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Abstract. Tool development for and empirical experimentation in OWL
ontology engineering require a wide variety of suitable ontologies as in-
put for testing and evaluation purposes. Empirical activities often resort
to (somewhat arbitrarily) hand curated corpora available on the web,
such as the NCBO BioPortal and the TONES Repository, or manually
select a set of well-known ontologies. Results may be biased, even heavily,
towards these datasets. Sampling from a large corpus of ontologies, on
the other hand, may lead to more representative results. Current large
scale repositories/web crawls are mostly uncurated, suffer from duplica-
tion and contain large numbers of ontology versions, variants, and facets,
and therefore do not lend themselves to random sampling. In this paper,
we describe the creation of a corpus of OWL DL ontologies using strate-
gies such as web crawling, various forms of de-duplications and manual
cleaning, which allows random sampling of ontologies for a variety of
empirical applications.
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1 Introduction

Since its introduction as an official W3C recommendation in 2004, the Web On-
tology Language OWL [8] has become by far the most popular and prominent
ontology language. An increasing amount of tool support for the ontology devel-
opment cycle and a general shift from establishing the formal underpinnings of
a now mature formalism to the development of applications calls for improved
empirical evaluation methods. The empirical tradition in the wider area of on-
tology engineering is still rather young and underdeveloped, and faces a series of
obstacles, such as a lack of both standard evaluation frameworks and standard
corpora to produce comparable empirical results. Current empirical evaluations,
such as OWL reasoner benchmarking, the utility of modularisation approaches,
and studies on entailment related services such as explanations, often cherry-
pick a few example ontologies or resort to hand crafted ontology repositories
such as the NCBO BioPortal [5]. Alternatively, crawlers such as Swoogle [19]
have collected huge amounts of semantic documents, contributing a lot to our
understanding of the use of semantic web languages, and allowing us to catch
a glimpse of the impact that OWL has on the web ontology landscape. While
these datasets are certainly useful for many purposes, they do not necessarily



lend themselves to ontology research as they collect OWL files which may not
individually correspond to distinct OWL ontologies.

In this paper we describe the challenges of gathering a large and interest-
ing—in terms of ontology size and expressivity—corpus of OWL DL ontologies
suitable for experimental purposes. We describe the gathering and cleaning pro-
cess and characterise the corpus based on ontology metrics such as axiom and
constructor usage, OWL profiles, and provenance data. Additionally, we review
existing sources for experimental datasets and compare our corpus with such
frequently used OWL corpora. While the gathering and curation procedures are
still considered work in progress, the work presented in this paper brings us one
step closer to sound empirical OWL research.

2 Preliminaries

2.1 The Web Ontology Language OWL

OWL is a successor of the web ontology language DAML+OIL [25], a description
logic based ontology language with an RDF/XML syntax. The first version of
OWL, which is based on the description logic SHOIN (D) and was described as
a ‘revision’ of DAML+OIL, became an official W3C recommendation in February
2004.

OWL 2, the successor of OWL, comprises two species of different expressivi-
ties, namely OWL 2 DL and OWL 2 Full [8]. The underlying formalism of OWL
2 DL is the description logic SROIQ(D) [26]. While OWL 2 DL has the familiar
description logic semantics, OWL 2 Full has an RDF-based semantics, which is
a superset of the of the OWL 2 Direct Semantics.

OWL 2 profiles. There exist three named ‘profiles’ for OWL 2, syntactic
subsets of OWL 2 DL that are tailored towards different applications, trading
expressivity of the language for efficient reasoning. The OWL 2 EL profile is
a tractable fragment of OWL 2 which is based on the description logic EL++

[13,11]. OWL 2 QL (Query Language), which is based on the DL-Lite family
of description logics [12], has been defined for use in applications which focus
on query answering over large amounts of instance data. Reasoning systems
for ontologies in the OWL 2 RL (Rule Language) profile can be implemented
using rule-based reasoning engines. All three profiles are essentially syntactic
restrictions of OWL 2 DL and allow for polynomial time reasoning.

