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Abstract. The work shows the combination of standard description log-
ics (DLs) with standard temporal logics (TLs). Indeed, the introduction
of DLs as logic-based knowledge representation formalisms has emerged
in many fields and many applications have taken advantage from it. Al-
though that, in many of these applications also temporal aspects play
an important role. It follows that a new formalism is needed in order
to represent both terminological and temporal knowledge. At this aim,
the majority of research works proposed the combination of DLs and
TLs producing a new formalism to knowledge representation: temporal
description logics (TDLs). This work illustrates the combination of the
dl-litecore description logic with the temporal logic ctl. It defines a tem-
poral knowledge base with time-invariant tbox and time-variant abox.
Furthermore an algorithm based on semantic model checking is proposed
in order to query the knowledge base.

Key words: Description Logics, Temporal Logics, Semantic Web,
dl-lite, ctl, Model Checking.

1 Introduction

Recent work in service oriented architectures, business processes, databases fo-
cused on the need of dealing both with facts and processes [1–10]. In particular,
the Temporal Description Logic is becoming more and more used for such a
kind of problems [1, 4, 8–10]. Nevertheless, reasoning and query answering for a
Temporal Description Logic is, in general, untractable or even undecidable (de-
pending on which kind of Descrption Logic and which kind of Temporal Logic
are considered [11]). This is due to the fact that in general a temporal knowl-
edge base consists of a time-variant tbox and a time-variant abox, the abox
is defined according to an intensional definition, with a time-variant domain,
under the Open World Assumption. As a consequence, several authors studied
how complexity can be reduced for specific types of Temporal Description Logics
where some of the above assumptions are dropped [11].

This paper presents a minimalistic approach based on a temporal knowledge
base where the tbox is time invariant, the abox is defined in an extensional
fashion, the domain is constant, and the Closed World Assumption is adopted.
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The above choices allows us to obtain a tractable query answering algorithm
that can be still used in several problems of practical interest, e.g. selection
and composition of semantic web services, verification of business processes,
management of e-learning processes.

The paper is structured as follows. Section 2 shows works that deal with tem-
poral description logics. Section 3 depicts the temporal knowledge base proposed
in this work. Section 4 illustrates the syntax and the semantics of temporal con-
junctive queries used to query the temporal knowledge base. In 5 is shown the
temporal conjunctive query answering algorithm based on propositional model
checking. Finally, Section 6 closes the paper discussing the obtained results and
some comparisons with other works are given. Finally, it will be proposed the
future work.

2 Related Work

In the recent years many works focused on Temporal Description Logics [12,
11]. They mostly inspect how terminological aspects can be combined with tem-
poral ones and evaluate the complexity of reasoning with such logics based on
two-dimensional semantics [13]. Furthermore, other works introduce temporal
description logics in order to deal with particular knowledge base query prob-
lems in several application fields.

Some works deal with web services specially for discovery, selection and com-
position[1, 14–16, 4]. Agarwal [1, 14] integrates the description logics SHIQ(D)
and SHOIN (D) with the temporal description logic µ-calculus. The goal of
the work is the definition of a specification language for discovery, selection and
composition of web services. The works proposed by Pistore et al. [15] and Di
Pietro et al. [16, 4] deal with semantic web services selection using semantic
model checking over the behavior description of services.

Weitl et al. [17] integrate the description logic ALC with the temporal logic
ctl. in order to automate the verification of semi-structured documents. In that
work, each proposition that appears in a ctl formula is a description logic axiom,
i.e. a tbox statement. In a further work [18], they deal also with the generation of
a more precise and comprehensible couterexample than the previous algorithm.

Hariri et al. [8] introduce the so-called Knowledge and Action Bases (KABs).
A KAB is a knowledge base composed by a time invariant tbox expressed in
dl-lite and a variable abox. Starting from an initial state of the knowledge
base abox, its consecutive states are determined by executing conditioned ac-
tions over the abox. KAB properties verification is done using the µ-calculus
temporal logic enriched with conjunctive queries. Baader et al. [9] develop a
mechanism to temporalizing Ontology-Based Data Access (OBDA). They define
a temporal knowledge base composed by a time invariant tbox and a sequence
of aboxes that describes the observations about the state of a system of interest.
Such knowledge base can be interrogated with temporal specifications based on
conjunctive queries and LTL temporal logic.
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3 Temporal Knowledge Base Representation

In general, a temporal knowledge base can be defined as follows:

Definition 1 (Temporal Knowledge Base). A Temporal Knowledge Base
K = 〈Ti,Ai〉i≥0 consists of a sequence of tuples 〈Ti,Ai〉 which vary in respect
to time instants i ≥ 0, where: Ti and Ai are respectively the terminological part
(tbox) and the assertional part (abox) of the knowledge base at instant i.

