
The ELepHant Reasoner
System Description

Barış Sertkaya

sertkaya.baris@googlemail.com

Abstract. We intoduce the ELepHant reasoner, a consequence-based
reasoner for the EL+ fragment of DLs. We present optimizations, im-
plementation details and experimental results for classification of several
large bio-medical knowledge bases.

1 Introduction

In [6, 5] Brandt has shown that the tractability result in [1] for subsumption w.r.t.
cyclic EL TBoxes can be extended to the DL ELH, which in addition to EL allows
for general concept inclusion axioms and role hierarchies. Later in [2], Baader et.
al. have shown that the tractability result can even be further extended to the
DL EL++ which in addition to ELH allows for the bottom concept, nominals,
role inclusion axioms, and a restricted form of concrete domains. In addition
to these promising theoretical results, it turned out that despite their relatively
low expressivity, these fragments are still expressive enough for the well-known
bio-medical knowledge bases SNOMED [8] and (large parts of) Galen [19], and
the Gene Ontology GO [7]. In [3, 4, 21] the practical usability of these fragments
on large knowledge bases has been investigated. The CEL Reasoner [18] was
as a result of these studies the first reasoner that could classify the mentioned
knowledge bases from the life sciences domain in reasonable times.

Successful applications of the EL family increased investment in further work
in this direction. The EL family now provides the basis for the profile OWL2
EL1. Moreover, there are now several other reasoners specifically tailored for
the EL family, like Snorocket [16], TrOWL [22], CB [11] (which extends the
EL++ algorithm to Horn SHIQ), JCEL [17] (which is a Java implementation
of CEL) and ELK [12, 14, 13, 15] (which is currently the only reasoner that can
classify large ontologies from real-life applications within only a few seconds). A
comprehensive study comparing the performace of several reasoners on large bio-
medical knowledge bases has been presented in [9]. A more recent comparison
can be found in the experimental results section of [15].

In the present paper we introduce the ELepHant reasoner,2 a consequence-
based reasoner for the EL+ fragment of DLs. It is the successor of our prototype
reasoner cheetah [20]. Our motivation to develop ELepHant is on the one hand

1 http://www.w3.org/TR/owl2-profiles/#OWL 2 EL
2 http://code.google.com/p/elephant-reasoner



push the performance of OWL EL reasoning further by investigating different
optimizations, and on the other hand provide a reasoner with a small footprint
that can be used on platforms with limited memory and computing capabilities
for applications like embedded reasoning [10].

The paper is organized as follows: After describing the implementation de-
tails, we present the results of our experiments for classification of large ontolo-
gies from the biomedical domain. Although there is still room for improvements
like multithreading, the experimental results show that the performance is still
promising.

2 Implementation Details

The ELepHant reasoner is the successor of the cheetah prototype [20]. The
motivation for the cheetah prototype was to improve the worst-case complexity
of the EL+ classification algorithm by using the linear-closure algorithm from
databases. There we used a modified version of the linear-closure algorithm for
computing the closure of atomic concepts under the axioms of the knowledge
base, i.e., for saturating the knowledge base. For each concept name, we kept a
counter that is used to check whether it already satisfies the left-hand side of an
axiom. The experimental results there showed that the overhead of this method
was too big compared to the performance gain.

The ELepHant reasoner does not use this method. Instead, it implements
the consequence-based algorithm used in ELK [12, 15] with some small modifi-
cations. It differs from ELK in the implementation of the inference rules, and in
scheduling of the input and derived axioms.

As also pointed out in [15], the most time consuming phase of consequence-
based classificiation is the phase where the inference rules are applied for satu-
rating the knowledge base. Therefore it is important to optimize this phase for
getting a good performance. The original saturation algorithm uses a queue for
keeping the scheduled axioms. Our experiments showed that the queue opera-
tions take a considerable amount of time since these operations are executed
millions of times for classifying large knowledge bases like SNOMED CT. Re-
moval from the front and addition at the back are indeed costly operations
compared to adding and removing on only one side since in the former case the
links to the next queue element have to be maintained properly. In order to
avoid this overhead, in ELepHant we keep the scheduled axioms in a stack. Our
experiments show that for some of the ontologies this results in a larger number
of derivations, but the overall performance becomes better. The performance
difference between queue and stack processing is shown in Table 2.