2.2 Datasets used in practice

Single ontologies typically used for empirical work. There are a number
of popular OWL ontologies commonly used for empirical research which we can
roughly separate into ‘in-use’ ontologies, that is, ontologies built for use in a
real-life application, and ‘test’ ontologies (for want of a better word) built for
OWL research and tutorial purposes. Examples of such in-use ontologies include
SNOMED CT, the GALEN Medical Knowledge Base, and the Gene Ontology



(GO). These ontologies are mostly large ontologies from the biomedical domain
which are in active development and contain up to hundreds and thousands of
classes and thousands of axioms, which makes them challenging candidates for
OWL experiments. A special case of well-known ontologies is the National Can-
cer Institute thesaurus (NCIt) [6], a large medical ontology which has been in
active development since 2003. The NCIt developers regularly release versions
of the ontology, and an archive of over 100 versions is available online, which
makes it a suitable collection for experiments studying the evolution of ontolo-
gies [22]. Frequently used test ontologies include the Pizza tutorial ontology, the
Koala ontology, and the Lehigh University Benchmark ontology (LUBM). These
ontologies are often built to exhibit specific features, such as coverage of a large
number of OWL constructs as in the Pizza ontology, or the ability to scale the
ontology to generate arbitrarily sized ABoxes, as is the case with the LUBM on-
tology. Many studies in the field of ontology debugging, for example, use small,
hand-selected sets of test ontologies and in-use ontologies, such as Koala, MiniTa-
mbis, and Sweet-JPL, to evaluate the performance of their respective debugging
techniques [28,32,37,20], or slightly more complex in-use ontologies [14,39,38],
such as GALEN and GO. Large in-use ontologies, along with artificially scal-
able ontologies such as LUBM, are popular candidates for studies evaluating
the performance of OWL reasoning algorithms, e.g. [36,15,31]. In cases where
the authors justify their selection of ontologies, the use of ‘established ontolo-
gies’ seems a key argument [15]. For instance, Horrocks et al. [27] describe their
benchmarking suite consisting of in-use ontologies including GO, GALEN, and
NCIt as a set of ‘standard test ontologies’. Similarly, Bock et al. argue [16] that
their set of reasoner benchmarking ontologies was chosen because the ontologies
are ‘well established’ and ‘have been used in previous benchmarks’, but go one
step further by emphasising that the ontologies are representative (in terms of
size and complexity) of the ontologies found in the Watson search engine, and
therefore of the web ontology landscape in general.

Curated ontology repositories. There exists a number of well-known on-
tology repositories which are frequently used for empirical experimentation. In
what follows, we will briefly describe some of the most prominent repositories
and their applications in OWL research.

The NCBO BioPortal is an open repository of biomedical ontologies that
provides access to ontologies from a variety of research groups [35]. As of April
2013, the repository contains 341 ontologies in various ontology formats. Due to
its ontologies ranging widely in size and complexity, the BioPortal has become
a popular corpus for testing OWL ontology applications in recent years, such as
justification computation [24], reasoner benchmarking [29], and pattern analysis
[33].

The TONES repository is a curated ontology repository which was developed
as part of the TONES project as a means of gathering suitable ontologies for
testing OWL applications. It contains 219 OWL and OBO ontologies and in-
cludes both well-known test ontologies and in-use ontologies which vary strongly



in size and complexity. While ontologies are occasionally added to the reposi-
tory, it can be considered rather static in comparison with frequently updated
repositories, such as BioPortal. The TONES ontologies are frequently used for
empirical studies, either as a whole [29,40], by (semi-)randomly sampling from
the set [30], or as a source of some of the individual ontologies mentioned above.

