
TReasoner: System Description

Andrey V. Grigorev and Alexander G. Ivashko

Tyumen State University,
Semakova. 18, 625003 Tyumen, Russian Federation

{ivashco,107th}@mail.ru

Abstract. TReasoner is a reasoning system supporting the SHOIQ(D)
logic expressiveness, which forms the basis of the OWL DL language.
The TReasoner was developed for using in the enterprise architecture
verification expert systems, but the OWL API package allows to use
the system for performing ontology operations. The reasoner implements
a tableau algorithm and optimization techniques, some of them were
developed and were used for the first time. This description also contains
an assessment of the developed system efficiency.

Keywords: Description Logic, OWL, Tableau Algorithm, Reasoner, Clas-
sification

1 Introduction

Ontologies are a powerful tool of knowledge representation, which became very
popular for using by expert systems [8]. First of all because of the fact that
they are based on the description logic formalism, which has a formally defined
semantics allowing to develop tableau algorithm for a logic inference. OWL [13]
is the basic ontology representation language recommended by the W3C consor-
tium. Nowadays the OWL 2 standard is valid. The OWL DL language uses the
SHOIN [1] description logic with support of data values.

To date many OWL reasoning systems such as FaCT++ [15], HermiT [7] (for
OWL DL), jcel [11], ELK [10] (for OWL 2 EL) were developed, they implement
different algorithms for a logic inference.

The article introduces a new OWL Reasoner. The TReasoner is SHOIQ(D)
reasoner implementing tableau algorithm with some novel optimization tech-
niques. TReasoner is free distributed by GNU General Public License v2. Source
code of the TReasoner, compiled class library and wrapper for system usage are
available at http://treasoner.googlecode.com.

This system description has the following structure. Section 2 provides a
supported language and an implemented algorithm. Section 3 contains informa-
tion about architecture, implementation and optimization techniques that are
used by the TReasoner. Results of the system testing are described in section 4.
Section 5 concludes this work.



2 Andrey V. Grigoryev, Alexander G. Ivashko

2 Supported Language Subset and Implemented
Reasoning Algorithm

The TReasoner allows to perform a concept satisfiability checking, a consistency
checking and a classification on OWL ontologies that use the SHOIQ(D) de-
scription logic. It means that the system works correctly with concepts described
by the disjunction, the conjunction, the existential quantifier and the universal
quantifier. Besides, the SHOIQ allows roles to be transitive and inverse to other
roles. There may be concepts consisting of one individual (nominal), at the same
time the SHOIQ is extended by number restrictions (n ≤ R.C or n ≥ R.C).
D letter at SHOIQ(D) logics allows to describe knowledge with support of
datatypes (strings, numbers, dates and etc.).

The TReasoner implements the tableau algorithm [6]. The concept satisfia-
bility checking is carried out through graph-model existence checking.

The tableau algorithm for SHOIQ has NExpTime complexity, but the de-
veloped system implements different new and old optimization techniques, which
allow to significantly reduce worktime in practice.

3 Architecture and Implementation

The TReasoner was developed using the Java language, because of the cross-
platform portability. The system consists of 6 packages. The RuleGraph package
implements data structures for the inner representation of concepts. Also this
package implements algorithms for the concepts simplification and the axiom
simplification. TBox, ABox and RBox axioms are contained in KnowledgeBase
package classes. The OWL API package is used for loading the OWL ontolo-
gies and transforming them to inner system representation. Main package is
Checker. It contains classes that implement tableau algorithm and optimization
techniques for it. Checker package classes use Interpretation package classes,
which implement data structures for the interpretation building. All packages use
classes of the Help package, which implements different supporting algorithms
and data structures such as binary heap, hash-table, etc. The UML package
diagram is presented on the Fig. 1.

The TReasoner implements optimization techniques, which can be divided
into 3 groups:

1. Preprocessing optimizations;
2. Tableau algorithm optimizations;
3. Classification optimizations.

The system uses both time-tested and newly developed optimizations.

