is a concept. In both cases above, v may also have a subscript X ∈ {g, l, p, z}.
Note that vkd is not allowed. A definitional GCI is one of the form A

·
= C. A is

called the head of a primitive/definitional axiom, and C is the body. A synonym

GCI is of the form A
·
= B, where both A and B are concept names. A generalised

definitional GCI is of the form C
·
= D, where both C and D are concepts.

A constraint axiom has one of the following form (R is an object property):
(i) domain(R,C), called domain restriction, that restricts the domain of role R to
be concept C; (ii) range(R,C), called range restriction, that restricts the range
of role R to be concept C; and (iii) disjoint(A,B), called disjoint restriction,
that restricts the concept names A and B to be disjoint.

We may omit the truth degree α of an axiom; in this case α = 1 is assumed.
A knowledge base is a pair K = 〈A, T 〉, where A is an ABox and T is a TBox.
Let T be a TBox consisting of definitional GCIs only. Concept name A

directly uses concept name B w.r.t. T , if A is the head of some axiom τ ∈ T
such that B occurs in the body of τ . Let uses be the transitive closure of the
relation directly uses. T is acyclic if no concept name A is the head of more than
one definitional axiom in T and there is no concept name A such that A uses A.

Concerning the semantics, let us fix a fuzzy logic X ∈ {l, g, p, z}. Unlike
classical DLs in which an interpretation I maps e.g., a concept C into a set of
individuals CI ⊆ ∆I , i.e., I maps C into a function CI : ∆I → {0, 1} (either
an individual belongs to the extension of C or does not belong to it), in fuzzy

DLs, I maps C into a function CI : ∆I → [0, 1] and, thus, an individual belongs
to the extension of C to some degree in [0, 1], i.e., CI is a fuzzy set. Specifically,
a fuzzy interpretation is a pair I = (∆I , ·I) consisting of a nonempty (crisp) set
∆I (the domain) and of a fuzzy interpretation function ·I that assigns: (i) to
each atomic concept A a function AI : ∆I → [0, 1]; (ii) to each object property
R a function RI : ∆I×∆I → [0, 1]; (iii) to each data type property T a function
T I : ∆I ×∆D → [0, 1]; (iv) to each individual a an element aI ∈ ∆I ; and (v) to
each concrete value v an element vI ∈ ∆D.

Now, a fuzzy interpretation function is extended to concepts as specified
below (where x, y ∈ ∆I are elements of the domain), so for every concept C we
get a function CI : ∆I → [0, 1]:

⊥I(x) = 0, >I(x) = 1,

(C uD)I(x) = CI(x)⊗DI(x), (C uX D)I(x) = CI(x)⊗X DI(x),

(C tD)I(x) = CI(x)⊕DI(x), (C tX D)I(x) = CI(x)⊕X DI(x),

(¬C)I(x) = 	CI(x), (¬XC)I(x) = 	XCI(x),

(C → D)I(x) = CI(x)⇒ DI(x), (C →X D)I(x) = CI(x)⇒X DI(x),

(∀R.C)I(x) = infy∈∆I{RI(x, y)⇒ CI(y)}, (∃R.C)I(x) = supy∈∆I{RI(x, y)⊗ CI(y)},
(∀T.d)I(x) = infy∈∆I{T I(x, y)⇒ dD(y)}, (∃T.d)I(x) = supy∈∆I{T I(x, y)⊗ dD(y)} .

The satisfiability of axioms is then defined by the following conditions: (i) I
satisfies an axiom 〈a:C,α〉 if CI(aI) ≥ α; (ii) I satisfies an axiom 〈(a, b):R,α〉
if RI(aI , bI) ≥ α; (iii) I satisfies an axiom 〈C v D,α〉 if (C v D)

I ≥ α where5

(C v D)
I

= infx∈∆I{CI(x) ⇒ DI(x)}; (iv) I satisfies an axiom 〈C vX D,α〉
if (C vX D)

I ≥ α where (C vX D)
I

= infx∈∆I{CI(x) ⇒X DI(x)}; (v) I
satisfies an axiom domain(R,C) if I satisfies ∃R.> v C; (vi) I satisfies an axiom
range(R,C) if I satisfies > v ∀R.C; and (vii) I satisfies an axiom disjoint(A,B)
if I satisfies A uB v⊥.

