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Abstract. Preference representation and reasoning is a key issue in many real-
world scenarios where a personalized access to information is needed. Currently,
there are many approaches allowing a system to assess preferences in a qualita-
tive or quantitative way, and among the qualitative ones the most prominent are
CP-nets. Their clear graphical structure unifies an easy representation of user de-
sires with nice computational properties when computing the best outcome. In
this paper, we show how to reason with CP-nets when the attributes modeling the
knowledge domain have an ontological structure or, in other words, variable val-
ues are DL formulas constrained relative to an underlying domain ontology. We
also show how the computation of Pareto-optimal outcomes for an ontological
CP-net can be reduced to the solution of constraint satisfaction problems.

1 Introduction

During the recent years, several revolutionary changes are taking place on the classical
Web. First, the so-called Web of Data is more and more being realized as a special
case of the Semantic Web. Second, as part of the Social Web, users are acting more
and more as first-class citizens in the creation and delivery of contents on the Web.
The combination of these two technological waves is called the Social Semantic Web
(or also Web 3.0), where the classical Web of interlinked documents is more and more
turning into (i) semantic data and tags constrained by ontologies, and (ii) social data,
such as connections, interactions, reviews, and tags.

The Web is thus shifting away from data on linked Web pages towards less in-
terlinked data in social networks on the Web relative to underlying ontologies. This
requires new technologies for search and query answering, where the ranking of search
results is not based on the link structure between Web pages anymore, but on the infor-
mation available in the Social Semantic Web, in particular, the underlying ontological
knowledge and the preferences of the users. Given a query, these latter play a funda-
mental role when a crisp yes/no answer is not enough to satisfy a user’s needs, since
there is a certain degree of uncertainty in possible answers [9].

We have two main ways of modeling preferences: (a) quantitative preferences are
associated with a number representing their worth or they are represented as an ordered
set of objects (e.g., “my preference for WiFi connection is 0.8” and “my preference for
cable connection is 0.4”), while (b) qualitative preferences are related to each other via
pairwise comparisons (e.g., “I prefer WiFi over cable connection”).



In many applications in practice, the qualitative approach is a more natural way of
representing preferences, since humans are often not very comfortable in expressing
their “wishes” in terms of a numerical value. To have a quantitative representation of
her preferences, the user needs to explicitly determine a value for a large number of
alternatives usually described by more than one attribute. It is generally much easier
to provide information about preferences as pairwise qualitative comparisons [9]. One
of the most powerful qualitative frameworks for preference representation and reason-
ing are perhaps CP-nets [3]. They are a graphical language that unifies an easy repre-
sentation of user desires with nice computational properties when computing the best
outcome. Most of the work done with CP-nets and more generally with preference
representation mainly deals with a propositional representation of preferences. In this
paper, we propose an enhancement of CP-nets by adding ontological information as-
sociated to preferences. This is an initial step towards a new type of semantic search
techniques that can go far beyond PageRank and similar algorithms. They will be able
to exploit social information, e.g., information coming from social networks, and model
it as semantic-enabled user preferences.

The rest of this paper is organized as follows. In Section 2, we briefly recall CP-
nets. Section 3 introduces ontological CP-nets, i.e., CP-nets enriched with ontological
descriptions, and it describes how to compute optimal outcomes. In Sections 4 and 5,
we provide complexity results and discuss related work, respectively. Finally, we give
a summary of the results in this paper and an outlook on future work.

2 Preliminaries

We start by introducing some notions and formalisms that are necessary to present our
framework. Given a set of variables V , an outcome v ∈ Dom(V) is an assignment of a
domain value x ∈ Dom(X) to every variableX ∈ V . A preference relation� is a total
pre-order over the set of all outcomes. We write o1 � o2 (resp., o1 � o2) to denote that
o1 is strictly preferred (resp., strictly or equally preferred) to o2. If o1 � o2, then o2 is
dominated by o1. If there is no outcome o such that o � o1, then o1 is undominated.