Similar to the TONES repository, the Oxford ontology library [9] is a col-
lection of OWL ontologies gathered for the purpose of testing OWL tools. The
library which was established in late 2012 currently contains 787 ontologies from
24 different sources, including an existing test corpus and several well-known
in-use and test ontologies.

The Protégé ontology library [10] is a submission-based collection of ontolo-
gies linking to 95 OWL ontologies including some well-known test and in-use
ontologies. While it is not used as frequently as the TONES repository (e.g.
[41]), it fulfils a similar purpose of offering a selection of ontologies from a vari-
ety of domains.

Large-scale crawl based repositories. Crawl-based collections containing
thousands and millions of files are popular sources of ontologies used in ex-
periments.

Swoogle [19] is a crawl-based semantic web search engine that was estab-
lished in 2004. The crawler searches for documents of specific filetypes (e.g. .rdf,
.owl), verifies their status as a valid document of that type, and uses heuristics
based on the references found in existing files to discover new documents. At the
time of writing, Swoogle indexes nearly two million documents, and a search for
ontologies (i.e. documents which contain at least one defined class or property)
that match ‘hasFiletype:owl’ returns 88,712 results. While Swoogle is an obvi-
ous choice for gathering a large number of OWL ontologies for use in empirical
studies [41,34,40], it does not have a public API and prevents result scraping,
which makes it difficult to gain access to all search results. Furthermore, since
the content is not filtered beyond removal of duplicate URLs, a random sam-
ple from Swoogle is most likely to return a set of small, inexpressive ontologies,
or may be heavily biased towards ontologies from certain domains, as we will
discuss in detail in Section 4.

Similar to Swoogle, Watson [17] is a search engine which indexes documents
based on a web-crawler that targets semantic web documents. Watson uses fil-
tering criteria in order to only include parseable documents and rank results
according to their semantic richness, which is based on properties such as the
expressivity of an ontology and the density of its class definitions. In addition
to its web interface, Watson also provides APIs which allow users to retrieve
lists of search results for a given keyword. At the time of its release, Watson was
indexing around 25,500 documents; however, to the best of our knowledge, the
service is no longer under active development.

The Billion Triple Challenge (BTC) dataset is an annually updated large
dataset of RDF/XML documents used in the Semantic Web Challenge [2]. The
2011 set which contains 7.411 million RDF/XML documents crawled from the



web using various well-known Linked Data applications as seeds, such as DBPe-
dia and Freebase. According to an analysis by Glimm et al. [21], the set contains
just over 115,000 documents that contain a the rdfs:subClassOf predicate, which
may be considered sufficient to class the document as an ontology. However,
the authors identified that the corpus is biased towards several large clusters
of documents from the same domain, which is indicated by the relatively small
number of domains (109) that these potential ontologies originate from.

3 Gathering a corpus of OWL DL ontologies

While hand curated repositories often lack the potential for generalisability of
claims, large-scale document collections suffer from a different problem: they
typically contain many small and trivial OWL files as well as large numbers of
duplicates, which means that a (naive) random sample is likely to introduce a
heavy bias towards irrelevant cases for applications such as reasoner benchmark-
ing and ontology profiling. If we want to make claims about OWL ontologies on
the web, we need a way to obtain a set of unique non-trivial ontologies. In this
section, we present our approach to addressing this issue by collecting a large
amount of documents through web crawling and applying a series of filtering pro-
cedures. The focus of our work lies on the filtering steps applied to arrive at a
set of (relatively) unique files with a high density of non-trivial OWL ontologies.

3.1 Data collection

The initial set of documents was collected using a standard web-crawler with a
large seed list of URLs obtained from existing repositories and previous crawls.
The sample obtained for this survey is preliminary in the sense that it is the
result of only three weeks of downloading and crawling. We expect the results
to improve gradually as the crawler collects more data, which also allows us to
refine our heuristics for identifying OWL ontologies.