I is a model of a K = 〈A, T 〉 iff I satisfies each axiom in K. We say that K
entails and axiom α, denoted K |= α, if any model of K satisfies α. Two TBoxes
T , T ′ are equivalent (denoted T ≡ T ′) iff they entail the same set of axioms.

Example 1. We have built a fuzzy wine ontology6, according the FuzzyOWL 2
proposal7. One of the GCIs in there is of the form SparklingWineu(∃hasSugar.
tri(32, 41, 50)) v DemiSecSparklingWine where hasSugar is a datatype prop-
erty whose values are measured in g/L.

Example 2. fuzzyDL-Learner8 is a system that illustrates how one may learn
graded GCIs. For instance, consider the case of hotel finding in a possible tourism
application, where an ontology is used to describe the meaningful entities of the
domain. Now, one may fix a city, say Pisa, extract the characteristic of the hotels
from Web sites and the graded hotel judgements of the users, e.g., from Trip

5 However, note that under Zadeh logic v is interpreted as ⇒z and not as ⇒kd.
6 http://www.straccia.info/software/FuzzyOWL/ontologies/FuzzyWine.1.0.owl
7 http://www.straccia.info/software/FuzzyOWL
8 http://straccia.info/software/FuzzyDL-Learner

Advisor9 and asks about what characterises good hotels. Then one may learn
that, e.g., 〈∃hasPrice.High v GoodHotel, 0.569〉 where hasPrice is a datatype
property whose values are measured in euros and the price concrete domain has
been automatically fuzzified as illustrated below.

Now, it can be verified that for hotel verdi, whose room price is 105 euro, i.e., we
have the assertion verdi:∃hasPrice. =105 in the KB, we infer under Product
logic that K |= 〈verdi:GoodHotel, 0.18〉 (note that 0.18 = 0.318 · 0.569, where
0.318 = tri(90, 112, 136)(105)).

3 GCI Absorptions for Fuzzy DLs

The aim of our GCI absorption algorithm is to build from a TBox T an equivalent
TBox T ′, which is the union of two disjoint sets of axioms Tg and Tu, where:

1. Tg is a set of GCIs of the form 〈> v C,α〉,
2. Tu = Tdef ∪ Tinc ∪ Tdr ∪ Tdisj ∪ Tsyn is the disjoint union of

(a) Tdef , which is acyclic and contains definitional GCIs only;
(b) Tinc, which contains primitive GCIs only;
(c) Tdr, which contains domain and range restrictions only;
(d) Tdisj , which contains disjoint restrictions only;
(e) Tsyn, which contains synonym GCIs only; and

3. there cannot be a concept name A that is a head of axioms in Tdef and Tinc.

This partitioning makes it possible to apply lazy unfolding rules to axioms in
Tu only. Now, we explain now how to compute it: Sections 3.1–3.4 present some
auxiliary steps and then Section 3.5 describes the partitioning algorithm.

The transformations, if left unspecified, hold always, i.e., for connectives
taken from the same logic; for the other cases, the semantics under which they
hold is specified explicitly. The transformations are semantics preserving in the
sense that they transform a TBox T into an equivalent TBox T ′.

3.1 Concept Simplifications

The procedure Simplify(C) performs the following concept simplifications, re-
placing the left-hand part with the right-hand part. The simplifications are ap-
plied recursively considering that u,t are n-ary, commutative and associative:

9 http://www.tripadvisor.com

1. C u ⊥ 7→ ⊥
2. C u > 7→ C
3. C uG C 7→ C, and for classical logic
4. C tG C 7→ C, and for classical logic
5. C t ⊥ 7→ C
6. C t > 7→ >
7. ∃R.⊥ 7→ ⊥
8. ∀R.> 7→ >
9. ¬> 7→ ⊥