In literature [12, 11] many approaches are proposed in order to specialize the
general definition of temporal knowledge base. Several of them focus on the def-
inition of temporal description logics and, consequently, accomplish specialized
knowledge bases suitable for the logics. The main elements that can be vary in
order to realize different temporal knowledge bases are the following. The domain
∆I of the interpretation I = (∆I , ·I) may be constant or vary over the time.
The closed or open world assumption which determines whether the information
available is complete or not. Furthermore both tboxes and aboxes may vary
over the time. Finally, concerning the assertional part of the knowledge base,
aboxes evolution can be intesionally or extensionally defined. Those temporal
knowledge base design choices influence the knowledge base expressiveness and
complexity. In the following are shown and explained the choices taken for this
work.

First of all, it is supposed to have a constant (constant domain assumption
[11]) and finite domain and the knowledge base makes use of the closed world
assumption. This means that the domain does not depend on time instant and
that the available information is complete. The above assumptions make feasible
model checking as described in section 5.

According to Definition 1, a temporal knowledge base is formed by two com-
ponents: tbox (the terminological part, i.e. a set of concepts) and abox (the
assertional part, i.e. a set of facts). For the purpose of this work, it is taken
account of dl-litecore [19–21].

In this description logic tbox statements are restricted only to inclusion
statements (see Table 1.b). Intuitively, we can model an ontology only by means
of subsumption between concepts, i.e. Cl v Cr. Notice that the tbox statement
Cl1 tCl2 v Cr is equivalent to the pair of statements Cl1 v Cr and Cl2 v Cr,
and that Cl v Cr1 u Cr2 is equivalent to Cl v Cr1 and Cl v Cr2. In this very
simple but still expressive logic, concepts and roles are defined as follows:

Cl→ A | ∃R
Cr → A | ∃R | ¬A | ¬∃R
R→ P | P−

Concerning an abox, intuitively it may represent the data of a knowledge
base. An abox contains statements (or assertions) as described in Table 1.c.
Intuitively, a concept assertion a:A (or A(a)) means that the individual denoted
by constant a is an instance of concept A. A role assertion a.P = b (or P (a, b))
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Table 1. Syntax and semantics of a dl-litecore Description Logic.

(a) Concepts and Roles.
Constructor Name Syntax Semantics

concept name A I(A) ⊆ ∆I
role name P I(P ) ⊆ ∆I ×∆I
inverse role P− I(P−) = {(o2, o1) | (o1, o2) ∈ I(P )}
unqualified existential ∃R I(∃R) = {o | ∃ o′.(o, o′) ∈ I(R)}
role quantification
concept negation ¬A ∆I \ I(A)

unqualified existential ¬(∃R) I(¬∃R) = ∆I \ I(∃R)
role quantification
negation

(b) tbox (Terminology) Statements.
Statement Name Syntax Semantics
Concept Specification Cl v Cr I(Cl) ⊆ I(Cr)

(c) abox Statements.
Statement Name Syntax Semantics
Concept Membership a : A I(a) ∈ I(A)
Role Membership a.P = b (I(a), I(b)) ∈ I(P )

where A is a concept name, C,Cl, Cr are concepts,
P is a role name, and a, b are individuals.

means that the pair of individuals (a, b) is an instance of role P , in other words
a given individual b is a value for the role P of a.

The conjunctive query answering problem has a polynomial time complexity
with this kind of description logic [19].

Concerning the representation of temporal aspects, the knowledge base pre-
sented here uses temporal aboxes (according to the definition in [11]), i.e. a
time-invariant tbox and a time-variant abox. Therefore an abox represents the
state of a temporal knowledge base in a precise temporal instant. A time-variant
abox can be represented according to either an intensional definition (e.g. [8]) or
an estensional definition. In order to make feasible the query answering problem,
in the work proposed in this paper, an estensional definition is adopted.