A conditional preference is an expression (α � β | γ), where α, β, and γ are
formulas. It intuitively means that “given γ, I prefer α over β”. In the following, we
often write (α | γ) and (¬α | γ) to denote (α � ¬α | γ) and (¬α � α | γ), respectively,
and we use α̃ to represent one of the elements among α and ¬α.

2.1 CP-Nets

Conditional preferences networks (CP-nets) [3] are a formalism to represent and rea-
son about qualitative preferences. They are a compact but powerful language, which
allows the specification of preferences based on the notion of conditional preferen-
tial independence. Fundamental to CP-nets is the notion of conditional preferential
independence (CPI) [14]. Let A,B ∈ V be two variables and R ⊂ V be a set of
variables such that A, B, and R partition V , and Dom(A), Dom(B), and Dom(R)
represent all possible assignments to A, B, and all the variables in R, respectively.
We say that A is conditionally preferentially independent (CPI) of B given an assign-
ment ρ ∈ Dom(R) iff, for every α1, α2 ∈ Dom(A) and β1, β2 ∈ Dom(B), we



have that α1β1ρ � α2β1ρ iff α1β2ρ � α2β2ρ. Here, � represents the preference
order on assignments to sets of variables. CP-nets are a graphical language to model
CPI statements. Formally, a CP-net N consists of a directed graph G over a set of
variables V = {Ai | i ∈ {1, . . . , n}} as nodes, along with a conditional preference
table CPT (Ai) for every variable Ai, which contains a preference for each pair of
values of Ai conditioned to all possible assignments to the parents of Ai in G. Given
a CP-net N , we denote by CPT i the set of all conditional preferences represented
by CPT (Ai), and we define CPT N = {CPT i | i ∈ {1, . . . , n}}. An example of a
CP-net (over only binary variables) is shown in Fig. 1.

Example 1 (Hotel). A CP-net for representing preferences for hotel accommodations is
shown in Fig. 1. Note that this is a toy example, whose purpose is to show the repre-
sentational expressiveness of CP-nets in modeling user profiles. In this simple case, we
use five binary variables of the following meaning:

α1: the hotel is located near the sea;
α2: the hotel is located in the city center;
α3: scooters for rent;
α4: parking available;
α5: bikes for rent.

Looking at CPT (A3), e.g., we see that the user prefers to have a scooter for rent
in case the hotel is located near the sea or in the city center, and that she prefers to not
have a scooter for rent if the hotel is neither near the sea nor in the city center.

To establish an order among possible outcomes of a CP-net, we introduce the no-
tion of worsening flip, which is a change in the value of a variable that worsens the
satisfaction of user preferences. As an example, if we consider the CP-net in Fig. 1,
we have a worsening flip moving from α1α2α3¬α4¬α5 to α1α2¬α3¬α4¬α5. Indeed,
given α1α2¬α4¬α5, we see that α3 is preferred over ¬α3. Based on this notion, we
can state that α1α2α3¬α4¬α5 � α1α2¬α3¬α4¬α5.

Given a CP-net, the two main queries that one may ask are:

– dominance query: given two outcomes o1 and o2, does o1 � o2 hold?
– outcome optimization: compute an optimal (i.e., undominated) outcome for the

preferences represented by a given CP-net.

Given an acyclic CP-net, one can compute the best outcome in linear time. The
algorithm just follows the order among variables represented by the graph and assigns
values to the variables Ai from top to bottom satisfying the preference order in the
corresponding CPT (Ai). For example, in the CP-net in Fig. 1, the optimal outcome
is α1α2α3α4α5. Finding optimal outcomes in cyclic CP-nets is NP-hard.