The seeds for the crawl were identified by a mixed strategy:

– Obtain seeds (336,414 direct links to potential ontology files) directly from a
Google search, Swoogle, the OBO foundry, Dumontier Labs, and the Protégé
Library, with the by far biggest amount of input coming from Swoogle. One
thing to note is that we are not using the Swoogle cache, since we are inter-
ested in ontologies that are ‘alive’ and available on the web.

– Match URLs in a corpus obtained from a previous crawl in 2011 (43,006
URLs).

– Obtain data from APIs (currently only 413 seeds from BioPortal).

At the time of writing, the seeds for the crawler are spread across 3,413 domains
(125 top level domains such as edu, com, org).

The crawler is based on crawler4j [3], a multi-threaded web crawler imple-
mented in Java. We use a standard crawling strategy: broad and deep seeding,
low crawling depth (3 levels) and looking for files with various extensions, for



example owl, owl2, rdf, rdfs, obo, owx, and variations thereof. Additionally, the
crawler tests whether a link it followed might actually be an OWL file by us-
ing a set of syntactic heuristics (for example the OWL namespace declaration
in all its syntactic variants), thus catching those OWL files that do not have
a file extension (or a non-standard one). The crawler only identifies potential
URLs, which are then passed on to a candidate downloader which is configured
to download and re-download files in certain intervals. By preserving all the files
obtained in this way, we hope to be able to analyse the evolution of the corpus
at a later stage. In the short period of time that the crawler was running, 68,060
new candidate documents were discovered.

3.2 Data curation

Identifying valid OWL DL files. Many surveys on documents on the web
acknowledge the necessity of doing some preprocessing to mitigate the large bias
introduced by imperfect seeding strategies or single ontologies distributed across
large numbers of multiple files. Our pipeline for identifying candidate OWL files
from the crawl is as follows:

1. Loading and parsing files can be computationally expensive, especially when
dealing with large file sizes. We applied syntactic heuristics to filter out
documents which were clearly not OWL by looking for strings that regularly
occur in different serialisations of the language. That way, we reduced our
initial dataset from 268,944 files to 231,839. A random statistically significant
sample of 1,037 from the files that were identified as non-OWL revealed that
this filtering step yielded around 11% false negatives.

2. The next step was the removal of byte identical files. We used Apache Com-
mons IO [1] to determine file stream identity. 43,515 files were grouped into
clusters of byte identical files, and removed from the corpus.

3. The next process was to load and save all unique files with the OWL API [23],
a widely used library for manipulating and serialising ontologies. Relatively
few files (4,590) were not loadable at all (throwing exceptions), while 31 did
not terminate loading. After this step, the corpus contained 213,462 valid
OWL files.

4. We then narrowed down the corpus further by excluding files that have a
byte identical OWL/XML serialisation.

5. The result of the curation pipeline to this point is a set of 207,230 unique
and valid OWL files.

File based manual cleaning. One of the main difficulties of gathering a cor-
pus of ontologies rather than a corpus of arbitrary OWL files is the problem
of identifying what exactly constitutes a single ontology. This results from the
non-standard ways of publishing ontologies: (1) There may exist several differ-
ent versions of an ontology. These can be either subsequent versions which have
been released in sequence (e.g. version 1.0, 1.1, . . . ), or slightly modified variants,
such as ‘light’ or ‘full’. (2) Single ontologies may be distributed over multiple
files (e.g. DBPedia, Semantic Media Wikis) or published in modules contained in



individual files (faceted publishing). In order to identify versions and distributed
ontologies, we applied a manual cleaning strategy: a random sample of 100 on-
tologies was drawn from the corpus by one of the authors, and grouped by filesize
and file name patterns in order to identify clusters of files. If an identified cluster
contained only trivial files (such as pages of a Semantic Media Wiki or proofs
from Inference Web), all files belonging to the cluster (based on the domain and
filename pattern) were removed from the corpus. This process was repeated un-
til the sample appeared heterogeneous enough. In this process, the sample was
reduced to just above 19,000 files.