Borrowing the notions of state and state transitions from the formal methods
field [22, 23], the temporal aspect of the knowledge base can be modeled as a state
transition system on which, for each state, an abox is defined. Indeed, the state
of a system can usually be described by the values of a set of variables. These
values change in the course of time and the changes are called state transitions.
Some states are marked as initial states in order to represent the values that the
system variables may have at the beginning (at time zero). These models usually
assume that each state contains sufficient information to allow future behavior
to be determined only by the current state, and not by its past history; this
is an example of the so-called Markovian process. In this work, a kind of state
transition system is proposed which is called an annotated state transition system
(asts). A transition relation describes how the state can evolve, therefore which
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aboxes at instant (t + 1) can be reached from an abox at instant t. Formally
speaking:

Definition 2 (Annotated State Transition System). Let T be the termino-
logical part (tbox) of a description logic. An annotated state transition system
ΣA defined over a state transition system Σ is a tuple 〈T , Σ, Λ〉 where:
• T is the terminological part (tbox) of a description logic,
• Σ = 〈S,S0,R〉 is the state transition system,
• S is the finite set of states;
• S0 ⊆ S is the set of initial states;
• R ⊆ S × S is the transition relation;
• Λ : S → 2AT is the annotation function, where AT is the set of all the concept
assertions and role assertions defined over T .

As a result of the formalization of the temporal aspects of the temporal
knowledge base follows the following definition which details Definition 1:

Definition 3 (Temporal aboxes Knowledge Base). Let ΣA = 〈T , Σ, Λ〉 be
an asts. Let K = 〈Ti,Ai〉i≥0 a temporal knowledge base. Then K is a Temporal
aboxes Knowledge Base if and only if:
• ∀i Ti = T ,
• ∀i ∃ si ∈ S such that Ai = Λ(si).

The temporal knowledge base evolution can be seen as (potentially unlimited)
sequences of tuples 〈T , Λ(si)〉 where Λ(si) is the abox on the state si at time
instant i of the state transition system Σ = 〈S,S0,R〉.

4 Integrating dl-lite with ctl

As proposed by Baader et al. [9] and extending the definition of conjunctive
query of description logics, the Temporal Conjunctive Query can be formally
defined as follows:

Definition 4 (Temporal Conjunctive Query). Let ΣA be an asts. Let K
be a temporal aboxes knowledge base defined over ΣA. Then, a temporal con-
junctive query φ which refers to K is recursively defined as follows:

φ = q | φ ∧ φ | φ ∨ φ | ¬φ | φ→ φ |
AF φ | AG φ | EF φ | EG φ | AX φ | EX φ |
A (φ U φ) | E (φ U φ) | A (φ R φ) | E (φ R φ)

where q is a conjunctive query.

Intuitively, the temporal conjunctive query is a combination of conjunctive
queries tied together by means of both propositional and temporal operators.
Each conjunctive query q has the form q = ∧ipi(xi), where: pi(xi) is either xi : Ci
or xi,1.Ri = xi,2; and xi, xi,1, xi,2 are variables or individuals. Assuming that
V(q) denotes the set of variables of q and C(q) denotes the set of individuals
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of q, then VC(q) = V(q) ∪ C(q) denotes the set of variables and individuals of
q. When V(q) = ∅, q is a ground conjunctive query, i.e. it is a conjunction of
assertions. The definition of V is extended to temporal conjunctive queries as
follows: V(φ(q1, . . . , qm)) = V(q1) ∪ V(q2) ∪ . . .V(qm). The definition of C and
VC can be extended in a similar way. When V(φ(q1, . . . , qm)) = ∅, φ(q1, . . . , qm)
is a ground temporal conjunctive query. Obviously, it is possible to annotate
other temporal languages (e.g. ltl [24], or µ-calculus [25]), but for the sake of
complexity, the annotation of ctl formulas is enough.

The semantics of a temporal conjunctive query is inductively defined in two
steps:
— first, the semantics of a conjunctive query is the base case;
— second, the semantics of a temporal conjunctive query is the inductive step
based on the semantics of ctl.