One other optimization that ELepHant implements is that it uses the told
subsumer information as input axioms for initializing the stack. For each concept
name A, instead of using axioms of type A v A as input, it uses A v B, where
B is a told subsumer of A.

Apart from these basic optimizations, ELepHant also implements some of
the optimization techniques introduced in [15]. It implements the optimization



of rules for decomposing conjunctions and existential restrictions. More precisely,
it does not decompose a conjunction if it has been previously derived by con-
junction introduction. Similarly, if an existential restriction has previously been
derived via the existential introduction rule, it does not decompose this exis-
tential restriction. Unlike ELK, when an existential restriction is decomposed,
ELepHant does not schedule a so-called init axiom, it directly schedules an
axiom with the filler of the existential on both sides. ELepHant does not yet
support concurrent reasoning, but it is planned for future versions.

During saturation, we often need to do a lookup to check if a concept is
subsumed by another, or if an axiom has already been processed before, etc. For
such operations, we need an efficient data structure. Besides doing a lookup, we
also often need to insert new elements to these data structures, like adding a
new subsumer to the subsumers list, marking an axiom as processed, etc. But
we never delete elements from these data structures. We also sometimes need
to iterate over the elements of these data structures. For these operations, the
most appropriate data structure is a an associative array. As associative array
implementation, we used the Judy array library3 for C. The library is optimized
to avoid CPU cache misses as often as possible. Its memory consumption scales
smoothly with number of entries, even when the keys are sparsely distributed.

For some of the data structures that are traversed often during saturation,
ELepHant keeps double indexes. For instance, the list of subsumers of a concept
is stored once as a conventional array and once as Judy array. If during saturation
we need to check whether a concept is subsumed by another, we do a lookup
in the Judy array. But if we need to traverse the subsumer list, for instance in
existential introduction rule, we use the conventional array.

Just like its predecessor, the ELepHant reasoner is implemented in the C

programming language. The reason why cheetah was implemented in C is the
large amount of memory required by the algorithm that it implements. Due to the
large number of concept names and axioms in real-life ontologies, this algorithm
requires a large amount of memory and an efficient memory management. This
is why we chose C as the implementation language. Although the ELepHant
reasoner does not use this algorithm, large part of its code is based on the code
of the cheetah prototype.

3 Experimental Results

In order to test the performance of ELepHant, we performed a series of experi-
ments on large biomedical knowledge bases from real-life applications. We used
the January 2013 international release of SNOMED CT by converting it to OWL
functional syntax by the converter provided. Additionally, we used 6 ontologies,
namely GO1, FMA, ChEBI, EMAP, Molecule Role and Galen 7 provided in the
test ontology suite on the ELK web page.4 We did not use the Galen8, GO2 and
Fly Anatomy ontologies provided there since they contain disjointness axioms,

3 http://judy.sourceforge.net
4 http://code.google.com/p/elk-reasoner



A r C v D C ≡ D r v s r1 ◦ r2 v s Trans(r)

GO1 19468 1 28869 0 0 0 1
FMA 80469 14 126544 0 3 0 1
SNOMED CT 296518 57 228954 67563 12 1 0
ChEBI 31160 9 67182 0 0 0 2
EMAP 13731 1 13730 0 0 0 0
Molecule Role 9217 2 9627 0 0 0 2
Galen7 28482 964 27820 19326 1357 385 0

Table 1. Number of concepts, roles and different types of axioms.

which is not yet supported by ELepHant. The metrics of the used ontologies are
shown in Table 1.