Domain based manual cleaning. The file based manual cleaning worked
well for weeding out the most prominent clusters of trivial files. Looking at the
distribution of domains in our sample, we decided to go one step further and
inspect clusters that were not captured easily by this method. We grouped the
files by the domain source and inspected the biggest ones manually to remove
files that have no or only trivial usage of the OWL language (e.g. owl:sameAs).
Some large contributor domains were eliminated almost entirely (productontol-
ogy.com), others required more careful attention (sweet.jpl.nasa.gov for example
provides subsequent versions of each ontology, we decided to keep the latest
ones). While this seems a lot of manual work, without this step the corpus
would have been heavily biased towards the fairly inexpressive representatives
of the big clusters. The biggest clusters were contributed by Semantic Media
Wiki pages (146,866 files), Inference Web [4] metadata (19,042), and the New
York Times ‘subject headings’ dataset [7] (10,438).

3.3 Corpus description

Having applied the filtering steps described above, the filtered corpus of OWL
ontologies obtained from the crawl contained 9,871 files of which 9,827 files
could be loaded.1 Out of these, 208 were empty (either no axioms, or no entities
in the signature, including annotation properties) and another 3,207 fell under
RDF(S), and a further 1,865 were not in the OWL 2 DL profile, i.e. were OWL
Full. Note that one of the causes for an ontology being in OWL Full is missing
entity declarations which we consider to be a minor error; thus, before checking
the profile of the ontologies, we ‘repaired’ this error by inserting missing entity
declarations. The final set of valid and non-empty OWL DL ontologies consists
of 4,547 documents. In this section, we will describe some of the properties of
this corpus, including provenance information, axiom and constructor usage, and
OWL profiles. The full set of metadata as well as the corpus are available online.2

Provenance. We count 728 distinct domains providing ontology files for
the final set, spread across 52 top level domains. The distribution of top level

1 Since the ontologies were not merged with their imports closure at the time of
downloading, some ontologies failed loading due to missing imports only months
later.

2 http://owl.cs.manchester.ac.uk/owlcorpus



Table 1: Mean, median, min, max, and total numbers of axioms and entities for
the root ontologies (Or) and their imports closure (O).

Mean Median Min Max Sum

Or O Or O Or O Or O Or O

Anno. prop. 9 4 0 135 40,299

Axioms 12,261 194 2 3,337,397 55,750,395

Logical axioms 3,789 69 1 740,559 17,229,616

ABox axioms 1,552 1,621 0 1 0 0 739,274 739,274 7,055,335 7,370,895

TBox axioms 2,224 2,581 39 79 0 0 652,361 65,2361 10,110,790 11,735,859

RBox axioms 15 26 0 0 0 0 7,136 7,169 67,352 116,556

Signature 1,653 1,874 65 86 1 1 604,939 604,939 7,517,520 8,522,566

Classes 1,122 1,320 18 27 0 0 518,196 518,196 5,099,366 6,001,695

Object prop. 26 44 5 8 0 0 4,900 4,951 115,911 197,784

Data prop. 11 14 0 1 0 0 2,453 2,501 50,590 63,665

Individuals 484 484 1 1 0 0 604,209 604,209 2,199,854 2,201,124

Datatypes 3 3 2 2 0 0 51 51 11,500 115,48

domains is very similar to the one that was determined by a study characterising
the semantic web in 2006 [18]. ‘.org’ contributes almost half of the relevant
documents (1,917), followed by ‘.com’ (536) and ‘.edu’ (450).

Regarding the formats the ontologies were published in, we inspected the file
extensions and the syntax used in the corpus: in terms of syntax used, the major-
ity of ontologies were originally serialised in RDF/XML (4,170), 255 ontologies
were distributed as OBO 1.2 flat files, 82 in Turtle syntax, 21 in OWL/XML,
and 19 in OWL Functional Syntax. The file extensions used were .owl (3,119),
.rdf (706), .obo (230), and other (492).