The semantics of a conjunctive query is based on the semantics of the under-
lying description logic, as reported in [26]. This means that the semantics of a
conjunctive query can be viewed in terms of tables of a relational database. q(x)
is the schema of the table (i.e. the relation schema) and I(q(x), s) is an instance
of the table (i.e. a relation instance), in other words a set of tuples that hold
in state s. Each tuple a is an assignment to x that answers to query q in the
abox Λ(s).

ctl is a propositional, branching-time, temporal logic that has Kripke se-
mantics [24]. Intuitively, a temporal condition must be verified along all possible
computation paths (state sequences) starting from the current state. Formally:
a computation path is an infinite sequence 〈s0, s1, s2, . . . , 〉 of states in S such

that ∀i.∃α : si
α−→ si+1 ∈ R. Concerning the temporal operators (i.e., AF, EF,

AX, and so on), they maintain the same intuitive meaning that they have in stan-
dard ctl. Here, the only difference is that there are conjunctive queries instead
of propositions.

As a consequence, the semantics of a temporal conjunctive query can be
defined as follows:

Definition 5 (Semantics of a Temporal Conjunctive Query). Let K be
a temporal aboxes knowledge base defined over ΣA. Let q[x] be a conjunctive
query over K such that x = {x1, . . . , xn}. Let φ and ψ be temporal conjunctive
queries. Then:
• K, s |= q[x] iff ∃ a.I(a) ∈ (∆I)n and 〈T , Λ(s)〉 |= q[x/a]
• K, s |= φ ∧ ψ iff K, s |= φ and K, s |= ψ
• K, s |= ¬φ iff K, s 6|= φ
• K, s |= EX φ iff ∃〈si, s(i+1), s(i+2), . . . , 〉 such that s = si and K, s(i+1) |= φ
• K, s |= EG φ iff ∃〈si, s(i+1), s(i+2), . . . , 〉 such that s = si and
∀j ≥ 0 . K, s(i+j) |= φ
• K, s |= E (φ U ψ) iff ∃〈si, s(i+1), s(i+2), . . . , 〉 such that s = si and
∃j.(K, s(i+j) |= ψ and ∀k < j.K, s(i+k) |= φ)

Notice that the constant domain assumption has been adopted, i.e. individu-
als are never destroyed or created over time [11] (∆I is always the same for each
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state). The semantics of the other operators (i.e. ∨, →, EF, AF AG, EG, AX, EX,
E(.R.), A(.U .), A(.R.)) can easily be derived from the semantics of the minimal
set of operators by means of the following equivalences:

A(φ Uψ) ≡ ¬E(¬ψU(¬φ ∧ ¬ψ)) ∧ ¬EG¬ψ
AFφ ≡ ¬EG¬φ EFφ ≡ E(true Uφ)
AGφ ≡ ¬EF¬φ E(φRψ) ≡ ¬A(¬φU¬ψ)
AXφ ≡ ¬EX¬φ A(φRψ) ≡ ¬E(¬φU¬ψ)

5 Temporal Conjunctive Query Answering

The temporal conjunctive query answering involves two problems: the entailment
problem and the answering problem.

Regarding the first problem, the following definition is given:

Definition 6 (Entailment Problem). Let φ be a temporal conjunctive query.
Let K be a temporal aboxes knowledge base defined over ΣA. The Entailment
Problem consists in deciding whether the temporal aboxes knowledge base K
satisfies the temporal conjunctive query φ. Formally:

K |= φ iff ∃ s ∈ S,∃ a . I(a) ∈ (∆I)n and K, s |= φ[x/a]

In other words, the entailment problem aims at checking whether a temporal
knowledge base verify a given temporal specification or not. As a consequence,
the result of this problem is a boolean value: true or false. The entailment prob-
lem does not give information about the temporal knowledge base data. Indeed,
in most of the cases the goal of querying a knowledge base is to retrieve data
that satisfy a given query. This problem can be defined as follows:

Definition 7 (Answering Problem). Let φ be a temporal conjunctive query.
Let K be a temporal aboxes knowledge base defined over ΣA. The Answering
Problem aims at searching all the individuals in the temporal knowledge base K
which satisfies the temporal conjunctive query φ. Formally:

Ans(K, φ[x]) = {a | I(a) ∈ (∆I)n and ∃ s ∈ S0,K, s |= φ[x/a]}

where: x is an n-tuple denoting the variables of the temporal conjunctive query
and a is an n-tuple of individuals that can be assigned to x.