In order to measure the effects of optimizations described in Section 2, we
have run a series of experiments. The experiments were run on a computer with
Intel Core i3 processor with 2.1 GHz clock speed, 8 GB of main memory and
Linux operating system with 3.2.0 kernel. The results were obtained as average
of 5 runs per setting per ontology. We tested the performance gain obtained
by using a stack instead of a queue and performance gain obtained by initial-
izing the stack with told subsumer information. Runtimes in miliseconds, and
also total and unique number of derivations obtained from these experiments
are presented in Table 2. Test results for the setting where a queue is used are
marked with ’queue’, results for the setting where a stack is used with ’stack’ and
the results for setting where a stack is used and the stack is initialized with told
subsumer information is marked with ’stack+told’. The results show that except
for the EMAP and Molecule Role ontologies, using a stack improves the runtime
performance even if the number of total or unique derivations does not change.
This is due to the overhead of enqueue and dequeue operations compared to the
push and pop operations. It is also seen in the table that using the told sub-
sumer information for preparing the input axioms always improves the runtime
performance and reduces both the number of total and unique derivations.

We have also run a series of tests for comparing the loading and classification
performances of ELepHant to that of ELK. We have run ELK 5 times for each
ontology with the -XX:+AggressiveHeap parameter and taken the average of
these runtimes. The results presented in Table 3 show that ELK classifies the
SNOMED CT ontology faster, but needs more time to load it compared to
ELepHant. For all smaller ontologies, both classification and loading times of
ELepHant are slightly shorter. We conjecture that this is due to the overhead
of starting the Java virtual machine. In terms of memory usage the performance
of ELepHant is quite good as well. For classifying SNOMED CT, the maximum
memory usage is around 420MB as the Linux top command shows. For ELK, it
is around 1.6GB with the aggressive heap option and around 1GB without this
option.



classification time total derivations unique derivations

GO1
queue 94 261302 206205
stack 65 261302 206205
stack+told 61 241834 186737
FMA
queue 637 1314973 1312745
stack 373 1314973 1312745
stack+told 359 1234504 1232276
SNOMED CT
queue 24013 23299190 12576268
stack 16396 21373957 12576268
stack+told 16170 20956134 12346881
ChEBI
queue 661 1250852 1022277
stack 482 1250852 1022277
stack+told 471 1219692 991117
EMAP
queue 8 27461 27461
stack 40 27461 27461
stack+told 6 13730 13730
Molecule Role
queue 10 32857 32391
stack 23 32857 32391
stack+told 11 23640 23174
Galen7
queue 1598 1658475 1068115
stack 1246 1715446 1068115
stack+told 1197 1658677 1055492

Table 2. Performance gain obtained by optimizations. Runtimes are in miliseconds.

GO1 FMA Molecule Role ChEBI EMAP SNOMED CT Galen7

classification
ELK 989 1564 657 1275 693 10674 2676
ELepHant 61 359 11 471 6 16170 1197

loading + classification
ELK 3338 7522 2695 3215 2368 23169 4883
ELepHant 284 1144 222 746 106 20032 1554

Table 3. Loading and classification times in miliseconds.



4 Concluding Remarks and Future Work

We have introduced the consequence-based EL+ reasoner ELepHant, described
implementation details and presented experimental results.

Currently the ELepHant reasoner is still under heavy construction, and there
is a number of improvements that we plan to do as future work. First of all, we
are going to investigate the role of ordering derived axioms for reducing the
number of derivations. We are going to check whether this can be implemented
with a feasible overhead. We are going to implement concurrent reasoning in
order to further improve the performance. We are going to extend the supported
expressivity by allowing disjointness axioms. Last but not least, we are going
to implement an OWL API wrapper using the Java native interface in order to
make it compatible with ontology editors and other practical applications.

References

1. F. Baader. Terminological cycles in a description logic with existential restrictions.
In G. Gottlob and T. Walsh, editors, Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI’03), pages 325–330. Morgan Kauf-
mann, 2003.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In L. P. Kaelbling and
A. Saffiotti, editors, Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, (IJCAI 05), pages 364–369. Professional Book Center,
2005.

3. F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions
of the description logic EL useful in practice? In Proceedings of the Methods for
Modalities Workshop (M4M-05), 2005.

4. F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions
of the description logic EL useful in practice? In Journal of Logic, Language and
Information, Special Issue on Method for Modality (M4M), 2007. To appear.