10. ¬⊥ 7→ >, and for classical logic
11. ¬l¬lC 7→ C, and for classical logic
12. ¬(C uD) 7→ ¬C t ¬D
13. ¬(C tD) 7→ ¬C u ¬D
14. ¬∀R.C 7→ ∃R.¬C, for Zadeh, Lukasiewicz, and classical logic
15. ¬∃R.C 7→ ∀R.¬C, for Zadeh, Lukasiewicz, and classical logic
16. C1 → C2 7→ ¬C1 t C2, for Zadeh, Lukasiewicz, and classical logic
17. ¬(C1 → C2) 7→ C1 u ¬C2, for Zadeh, Lukasiewicz, and classical logic
18. C u ¬C 7→ ⊥, for Lukasiewicz, Gödel , Product and classical logic
19. C t ¬C 7→ >, for Lukasiewicz, and classical logic
20. C u (C tD) 7→ C, for Gödel, Zadeh, and for classical logic
21. C t (C uD) 7→ C, for Gödel, Zadeh, and for classical logic
22. C u (¬C tD) 7→ C uD, for Gödel, and for classical logic
23. C t (¬C uD) 7→ C tD, for Gödel, and for classical logic
24. ∀R.C uG ∀R.D 7→ ∀R.(C uG D), and for classical logic
25. ∃R.C t ∃R.D 7→ ∃R.(C tD), for Gödel, Zadeh, and for classical logic
26. (C tG D)→ E 7→ (C → E) uG (D → E), and for classical logic
27. C tG (D uG E) 7→ (C tG D) uG (C tG E), and for classical logic
28. ∃R.C uG ∃R.> 7→ ∃R.C, and for classical logic
29. C u (D u E) 7→ C uD u E
30. C t (D t E) 7→ C tD t E
31. C u (D tG E) 7→ (C uD) tG (C u E)
32. C t (D uG E) = (C uD) uG (C u E)
33. C → > 7→ >
34. > → C 7→ C
35. ⊥ → C 7→ >
36. C →r ⊥ 7→ ¬rC, where →r is an r-implication

3.2 Redundant GCIs Elimination

The following axioms can safely be removed, since they are trivially satisfied:

1. 〈⊥ v C,α〉, 〈C v >, α〉 and C = C
2. 〈C v C,α〉, for any r-implication and Zadeh implication
3. 〈uni=1Ci v A, l〉, if some Ci is A and v is an r-implication or Zadeh implication.
4. 〈A v tni=1Ci, l〉, if some Ci is A and v is an r-implication or Zadeh implication.

3.3 Role Absorptions

Basic Role Absorption. As in the classical case, > v ∀R.C and ∃R.> v C
are equivalent to range(R,C) and domain(R,C), respectively, so we have the
following rules [18] to transform these GCIs into domain and range restrictions:

(RB1) Replace any GCI ∃R.> v C ∈ T with domain(R,C)
(RB2) Replace any GCI > v ∀R.C ∈ T with range(R,C)

Extended Role Absorptions. In the classical case, ∃R.C v D can be replaced
with domain(R,∃R.C → D) andD v ∀R.C can be replaced with domain(R,∃R.¬C
→ ¬D), where C → D is ¬C tD. In the fuzzy case we have the following rules:

(RE1) Replace any GCI ∃R.C v D ∈ T with domain(R, ∃R.C →G D)
(RE2) Replace any GCI D v ∀R.C ∈ T with domain(R, ∃R.¬C →G ¬D), for

 Lukasiewicz and Zadeh logics.

3.4 Concept Absorption

In the following, C,Ci are concepts, A,Aj are atomic concepts.

Classical Case. For classical DLs we have the following definitions:

GCI transformation rules.

(CT1) Replace C v uni=1Ci with C v Ci, for i ≤ n;
(CT2) Replace tni=1Ci v C with Ci v C, for i ≤ n.

Primitive concept absorption.