Entities and axioms. Table 1 shows an overview of the entity and axiom
statistics in the corpus for the root ontologies (Or) and their imports closure
(O). The most notable observation to be made is the relatively low median for
all relevant entity statistics. This can be explained by the fact that there are
still a good amount of small and potentially redundant files in corpus.

The ratio of TBox and ABox axioms in the ontologies (including imports
closure) is shown in Table 3. Almost half of the ontologies in the corpus are
‘schema only’ and contain only TBox axioms, while over 11% are ‘data only’
and contain only ABox axioms. On average, the TBox makes up 72.2% of the
axioms in an ontology.

Profiles and constructors used. Figure 1.b shows the distribution of con-
structors used in the ontologies in the corpus (as returned by the OWL API).
We can see that beyond the basic constructors available in the description logic
AL, property-based constructors such as inverse properties and property hierar-
chies are the most prevalent across the corpus. On the other hand, only a very
small number of ontologies make use of qualified number restrictions and com-
plex property hierarchies, which might be explained by the fact that they were
only introduced with OWL 2.



Fig. 1.a: Distribution of pro-
files. ‘Comb’: any combination
of RL, QL, and EL.

Fig. 1.b: Distribution of constructors ordered
by number of ontologies that use the constructor.

Table 2: Distribution of profiles across size bins.
‘Profiled’: total number of ontologies in some
profile.

Ontology size EL QL RL Profiled

<10 9.9% 12.0% 52.8% 57.7%

10-100 4.2% 6.6% 19.5% 23.5%

101-1000 4.6% 6.7% 9.1% 15.3%

1001-10000 5.9% 12.1% 8.5% 21.3%

10001-100000 4.9% 15.4% 7.4% 22.2%

100001-1000000 5.3% 2.6% 7.9% 15.8%

Table 3: Proportion of TBox
axioms in the corpus.

TBox size % of corpus

100% 47.7%

75− 99% 15.3%

56− 74% 9.5%

46− 55% 3.2%

26− 45% 4.8%

1− 25% 8.2%

0% 11.3%

Figure 1.a shows the overall distribution of the OWL 2 profiles across the
corpus; a more detailed view of the profile distribution across bins of different
ontology sizes is shown in Table 2. We can see that around three quarters of the
DL ontologies in the corpus are not in any of the three OWL 2 profiles, while the
majority of profiled ontologies are in the RL profile. The distribution of profiles
does not differ significantly across the different ontology sizes, although overall
the number of ontologies in some profile is higher for very small (less than 10
axioms) ontologies. This is not surprising, as the use of fewer axioms also limits
the potential use of non-profile constructors.

3.4 Corpus comparison

In order to put our collection in context with existing corpora of OWL ontologies,
we have compared the basic metrics against commonly used sets. For space
reasons, datasets included in this study were mostly selected based on their
popularity as test corpora; thus, some of the more recent collections (e.g. the
Oxford ontology library) and less prevalent sets (e.g. the Protégé library) were
excluded for the time being. The BioPortal and TONES snapshots used here are
from November 2012. The BioPortal dataset does not reflect the entire repository



but only those OWL and OBO files that could be downloaded through the REST
API. Out of the 219 ontologies currently in TONES, only 205 were loadable
(mainly due to missing imports). The third dataset is a sample from a Swoogle
snapshot from May 2012 containing OWL and SKOS ontologies. We drew a
statistically significant random sample (99% confidence, confidence interval 3)
of 1,839 files from the Swoogle snapshot, out of which 1,757 could be loaded by
the OWL API. The last dataset under consideration here is the version archive
of the NCI thesaurus, consisting of 106 subsequent versions.