2.2 Constrained CP-Nets

In constrained CP-nets [19, 4], constraints among variables are added to the basic for-
malism of CP-nets. Adding constraints among variables may reduce the set of possible
outcomesO. The approach to finding the optimal outcomes proposed in [19] relies on a
reduction of the preferences represented in the CP-net to a set of hard constraints (which



Fig. 1. An example of a CP-net over five binary variables.

can be represented in clause form for binary variables), taking into account the variables
occurring in the preferences. Given a CP-net N and a set of constraints C, an outcome
o is feasible iff it satisfies all the constraints in C. A feasible outcome is Pareto opti-
mal [4] iff it is undominated among all feasible outcomes. These optimal outcomes now
correspond to the solutions of a constraint satisfaction problem. For binary variables,
given a conditional preference (αn+1 | α1 ∧ · · · ∧ αn), the corresponding constraint is
the clause

α1 ∧ · · · ∧ αn → αn+1. (1)

Given a CP-net N and a set of constraints C, a feasible Pareto optimal outcome is ex-
actly an assignment satisfying the corresponding set of clauses and all constraints in C.
We refer the reader to [19, 4] for further details, including examples.

3 Ontological CP-Nets

We now introduce a framework for preference representation that is harnessing the tech-
nologies described in the previous section. The idea is to combine CP-nets and DLs. In
the framework that we propose here, variable values are satisfiable DL formulas.

We consider only binary variables here. Two conditional preferences (α | γ) and
(α′ | γ′) are equivalent under an ontology T iff γ ≡T γ′ and α ≡T α′.

Definition 1 (ontological CP-net). An ontological CP-net (N, T ) consists of a CP-
net N and an ontology T such that:

(i) for each variable A ∈ V , it holds that Dom(A) = {α,¬α}, where both α and ¬α
are DL formulas that are satisfiable relative to T ;

(ii) all the conditional preferences in CPT N are pairwise not equivalent.

Note that even if we do not have any explicit hard constraint expressed among the
variables of the CP-net, due to the underlying ontology, we have a set of implicit con-
straints among the values of the variables V in the CP-net. We show in Section 3.2 how
to explicitly encode such constraints to compute an optimal outcome.



Example 2 (Hotel cont’d). Consider a simple ontology T , describing the services of-
fered by a hotel, and consisting of the following four axioms:

functional(rent);
Scooter v Motorcycle;

Motorcycle v ¬Bike;
∃rent.Scooter v ∃facilities.(Parking u

∃payment u ∀payment.Free).

Suppose that we have the variables A3, A4, and A5 of the CP-net of Fig. 1 with the do-
mainsDom(A3) = {α3,¬α3}, Dom(A4) = {α4,¬α4}, andDom(A5) = {α5,¬α5},
respectively, where:

α3 = ∃rent.Scooter;
α4 = ∃facilities.Parking;
α5 = ∃rent.Bike.

It is then not difficult to verify that α3 u α5 vT ⊥ and α3 vT α4. Hence, A3 and A5

constrain each other, as well as A3 and A4.

Following [19], to compute the outcomes of a CP-net N , we can transform N into
a set of constraints represented in clausal form. For each conditional preference Φ =
(α̃ | γ) in CPT N , we write the following clause:

γ → α̃. (2)

In a constrained CP-net, if we had propositional true/false variables, an outcome would
be a model, i.e., a true/false assignment that satisfies all the constraints and some of
the clauses built, starting from the preferences represented in CPT N . In ontological
CP-nets, we also represent an outcome as a model satisfying a preference. Without
loss of generality, we write an interpretation I as a conjunction of concept names
αi and negated concept names ¬αi, one such literal for each variable with the do-
main {αi,¬αi} in the CP-net. We say I satisfies a conceptα under T , denoted I |=T α,
iff T |= I v α. We say α is satisfiable under T iff an interpretation I exists such that
I |=T α. Finally, we use I |= α v β to say that I v ¬αtβ, and I |= T iff I |= α v β
for each axiom α v β ∈ T .

Given two DL formulas α and γ, we call γ → α a DL clause. Here, we use “→”
with the usual standard semantics.1 An outcome I satisfies the conditional preference Φ
under T , denoted I |=T Φ, iff I |=T γ → α̃. Using a notation similar to the one
proposed in [19], we call DL-opt(N) the set of DL clauses corresponding to all the
preferences in CPT N .

Definition 2 (feasible outcome and dominance). Given an ontological CP-net (N, T ),
an outcome I is feasible iff I |= T . A feasible outcome I is undominated iff no feasible
outcome I ′ exists such that I ′ � I.