(CA0) A v C is a possible absorbable GCI, A is the defined atom and A v C is its
rewriting;

(CA1) C v ¬A is a possible absorbable GCI, A is the defined atom and A v ¬C; is
its rewriting

(CA2) If some Cj is a negated atomic concept ¬A, then C v tni=1Ci is a possible
absorbable GCI, A is the defined atom and A v ¬C t tni=1,i 6=jCi is its rewriting;

(CA3) If some Cj is an atomic concept A, then uni=1Ci v C is a possible absorbable
GCI, A is the defined atom and A v C t tni=1,i 6=j¬Ci is its rewriting.

Fuzzy Case. For fuzzy DLs we have the following definitions instead:

GCI transformation rules.

(FT1) Replace 〈C v C1 uG . . . uG Cn, α〉 with 〈C v Ci, α〉, for i ≤ n;
(FT2) Replace 〈C1 tG . . . tG Cn v C,α〉 with 〈Ci v C,α〉, for i ≤ n.

Primitive concept absorption.

(FA0) 〈A v C,α〉 is a possible absorbable GCI, A is the defined atom and 〈A v C,α〉
is its rewriting;

(FA1) C v ¬lA is a possible absorbable GCI, A is the defined atom and A v ¬lC is
its rewriting;

(FA2.1) If some Cj is an atomic concept ¬A, then 〈C v tni=1Ci, α〉 is a possible ab-
sorbable GCI, A is the defined atom and 〈A v ¬C t tni=1,i 6=jCi, α〉 is its rewriting
(for Lukasiewicz or Zadeh implication and Lukasiewicz t-conorm);

(FA2.2) 〈C v A→ D,α〉 is a possible absorbable GCI, A is the defined atom and
〈A v C → D,α〉 is its rewriting (ifv and→ are interpreted as the same r-implication);

(FA3) If some Cj is an atomic concept A, then 〈uni=1Ci v C,α〉 is a possible absorbable
GCI, A is the defined atom and 〈A v (uni=1,i 6=jCi)→ C,α〉 is its rewriting (for v
and → interpreted as the residuum of u, or for the triple 〈vz,ug,→g〉, or 〈u,→〉
is the pair 〈ug,→g〉, α = 1 and v is any r-implication or Zadeh implication).

(FA4) If some Cj is an atomic concept A, then 〈tni=1Ci v C,α〉 is a possible absorbable
GCI, A is the defined atom and 〈A v (uni=1,i 6=j¬Ci)→ C,α〉 is its rewriting (for
 Lukasiewicz logic).

3.5 GCI Absorption Algorithm

Our algorithm has 3 phases: Phase A, a looping Phase B and a final Phase C.

Phase A: This phase has the following steps:

1. Simplify the GCIs in T using the concept simplifications in Section 3.1

2. Remove redundant GCIs (Section 3.2)

3. Initialise Tg = Tdef = Tinc = Tdr = Tdisj = Tsyn = ∅
4. Remove any range and domain axiom in T and add it to Tdr
5. Remove any disjointness axiom in T and add it to Tdisj
6. Remove any synonym axiom in T and add it to Tsyn
7. For any axiom τ ∈ T do

(a) if τ is of the form 〈C v D,α〉 then add τ to Tg
(b) if τ is of the form C

·
= D then add C v D and D v C to Tg

Phase B: Apply iteratively the following steps to axioms τ ∈ Tg, in the order specified
below, until none of these steps can be applied to any axiom in Tg. As soon as one
step is applied once, we restart Phase B.

Redundant GCIs removal. Remove redundant GCIs (Section 3.2).

GCI transformations. If a GCI transformation rule can be applied to an axiom
τ ∈ Tg, remove τ from Tg and add the obtained GCIs to Tg (see Section 3.4).

Synonym absorption. If for τ ∈ Tg there is τ ′ ∈ Tg ∪ Tinc such that {τ, τ ′} is
{A v B,B v A} with A,B atomic, then remove τ, τ ′ from the sets they are

in and add A
·
= B to Tsyn.

Primitive concept absorption. If there is a possible absorbable GCI τ ∈ Tg,
with defined atom A, A not defined in Tdef , then remove τ from Tg and add
the rewriting of τ to Tinc (see Section 3.4).