It is clear that the Answering Problem (Definition 7) is tied with the Entail-
ment Problem (Definition 6): the former checks whether a temporal conjuctive
query models or not a temporal aboxes knowledge base and the latter gives the
instances tuples which satisfies the query. It follows the proposition:

Proposition 1 (Temporal Conjunctive Query Answering). Let K be a
temporal aboxes knowledge base defined over ΣA. Let φ be a temporal conjunctive
query. Let Ans(K, φ[x]) be the outcome of the answering problem resulting by
querying the temporal knowledge base K with the temporal conjunctive query φ.
Then:

K |= φ iff Ans(K, φ[x]) 6= ∅
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In order to deal with both the problems defined above, this work takes ad-
vantage of the work by Di Pietro et al. [16, 4] regarding semantic model checking
for the semantic web service selection. They proposed four steps in order to
verify whether a temporal specification matches a service process or not. Their
algorithm can be used to deal with the temporal knowledge base proposed in
this work.

Definition 8 (Semantic Model Checking Result). Let ΣA be an asts. Let
s ∈ S be an asts state. Let φ[x] be a temporal conjunctive query and φ[x/a] be
the related formula obtained by assigning a to x. Let ΣA, s ` φ[x/a] denote that,
according to the semantic model checker, φ[x/a] is true which refers to ΣA and
state s. Then, the outcome of the semantic model checker is defined as follows:

smc(ΣA, φ[x]) = {a | I(a) ∈ (∆I)n and ∃ s ∈ S0, ΣA, s ` φ[x/a]}

The fact that there exists at least an assignment (i.e. smc(ΣA, φ[x]) 6= ∅) is
denoted as: ΣA ` φ.

For the sake of space, here it is reported only a short introduction to such
an algorithm. The reader may refer to [4] for a more detailed description and
to Appendix A for the pseudocode of the semantic model checking algorithm.
The steps of the algorithm are the following. First, a given temporal conjunctive
query is translated into its positive normal form (temporal conjunctive query nor-
malization), a more convenient form for the semantic model checking algorithm.
The normal form can be obtained by pushing negations inward as far as possible.
Then, temporal knowledge base grounding consists in applying to each abox in
ΣA, each conjunctive query in φ. This step aims at mapping conjunctive queries
in φ into propositions in order to obtain a finite sts. According to the closed
world assumption, when a conjunctive query has a non-empty answer in a given
state (abox), the corresponding proposition is set to true in that state, to false
otherwise. All the assignments, that represent an answer for any conjunctive
query, are joined in a table called Asser in the algorithms in Appendix A. Re-
garding the query, temporal conjunctive query grounding is performed to obtain
a set of propositional queries containing conditions on state propositions in place
of queries of the original formula φ. Considering the closed world assumption,
this step generates a set of propositional (ground) temporal specifications, one
for each tuple in table Asser. At this point, the entailment problem has been
reduced into a propositional model checking problem. Therefore, propositional
model checking aims at verifying for each tuple in Asser whether the related
propositional temporal specification is satisfied. If so, the tuple is inserted in
smc(ΣA, φ). At the end, smc(ΣA, φ) contains all the answers to the temporal
conjunctive query.

Now it is possible to state the following theorem about the soundness and
completeness of the proposed approach.

Theorem 1 (Soundness & Completeness).

ΣA, s ` φ iff K, s |= φ (1)

ΣA ` φ iff K |= φ (2)
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Proof. [Hint] The proof of (1) is reported in [4]. From (1) it follows that
smc(ΣA, φ[x]) = Ans(K, φ[x]). Hence, it follows (2)

Given that the entailment and answering problems (Definitions 6 and 7) are
solved using semantic model checking, their complexities can be evaluated with
the complexity of the semantic model checking algorithm. It follows:

Theorem 2 (Complexity). The semantic model checking algorithm is decid-
able in time

max(O(|ΣA| · |φ| · |CQA|) , O(|ΣA| · |MC|))

where |ΣA| is proportional to the number and size of the states, |φ| is proportional
to the length of φ, |CQA| is the complexity of conjunctive query answering, and
|MC| is the complexity of propositional temporal logic model checking.