1 Hence, we have the equivalence γ → α ≡ ¬γ t α.



3.1 Propositional Compilation of DL Formulas

Given a set of satisfiable DL formulas F = {φi | i ∈ {1, . . . , n}}, some of them
may constrain others, because of their logical relationships. For example, we may have
φi u ¬φj v φk or φi u φj v ⊥. By the equivalence α v β ≡ > v ¬α t β, we can
always represent each constraint in its logically equivalent clausal form. The previous
constraints are then equivalent to> v ¬φitφjtφk and> v ¬φit¬φj , respectively. In
the following, we represent a clause ψ either as a logical disjunctive formula ψ = φ̃1 t
· · ·tφ̃n or as a set of formulasψ = {φ̃1, . . . , φ̃n}. Moreover, we often write φ̃1t· · ·tφ̃n
to denote > v φ̃1 t · · · t φ̃n.

A DL ontology can be seen as a set of logical constraints that reduces the set of
models for a formula. Given a set of DL formulas F , in the following, we show how to
compute a compact representation of an ontology T as a set of clauses whose variables
have a one-to-one mapping to the formulas in F .

Definition 3 (ontological constraint). Given an ontology T and a set of formulasF =
{φi | i ∈ {1, . . . , n}} satisfiable w.r.t. T , we say that F is minimally constrained
w.r.t. T iff

1. there exists a formula φ̃1 t . . . t φ̃n such that T |= > v φ̃1 t . . . t φ̃n;
2. there is no proper subset E ⊂ F such that the previous condition holds.

The formula > v φ̃1 t . . . t φ̃n is called an ontological constraint.

An ontological constraint is an explicit representation of the constraints existing
among a set of formulas, due to the information encoded in the ontology T .

Definition 4 (ontological closure). Given an ontology T and a set of formulas F =
{φi | i ∈ {1, . . . , n}} satisfiable w.r.t. T , we call ontological closure of F , denoted
OCL(F , T ), the set of ontological constraints built, if any, for each set in 2F .

The ontological constraint is an explicit representation of all the logical constraints
considering also an underlying ontology. If we are interested only in the relationships
between predefined formulas (due to T ), then the corresponding ontological closure is
a compact and complete representation.

Example 3 (Hotel cont’d). Given the setF = {α3, α4, α5}, due to the axioms in the on-
tology, we have the two minimally constrained sets F ′ = {α3, α5} and F ′′ = {α3, α4}
and the two corresponding ontological constraints ¬α3 t ¬α5 (indeed α3 u α5 vT ⊥)
and ¬α3 t α4 (indeed α3 vT α4). The corresponding ontological closure is then
OCL(F , T ) = {¬α3 t ¬α5,¬α3 t α4}.

Proposition 1. Given a set F = {φi | i ∈ {1, . . . , n}} of satisfiable formulas, if
T |=

d
φ̃i v ⊥, then OCL(F , T ) |=

d
φ̃i v ⊥.

We say that the set F̃ = {φ̃i | i ∈ {1, . . . , n}} is a feasible assignment for F iff

OCL(F , T ) 6|=
l

i

φ̃i v ⊥.

Note that by Proposition 1, we have that if F̃ is a feasible assignment for F , then we
have T 6|=

d
i φ̃i v ⊥, i.e.,

d
i φ̃i is satisfiable w.r.t. T .



Proposition 2. For each set of satisfiable formulas F , there always exists a feasible
assignment.

We are interested in feasible assignments since, as we will show in the following, they
represent feasible outcomes for an ontological CP-net.

3.2 Computing Optimal Outcomes

The main task that we want to solve with our framework is finding an undominated fea-
sible outcome. In this section, we show how to compute it, given an ontological CP-net.
The approach mainly relies on the HARD-PARETO algorithm of [19] (see Algorithm 1).