Definition absorption. If for some τ ∈ Tg there is τ ′ ∈ Tg∪Tinc such that {τ, τ ′}
is {A v C,C v A} with A atomic, C non-atomic, A not defined in Tdef or

Tinc \ {τ ′}, and Tdef ∪ {A
·
= C} acyclic, then remove τ, τ ′ from the sets they

are in and add A
·
= C to Tdef .

Role absorption. If for some τ ∈ Tg a role absorption rule can be applied (Sec-
tion 3.3), then remove τ from Tg and move the obtained restriction to Tdr.

Phase C: Once none of the above steps in Phase B can be applied anymore, replace
any axiom 〈C v D,α〉 ∈ Tg with an equivalent axiom 〈> v E,α〉 where E is the
simplification of C → D using the rules in Section 3.1, and return the TBox
partitioning 〈Tu, Tg〉, where Tu = Tdef ∪ Tinc ∪ Tdr ∪ Tdisj ∪ Tsyn.

Example 3. Consider the TBox T = {A = B t C,A v D}. Then, it can be
verified that under classical and Zadeh logic, the absorbed TBox is given by
Tinc = {C v A,B v A,A v D,A v B t C} and Tg = Tdef = Tdisj = Tsyn =
Tdr = ∅, while under Lukasiewicz logic the absorbed TBox is given by Tinc =
{A v D,A v B t C,B v (¬C uA)} and Tg = Tdef = Tdisj = Tsyn = Tdr = ∅.

Note that Example 3 also illustrates the usefulness of giving less priority to the
“definition absorption” step. Usually, this step has highest priority. In that case
Example 3 will not be absorbed completely. Also, the example shows that a
non acyclic KB may be transformed into an acyclic one and, thus, avoiding the
undecidability problem mentioned in the introduction.

4 Evaluation

We have implemented the fuzzy GCI absorption algorithm in our fuzzyDL rea-
soner, under Zadeh, Lukasiewicz, and classical logics.

To evaluate our algorithm, we have selected 7 well-known classical ontologies:
Economy, LUBM, FBbt XP, GALEN doctored (or GALEN-d), NCI, process and
Transportation. We also have considered the fuzzy wine ontology, FuzzyWine.

Table 1 shows some information for each ontology:the expressivity (column
expressivity) and the number of classes (classes), primitive GCIs (subsCls),
definitional GCIs (equivCls), domain restrictions (domain), range restrictions
(range), disjoint restrictions, (disjoint) and general concept inclusions (GCIs).

Table 1. Statistics of the considered ontologies.

ontology expressivity classes subsCls equivCls domain range disjoint GCIs

Economy ALCH(D) 337 409 0 47 41 142 0
FBbt XP SHI 7225 12043 1028 8 6 126 0

FuzzyWine SHIF(D) 177 212 57 12 8 2 9
GALEN-d ALEHIF+ 2748 2881 681 0 0 0 357

LUBM ALEHI+(D) 43 36 6 25 18 0 0
NCI ALE 27652 46800 0 70 70 0 0

process SHOIN (D) 2294 2746 12 176 159 2 0
Transportation ALCH(D) 444 452 0 81 72 634 0

These ontologies were loaded in fuzzyDL using a parser translating from OWL 2
into fuzzyDL syntax [3], discarding the elements that fuzzyDL is not able to pro-
cess, such as nominals. For this reason, the number of axioms in Table 1 may be
smaller than in the original ontologies. The evaluation dataset can be downloaded
from http://nmis.isti.cnr.it/~straccia/ftp/DL13.testonotologies.zip.

Table 2 shows the same values after running the absorption algorithm for each
of the three fuzzy logics considered. We include the semantics of the reasoner
(column semantics with values z for Zadeh, l for Lukasiewicz and c for classical),
the number of classes (classes), the sizes of Tinc, Tdef , Tsyn, Tdr, Tdisj , Tg and the
running time (in seconds) of the absorption algorithm. The tests run under Mac
OS X, 10.7.5, Mac Pro 2 x 3 GHz Dual-Core Intel Xeon, 9GB Ram.