Proof. [Hint] The semantic model checking algorithm calls the conjunctive query
answering algorithm n× | S | times, where n is the number of conjunctive queries
in the temporal specification φ (proportional to |φ|) and | S | is the number of
states (it is proportional to |ΣA|). The result of conjunctive query answering
is used to build a set of propositions whose number is less than or equal to
m· | (∆I)h |. The algorithm builds a join table in polynomial time. From this
table, a set of propositional temporal specifications is built in polynomial time.
Finally, the semantic model checking algorithm performs a traditional proposi-
tional temporal logic model checking a number of times that is proportional to
the size of the join table. The size of the join table depends on the number of
individuals in ∆I and, thus, on |ΣA|.

6 Discussion and Conclusion

In this paper is presented a minimalistic approach to the problem of query
answering in temporal knowledge bases.

Results reported in Section 5 show how temporal reasoning with a temporal
knowledge base, under the minimalistic approach (i.e. the assumptions intro-
duced in Section 3: dl-litecore, ctl, time invariant tbox, time variant abox,
constant and finite domain, closed-world assumption) is tractable. Up to now,
such an approach has been confirmed to be useful to solve several verification
(entailment) problems: semantic web service identification [27], selection [16],
composition [15], and security [28]. Furthermore, its application to entailment
problems ranges from business processes [29] to e-learning processes [30]. The
original contribution of this paper consists in proposing to apply the minimalistic
approach to query-answering problems as well, maintaining the same complexity
and the same assumptions. As a matter of fact, it is still possible to use the same
semantic model checking algorithm (as discussed in Section 5). Some practical
experiments in real world applications of the proposed approach to temporal
query-answering has been planned as future work.
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A Algorithms

Algorithm 1: semantic model checking
input : ΣA = 〈〈S,S0,R〉, T , Λ〉 /* asts */

φ = φ(q1, . . . , qm) /* Temporal conjunctive query */
output: b ∈ {true, false} /* A boolean value */

smc(ΣA, φ) /* The answer to the temporal conjunctive query */
{

tcq normalization(in: φ, out: φ′);
tkb grounding(in: ΣA, φ′, out: Σ,Asser);
tcq grounding(in: φ′,Asser, out: Φ)
b := false;
smc(ΣA, φ) := ∅
for each ϕ(r) ∈ Φ do
{

if prop model checking(in: Σ,ϕ(r)) then
{
b := true

smc(ΣA, φ) := smc(ΣA, φ) ∪ {r}
}

}
return b;

}

Fig. 1. The semantic model checking algorithm.
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Algorithm 2: tkb grounding
input : ΣA = 〈〈S,S0,R〉, T , Λ〉 /* asts */

φ′ = φ′(q1, . . . , qm) /* Temporal conjunctive query */
output: Σ = 〈〈S,S0,R〉,P,X〉 /* Finite sts */

Asser /* Join of all the tables */
{
∆ := ∅;
P := ∅
for each qi (1 ≤ i ≤ m) do Asser(qi) := ∅;
for each s ∈ S do {

for each a : C ∈ Λ(s) do ∆ := ∆ ∪ {a};
for each a.R = b ∈ Λ(s) do ∆ := ∆ ∪ {a, b};

}
for each s ∈ S do {
X (s) := ∅ ;
for each qi (1 ≤ i ≤ m) do {
I(qi, s) := cq answering(qi, 〈T , Λ(s)〉);
if ¬qi ∈ φ′ then

I(qi, s) := ∆h \ I(qi, s);
Asser(qi) := Asser(qi) ∪ I(qi, s);
for each pj(xj) ∈ qi do

for each r ∈ πxj
(I(qi, s)) do {

P := P ∪ {PROP (pj(r))};
if not (¬qi ∈ φ′) then
X (s) := X (s) ∪ {PROP (pj(r))};

else if 〈T , Λ(s)〉 ` pj(r)
X (s) := X (s) ∪ {PROP (pj(r))};

}
}

}
Asser = Asser(q1) ./ . . . ./ Asser(qm);
return Σ , Asser;

}

Fig. 2. The temporal aboxes knowledge base grounding algorithm.

Algorithm 3: tcq grounding
input : φ′ /* Temporal conjunctive query */

Asser /* Join of all the tables */
output: Φ /* Set of ground ctl formulae */
{
Φ := ∅;
for each r ∈ Asser do {
ϕ(r) := φ′;
for each x ∈ V(φ′) do

/* substitute each occurence of x with πx(r) */
ϕ(r) := ϕ[x/πx(r)];

Φ := Φ ∪ {ϕ(r)};
}
return Φ

}

Fig. 3. The temporal conjunctive query grounding algorithm.