If we have an ontological CP-net (N, T ), the variable values (formulas) in a set F
may constrain each other, and the corresponding constraints are encoded inOCL(F , T ).
The ontological closure of a set of formulas explicitly represents all the logical con-
straints among them with respect to an underlying ontology. The computation of all
feasible Pareto optimal solutions for an ontological CP-net goes through the Boolean
encoding of both the ontology T and of the clauses corresponding to the preferences
represented in CPT N for each variableAj ∈ V . To use HARD-PARETO, we need a few
pre-processing steps. Given the ontological CP-net (N, T ):

1. for each Aj ∈ V with Dom(Aj) = {αj ,¬αj}, choose a fresh concept name Vj ;
2. define the ontology T ′ = T ∪ {Vj ≡ αj | j ∈ {1, . . . , |V|}};
3. define the ontological CP-net (N ′, T ′), where N ′ is the same CP-net as N but for

the domain of its variables. In particular, in N ′, we have Dom(Aj) = {Vj ,¬Vj};
4. define F = {Vj | j ∈ {1, . . . , |V|}}, where the Vj’s are the concept names intro-

duced in step 1;
5. compute OCL(F , T ′);
6. introduce a Boolean variable vj for each Vj ∈ F ;
7. transform OCL(F , T ′) into the corresponding set of Boolean clauses C by replac-

ing Vj with the corresponding binary variable vj ;
8. transform DL-opt(N’) into the set of Boolean clauses opt(N’) by replacing Vj ∈
Dom(Aj) with the corresponding variable vj .

Note that T is logically equivalent to T ′. Indeed, we just introduced equivalence axioms
to define new concept names Vj used as synonyms of complex formulas αj . The same
holds for (N, T ) and (N ′, T ′), since we just rewrite formulas in Dom(Aj) with an
equivalent concept name.

Example 4 (Hotel cont’d). With respect to the CP-net in Fig. 1, if we consider

α1 = ∃location.OnTheSea,
α2 = ∃location.CityCenter,

then we obtain:

– T ′ = T ∪ {V1 ≡ ∃location.OnTheSea, . . . , V5 ≡ ∃rent.Bike};
– C = {¬v3 ∨ ¬v5,¬v3 ∨ v4};
– opt(N’) = {v1, v2, v1 ∧ v2 → v3, . . . , v2 → v4, . . . , v3 → v5, . . .}.



Once we have C and opt(N’), we can compute the optimal outcome of (N, T ) by
using the slightly modified version of HARD-PARETO represented in Algorithm 1. The
function sol(·) used in Algorithm 1 computes all the solutions for the Boolean con-
straint satisfaction problem represented by C, opt(N’) and C ∪ opt(N’). Differently from
the original HARD-PARETO, by Proposition 2, we know that C is always consistent, and
so we do not need to check its consistency at the beginning of the algorithm. Moreover,
note that the algorithm works with propositional variables although we are computing
Pareto optimal solutions for an ontological CP-net. This means that the dominance test
in line 11 can be computed using well-known techniques for Boolean problems.

Input: opt(N’) and C
1 Sopt ← sol(C ∪ opt(N’));
2 if Sopt = sol(C) then
3 return Sopt;
4 end
5 if sol(opt(N’)) 6= ∅ and Sopt = sol(opt(N’)) then
6 return Sopt;
7 end
8 S ← sol(C)− Sopt;
9 repeat

10 choose o ∈ S;
11 if ∀o′ ∈ sol(C)− o, o′ 6� o then
12 Sopt ← Sopt ∪ {o};
13 end
14 S ← S − {o};
15 until S = ∅;
16 return Sopt.

Algorithm 1: Algorithm HARD-PARETO adapted to ontological CP-nets.

The outcomes returned by Algorithm 1 in Sopt are true/false assignments to the
Boolean variables vj . To compute undominated outcomes for the original ontological
CP-net (N, T ), we need to revert to a DL setting. Hence, we build the set DL-Sopt,
where for each outcome oi ∈ Sopt, we add to DL-Sopt the following formula:

Ii =
l
{Vj | vj = true in oi} u

l
{¬Vj | vj = false in oi}.

Theorem 1. Given an ontological CP-net (N, T ), the formulas Ii ∈ DL-Sopt are
undominated outcomes for (N, T ).