Note that that the number of disjoint constraints is constant, as our absorp-
tion algorithm does not create new restrictions of these type. yet

The results are similar for the 3 semantics. In terms of running time, the al-
gorithm behaves similarly in the 3 cases. In terms of number of absorbed axioms,
the semantics is not significant in Economy, NCI and Transportation, there are
small differences in FBbt XP, GALEN-d, LUBM, FuzzyWine and process.

In all the considered ontologies Tg is empty, which is important from a rea-
soning effectiveness point of view. For instance, the reasoner gets out of memory
when solving a simple query in some ontologies such as GALEN-d, but using the
absorbed one our preliminary subsumption tests perform in a fraction of second.

Table 2. Results of the absorption algorithm.

semantics ontology Tinc Tdef Tsyn Tdr Tdisj Tg time
c Economy 409 0 0 88 142 0 0.069
l Economy 409 0 0 88 142 0 0.069
z Economy 409 0 0 88 142 0 0.068
c FBbt XP 15187 0 0 14 126 0 1.959
l FBbt XP 14099 0 0 14 126 0 1.809
z FBbt XP 15187 0 0 14 126 0 1.678
l FuzzyWine 328 0 0 27 2 0 0.079
z FuzzyWine 392 0 0 27 2 0 0.092
c GALEN-D 5507 0 18 0 0 0 1.601
l GALEN-D 4600 0 18 0 0 0 1.295
z GALEN-D 5507 0 18 0 0 0 1.315
c LUBM 54 0 0 43 0 0 0.02
l LUBM 48 0 0 43 0 0 0.017
z LUBM 54 0 0 43 0 0 0.02
c NCI 46800 0 0 140 0 0 2.177
l NCI 46800 0 0 140 0 0 2.174
z NCI 46800 0 0 140 0 0 2.187
c process 2785 1 235 338 2 0 1.18
l process 2769 1 235 338 2 0 1.214
z process 2785 1 235 338 2 0 1.214
c Transportation 452 0 0 153 634 0 0.075
l Transportation 452 0 0 153 634 0 0.075
z Transportation 452 0 0 153 634 0 0.074

5 Conclusions

We have worked out a first absorption algorithm for fuzzy DLs. We implemented
it into the fuzzyDL reasoner and evaluated it over some ontologies, and our
preliminary results seem to be very encouraging.

There are several directions for future research related to optimised fuzzy DL
reasoning that need to be addressed:

Absorption. We plan to investigate and evaluate more deeply our absorption
algorithm considering more ontologies and several heuristics (e.g., which
atom to select for absorption and concept name unfolding) such as those
reported in the literature [1, 11, 12, 18–20, 24].

Classification. While we already have implemented in fuzzyDL all fuzzy lazy
unfolding rules related to absorbed TBoxes and preliminary subsumption
tests perform in a fraction of second, a non trivial optimised fuzzy classifica-
tion algorithm in the style of e.g., [6] has still to be worked out. It seems that
classification is more involved in the fuzzy case (if concrete domains are in-
volved or GCIs are graded) because, contrary to the crisp case, one may have
T |= 〈A v B,n1〉, T |= 〈B v A, β2〉, T |= 〈B v C, β3〉, T |= 〈A v C, β4〉,
with 0 < β1 6= β2 ≤ 1 and 0 < β1 ⊗ β3 < β4 ≤ 1.

Instance retrieval. Other important tasks to optimise are instance check-
ing, i.e., determining the best entailment degree bed(K, a:C) = sup{α |
K |= 〈a:C,α〉}, and instance retrieval, i.e., determining the set ans(K, C) =
{〈a, α〉 | α = bed(K, a:C)} [7, 8, 10, 16, 21, 22]. In that direction, fuzzyDL
already implements a fuzzy variant of anywhere blocking [15].

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

2. F. Bobillo and U. Straccia. fuzzyDL: An expressive fuzzy description logic reasoner.
In 2008 International Conference on Fuzzy Systems (FUZZ-IEEE 2008), pp. 923–
930. IEEE Computer Society, 2008.