An overview of the metrics of the different datasets (ontologies including
imports closure) is shown in Table 4. Overall, the entity numbers of the crawl
corpus lie between the Swoogle sample and the manually curated collections.
However, we also see that mean numbers of entities (logical axioms, signature
size) of the two crawl-based collections (Swoogle and our crawl corpus) are sig-
nificantly smaller than those of the manually curated repositories, BioPortal
and TONES. With respect to the ontology profiles, both BioPortal and TONES
contain fairly high numbers of ontologies in the EL profile (over 50% and 28%,
respectively); this may be due to the presence of large biomedical ontologies
which are restricted to the EL profile in order to guarantee tractable reasoning.
On the other hand, both repositories also contain a large number of OWL 2 Full
ontologies, which generally cannot be handled by current OWL reasoners.

Finally, Figures 2.a and 2.b show how the five datasets compare in terms
of ontology sizes. Both crawl-based collections contain a larger proportion of
small ontologies (with over 50% of Swoogle’s ontologies containing less than 10
axioms), while the manually curated repositories TONES and BioPortal contain
a high proportion of large ontologies.

Table 4: Comparison of ontology metrics of the five OWL datasets.

Crawl BioPortal TONES Swoogle NCIt

Number of documents 4,547 293 205 1,757 106

Axioms and Entities

Logical axioms (mean) 3,789 28,050 10,109 60 119,277

Logical axioms (max) 740,559 1,163,895 1,100,724 5,098 195,967

Signature (mean) 1,874 12,657 6,871 82 77,595

Signature (max) 604,939 847,761 524,117 5,118 123,301

Classes (mean) 1,320 11,534 5,861 16 66,449

Classes (max) 518,196 847,760 524,039 5,104 95,701

Profile density

EL 5.6% 50.7% 28.3% 17.6% 0.0%

QL 8.5% 33.9% 18.1% 57.6% 4.7%

RL 21.2% 24.7% 12.7% 90.3% 0.0%

OWL 2 DL ontologies 100.0% 82.9% 77.6% 96.7% 100.0%
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size bins across the five collections.
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Fig. 2.b: Proportions of ontologies in size
bins across the five collections.

4 Conclusions and future work

In this paper, we have presented an approach to creating a corpus of OWL DL
ontologies for testing and evaluation purposes. While the actual corpus is still
work in progress, we have already assembled an interesting—in terms of size,
logical axiom counts, OWL constructs, and OWL 2 profiles—set of OWL DL
ontologies. Apart from laying the foundations for an ontology repository, the
main focus of this paper was to present an approach to gathering a reasonably
interesting set of ontologies in a principled way.

While we believe that we have laid the foundations for a corpus of interesting
ontologies, we acknowledge some of the limitations our current collection strat-
egy: (i) resource limitations (essentially memory allocated to the Java Virtual
Machine) might have caused some very big ontologies to have been dismissed;
(ii) the standard problem of reaching the Hidden or Deep Web; (iii) our manual
curation steps are not easily repeatable; and (iv) problems with imports resolu-
tion. The main limitations of our approach stem from general problems with web
crawling, since it is unlikely that we will manage to index all OWL ontologies
that are reachable on the web. However, we expect that a stronger focus on meta
crawling (i.e. crawling search engines) and more extensive (manual) repository
reviewing will gradually expand our seed. Replacing the manual filtering steps
with automated ones is a major concern for the future.

In terms of future directions, we focus on two main aspects. Firstly, we want
to find out more about the ontologies in our and other corpora. We are currently
investigating ways to use ontology features to describe corpora in order to de-
termine how representative a corpus is for the general population of ontologies
of a certain type. The second goal is to establish a repository of OWL ontolo-
gies that allows researchers to retrieve specific samples of ontologies for various
empirical tasks. One common problem for ontology researchers is the retrieval
of a set of ontologies of a particular characteristic, for example ‘a set of 100
large ontologies in EL++’. We plan to provide the infrastructure that makes it
possible to retrieve datasets that can also be made permanently accessible to
other researchers, thus aiding the reproducibility of empirical experimentation.
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