4 Computational Complexity

We now explore the complexity of the main computational problems in ontological CP-
nets for underlying ontological languages with typical complexity of deciding knowl-
edge base satisfiability, namely, tractability and completeness for EXP and NEXP. We
also provide some special tractable cases of dominance testing in ontological CP-nets.



4.1 General Results

For tractable ontology languages (i.e., those for which deciding knowledge base sats-
fiability is tractable), the complexity of ontological CP-nets is dominated by the com-
plexity of CP-nets. That is, deciding (a) consistency, (b) whether a given outcome is
undominated, and (c) dominance of two given outcomes are all PSPACE-complete.
Here, the lower bounds follow from the fact that ontological CP-nets generalize CP-
nets, for which these problems are all PSPACE-complete [11]. As for the upper bounds,
compared to standard CP-nets, these problems additionally involve knowledge base
satisfiability checks, which can all be done in polynomial time and thus also in polyno-
mial space. Note that in (a) (resp., (b)), one has to go through all outcomes o′ and check
that it is not the case that o � o′ (resp., o′ � o), which can each and thus overall be
done in polynomial space. Note also that the same complexity results hold for ontology
languages with PSPACE-complete knowledge base satisfiability checks and that even
computing the set of all undominated outcomes (generalizing (b)) is PSPACE-complete
under the condition that there are only polynomially many of them.

Theorem 2. Given an ontological CP-net (N, T ) over a tractable ontology language,

(a) deciding whether (N, T ) is consistent,
(b) deciding whether a given outcome o is undominated,
(c) deciding whether o≺ o′ for two given outcomes o and o′

are all PSPACE-complete.

In particular, if the ontological CP-net is defined over a DL of the DL-Lite family [7]
(which all allow for deciding knowledge base satisfiability in polynomial time, such as
DL-LiteR, which stands behind the important OWL 2 QL profile [17]), deciding (a)
consistency, (b) whether a given outcome is undominated, and (c) dominance of two
given outcomes are all PSPACE-complete.

Corollary 1. Given an ontological CP-net (N, T ) over a DL from the DL-Lite family,

(a) deciding whether (N, T ) is consistent,
(b) deciding whether a given outcome o is undominated,
(c) deciding whether o≺ o′ for two given outcomes o and o′

are all PSPACE-complete.

For EXP (resp., NEXP) complete ontology languages (i.e., those for which knowl-
edge base satisfiability is complete for EXP (resp., NEXP)), the complexity of ontologi-
cal CP-nets is dominated by the complexity of the ontology languages. That is, deciding
(a) inconsistency, (b) whether a given outcome is dominated, and (c) dominance of two
given outcomes are all complete for EXP (resp., NEXP). Here, the lower bounds follow
from the fact that all three problems in ontological CP-nets can be used to decide knowl-
edge base satisfiability in the underlying ontology language. As for the upper bounds, in
(a) and (b), we have to go through all outcomes, which is in EXP (resp., NEXP). Then,
we have to perform knowledge base satisfiability checks, which are also in EXP (resp.,
NEXP), and dominance checks in standard CP-nets, which are in PSPACE, and thus
also in EXP (resp., NEXP). Overall, (a) to (c) are thus in EXP (resp., NEXP). Note that
computing the set of all undominated outcomes (generalizing (b)) is also EXP-complete
for EXP-complete ontology languages.



Theorem 3. Given an ontological CP-net (N, T ) over an EXP (resp., NEXP) complete
ontology language,

(a) deciding whether (N, T ) is inconsistent,
(b) deciding whether a given outcome o is dominated,
(c) deciding whether o≺ o′ for two given outcomes o and o′

are all complete for EXP (resp., NEXP).

In particular, if the ontological CP-net is defined over the expressive DL SHIF(D)
(resp., SHOIN (D)) [13] (which stands behind OWL Lite (resp., OWL DL) [16, 12],
and allows for deciding knowledge base satisfiability in EXP [13, 21] (resp., NEXP, for
both unary and binary number encoding; see [18, 21] and the NEXP-hardness proof for
ALCQIO in [21], which implies the NEXP-hardness of SHOIN (D))), deciding (a)
inconsistency, (b) whether a given outcome is dominated, and (c) dominance of two
given outcomes are all complete for EXP (resp., NEXP).