5. S. Brandt. On subsumption and instance problem in ELH w.r.t. general tboxes. In
V. Haarslev and R. Möller, editors, Proceedings of the 2004 International Workshop
on Description Logics, (DL2004), volume 104 of CEUR Workshop Proceedings.
CEUR-WS.org, 2004.

6. S. Brandt. Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and - what else? In R. L. de Mántaras and L. Saitta,
editors, Proceedings of the 16th Eureopean Conference on Artificial Intelligence,
(ECAI 2004), pages 298–302. IOS Press, 2004.

7. T. G. O. Consortium. Gene ontology: Tool for the unification of biology. Nature
Genetics, 25:25–29, 2000.

8. R. Cote, D. Rothwell, J. Palotay, R. Beckett, and L. Brochu. The systematized
nomenclature of human and veterinary medicine. Technical report, International,
Northfield, IL: College of American Pathologists, 1993.

9. K. Dentler, R. Cornet, A. ten Teije, and N. de Keizer. Comparison of reasoners
for large ontologies in the OWL 2 EL profile. Semantic Web Journal, 2011. To
appear.

10. S. Grimm, M. Watzke, T. Hubauer, and F. Cescolini. Embedded EL + reasoning on
programmable logic controllers. In Proceedings of the 11th International Semantic



Web Conference (ISWC 2012), volume 7650 of Lecture Notes in Computer Science,
pages 66–81. Springer-Verlag, 2012.

11. Y. Kazakov. Consequence-driven reasoning for Horn SHIQ ontologies. In
C. Boutilier, editor, Proceedings of the 21st International Joint Conference on Ar-
tificial Intelligence, (IJCAI 2009), pages 2040–2045, 2009.

12. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. Concurrent classification of EL ontolo-
gies. In L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. Noy, and
E. Blomqvist, editors, Proceedings of the 10th International Semantic Web Con-
ference (ISWC’11), volume 7032 of Lecture Notes in Computer Science. Springer-
Verlag, 2011.

13. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. ELK: a reasoner for OWL EL
ontologies. System description, University of Oxford, 2012. available from
http://code.google.com/p/elk-reasoner/wiki/Publications.

14. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. ELK reasoner: Architecture and evalu-
ation. In Proceedings of the OWL Reasoner Evaluation Workshop 2012 (ORE’12),
volume 858 of CEUR Workshop Proceedings. CEUR-WS.org, 2012.

15. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. The incredible ELK. 2013. available
from http://code.google.com/p/elk-reasoner/wiki/Publications.

16. M. Lawley and C. Bousque. Fast classification in Protege: Snorocket as an OWL2
EL reasoner. In Proceedings of Australasian Ontology Workshop, 2010.

17. J. Mendex. jcel: A modular rule-based reasoner. In Proceedings of the 1st Interna-
tional Workshop on OWL Reasoner Evaluation (ORE 2012), volume 858 of CEUR
Workshop Proceedings. CEUR-WS.org, 2012.

18. J. Mendez and B. Suntisrivaraporn. Reintroducing CEL as an OWL 2 EL reasoner.
In B. C. Grau, I. Horrocks, B. Motik, and U. Sattler, editors, Proceedings of the
22nd International Workshop on Description Logics (DL 2009), volume 477 of
CEUR Workshop Proceedings. CEUR-WS.org, 2009.

19. A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proceedings of
the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI’97).
AAAI Press, 1997.

20. B. Sertkaya. In the search of improvements to the EL+ classification algorithm. In
Proceedings of the 24th International Workshop on Description Logics (DL 2011),
volume 745 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

21. B. Suntisrivaraporn. Polynomial-Time Reasoning Support for Design and Main-
tenance of Large-Scale Biomedical Ontologies. Ph.D. dissertation, Institute for
Theoretical Computer Science, TU Dresden, Germany, 2009.

22. E. Thomas, J. Z. Pan, and Y. Ren. TrOWL: Tractable owl 2 reasoning infrastruc-
ture. In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt,
L. Cabral, and T. Tudorache, editors, The Semantic Web: Research and Appli-
cations, 7th Extended Semantic Web Conference, (ESWC 2010), volume 6089 of
Lecture Notes in Computer Science, pages 431–435. Springer-Verlag, 2010.