3. F. Bobillo and U. Straccia. Fuzzy ontology representation using OWL 2. Interna-
tional Journal of Approximate Reasoning, 52:1073–1094, 2011.

4. S. Borgwardt and R. Peñaloza. Undecidability of fuzzy description logics. In
Proceedings of the 13th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2012), pp. 232–242, 2012. AAAI Press.

5. M. Cerami and U. Straccia. On the (un)decidability of fuzzy description logics
under lukasiewicz t-norm. Information Sciences, 227:1–21, 2013.

6. B. Glimm, I. Horrocks, B. Motik, R. Shearer, and G. Stoilos. A novel approach to
ontology classification. Journal of Web Semantics, 14:84–101, 2012.

7. V. Haarslev and R. Möller. On the scalability of description logic instance retrieval.
Journal of Automated Reasoning, 41(2):99–142, 2008.

8. V. Haarslev, H.-I. Pai, and N. Shiri. Optimizing tableau reasoning in alc extended
with uncertainty. In Proceedings of the 2007 International Workshop on Descrip-
tion Logics (DL 2007), 2007.

9. P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.
10. I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The instance store: DL reasoning

with large numbers of individuals. In Proceedings of the 2004 Description Logic
Workshop (DL 2004), pp. 31–40, 2004.

11. I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In Proceed-
ings of the 7th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2000), pp. 285–296. Morgan Kaufman, 2000.

12. A. K. Hudek and G. E. Weddell. Binary absorption in tableaux-based reason-
ing for description logics. In Proceedings of the 2006 International Workshop on
Description Logics (DL 2006), volume 189 of CEUR Workshop Proceedings, 2006.

13. G. J. Klir and B. Yuan. Fuzzy sets and fuzzy logic: theory and applications.
Prentice-Hall, Inc., 1995.

14. T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in description
logics for the semantic web. Journal of Web Semantics, 6:291–308, 2008.

15. B. Motik, R. Shearer, and I. Horrocks. Optimized reasoning in description log-
ics using hypertableaux. In Proceedings of the 21st International Conference on
Automated Deduction: Automated Deduction, CADE-21, pp. 67–83, 2007. Springer-
Verlag.

16. N. Simou, T. P. Mailis, G. Stoilos, and G. B. Stamou. Optimization techniques
for fuzzy description logics. In Proceedings of the 23rd International Workshop
on Description Logics (DL 2010), volume 573 of CEUR Electronic Workshop Pro-
ceedings, 2010.

17. U. Straccia. Description logics with fuzzy concrete domains. In 21st Conference on
Uncertainty in Artificial Intelligence (UAI 2005), pp. 559–567, 2005. AUAI Press.

18. D. Tsarkov and I. Horrocks. Efficient reasoning with range and domain constraints.
In Proceedings of the 2004 Description Logic Workshop (DL 2004), pp. 41–50, 2004.

19. D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider. Optimizing terminologi-
cal reasoning for expressive description logics. Journal of Automated Reasoning,
39(3):277–316, 2007.

20. J. Wu and V. Haarslev. Planning of axiom absorption. In Proceedings of the 21st
International Workshop on Description Logics (DL 2008), volume 353 of CEUR
Workshop Proceedings, 2008.

21. J. Wu, A. K. Hudek, D. Toman, and G. E. Weddell. Absorption for aboxes. In
Proceedings of the 2012 International Workshop on Description Logics (DL 2012),
volume 846 of CEUR Workshop Proceedings, 2012.

22. J. Wu, A. K. Hudek, D. Toman, and G. E. Weddell. Assertion absorption in object
queries over knowledge bases. In Proceedings of the 13th International Conference
Principles of Knowledge Representation and Reasoning (KR 2012). AAAI Press,
2012.

23. L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.
24. M. Zuo and V. Haarslev. High performance absorption algorithms for terminolog-

ical reasoning. In Proceedings of the 2006 International Workshop on Description
Logics (DL 2006), volume 189 of CEUR Workshop Proceedings, 2006.