Corollary 2. Given an ontological CP-net (N, T ) over the DL SHIF(D) (resp., SH-
OIN (D)),

(a) deciding whether (N, T ) is inconsistent,
(b) deciding whether a given outcome o is dominated,
(c) deciding whether o≺ o′ for two given outcomes o and o′

are all complete for EXP (resp., NEXP).

4.2 Tractability Results

If the ontological CP-net is a polytree and defined over a tractable ontology language,
deciding dominance of two outcomes can be done in polynomial time, which follows
from the fact that for standard polytree CP-nets, dominance can be decided in polyno-
mial time [3]. Note that polytree ontological CP-nets are always consistent.

Theorem 4. Given an ontological CP-net (N, T ) over a tractable ontology language,
where N is a polytree, deciding whether o ≺ o′ for two given outcomes o and o′ can be
done in polynomial time.

In particular, if the ontological CP-net is a polytree and defined over a DL of the
DL-Lite family, deciding dominance of two outcomes can be done in polynomial time.

Corollary 3. Given an ontological CP-net (N, T ) over a DL from the DL-Lite family,
where N is a polytree, deciding whether o ≺ o′ for two given outcomes o and o′ can be
done in polynomial time.



5 Related Work

Constrained CP-nets were originally proposed in [4], along with the algorithm SEARCH-
CP, which uses branch and bound to compute undominated outcomes. The algorithm
has an anytime behavior: it can be stopped at any time, and the set of computed solu-
tions are a subset of the set containing all the undominated outcomes. This means that
in case one is interested in any undominated outcome, one can use the first one returned
by SEARCH-CP. In [19], HARD-PARETO is presented. The most notable difference is
that HARD-PARETO does not rely on topological information like SEARCH-CP, but it
exploits only the CP-statements, thus allowing to work also with cyclic CP-nets. Dif-
ferently from the previous two papers, in our work, we allow the variable domains to
contain DL formulas constrained via ontological axioms.

There are a very few papers describing how to combine Semantic Web technologies
with preference representation and reasoning using CP-nets. To our knowledge, the
most notable work is [2]. Here, in an information retrieval context, Wordnet is used to
add a semantics to CP-net variables. Another interesting approach to mixing qualitative
preferences with a Semantic Web technology is presented in [20], where the authors
describe an extension of SPARQL, which can encode user preferences in the query.

A combination of conditional preferences (very different from CP-nets) with DL
reasoning for ranking objects is introduced in [15]. A ranking function is described that
exploits conditional preferences to perform a semantic personalized search and ranking
over a set of resources annotated via an ontological description.

6 Summary and Outlook

In classical decision theory and analysis, the preferences of decision makers are mod-
eled by utility functions. Unfortunately, the effort needed to obtain a good utility func-
tion requires a significant involvement of the user [10]. This is one of the main reasons
behind the success obtained by CP-nets since they were originally proposed [5]: they
are compact, easily understandable and well-suited for combinatorial domains, such
as multi-attribute ones. In this paper, we have described how to reason with CP-nets
whose variable values are DL formulas that refer to a common ontology. The proposed
framework is very useful in many semantic retrieval scenarios such as semantic search.

After the introduction of CP-nets, other related formalisms have been proposed such
as TCP-nets (Trade-off CP-nets) [6] or CP-theories [22]. TCP-nets extend CP-nets by
allowing to express also relative important statements between variables. With TCP-
nets, the user is allowed to express her preferences over compromises that sometimes
may be required. CP-theories generalize (T)CP-nets allowing conditional preference
statements on the values of a variable, along with a set of variables that are allowed to
vary when interpreting the preference statement. In future work, we plan to enrich these
frameworks by introducing ontological descriptions and reasoning, thus allowing the
development of more powerful semantic-enabled preference-based retrieval systems.
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