3.1 Optimization Techniques

Preprocessing optimizations are used by the ontologies transformation to inner
structures, which are understandable by the TReasoner. Also they are used for



TReasoner: System Description 3

Fig. 1. The structure of packages of the TReasoner system

the transformation of GCIs and equivalence axioms. For the concept represen-
tation the system uses direct acyclic graph (DAG), each vertex of the graph
corresponds to some operation or quantifier, and neighbours of this vertex are
operands of the operation, in addition each vertex in the DAG has a number
that uniquely identifies it. To reduce memory usage, same concepts are repre-
sented by only one subgraph. For each vertex (in order of height increasing), a
hash-function value is calculated, this function consider unique numbers of all
neighbours, operation type of the vertex, unique number of a role and number
restriction (for existential and universal quantifiers, and for number restriction
operations). If this function value doesn’t exists in hash-table, the vertex with
its hash-function value will be added to hash-table. If function value is found
then all edges which enter to this vertex will change its direction to vertex with
corresponding value of hash-function that contained in hash-table.

To reduce memory usage, removal of brackets technique was developed. The
algorithm is performed in two runs. In first run, for each vertex v (in order of
height increasing) that represent a concept, set of concepts H(v) is calculated.
Concepts of this set defined as follows:

1. If current graph vertex v represents atomic cocnept C, then H(v) set contains
two elements: C and >;

2. If current graph vertex v represents u-cocnept then H(v) set contains el-
ements of H(u1) t H(u2) t ... t H(uk) for all ui which are neighbours of
v;

3. If current graph vertex v represents t-cocnept then H(v) set contains el-
ements of H(u1) u H(u2) u ... u H(uk) for all ui which are neighbours of
v;

In second run, vertexes are considered in order of height decreasing, each vertex
is transformed to u-vertex with neighbours of all concepts from H(v) and itself



4 Andrey V. Grigoryev, Alexander G. Ivashko

vertex, so each concept of H(v) will be deleted from H(ui) for all ui which are
neighbours of v. For example, concept (((C u B) t (D u B)) u A) t (B u ((C u
A) t (E u C))) will be transformed to B u ((C u (A t E)) t (A u (C tD)))

After loading and preprocessing of concepts, a processing of axioms will be
performed. Absorption technique [5] is used for this task.

Tableau algorithm optimizations that are implemented in the TReasoner, include
such optimizations as backJumping [14], caching [3, 5] and global caching [12].
The system implements novel optimization techniques. The main of such tech-
niques is the SS-branching [9], which determine disjointness of concepts without
using of tableau algorithm. It is applicable not in every cases, but in wide range
of concepts. The SS-branching procedure determine disjointness of two concepts
by analyzing of structures of DAGs that represent its. For example, if concepts
C and D are conjunctions of other concepts (C ≡ C1 u C2 u ... u Cn, D ≡
D1 u D2 u ... u Dn) and some of the concepts Ci and Dj are disjoint, then C
and D are disjoint. Conditions of disjointness for cases when C and D are dis-
junctions, disjunction and conjunction, existential and unversal quantifiers were
identified. However, SS-branching can not to determine disjointness of concepts.
To cover wider class of concepts Bron-Kerbosch algorithm was used. For dis-
jointness checking of the concepts like E1 u E2 u ... u En, where every concept
Ei is a disjunction (EI ≡ F1 t F2 t ... t Fk). Such concepts will be presented of
n-partite form, where every vertex of the part presents Fj concept, so vertexes
form different parts will be connected, if corresponding concepts are disjointness.
Model existing checking of such concepts performed by using of Bron-Kerbosch
algorithm, which used for n-clique finding in n-partite graph.

Classification optimizations allow to reduce system worktime to perform the
classification operation. Enhanced traversal method [2] is used for the classifi-
cation, information about disjointness is extracted not only from subsumption
test, but during the concept satisfiability testing. During the construction of
model by tableau algorithm, labels of all individuals are checked in the presence
of concepts A and ¬B, though A and B are concept names. If those individuals
exist, then A 6v B, without performing A v B subsumption test.

4 System Performance Evaluation

The TReasoner system performance testing uses ontologies classification tests
that were used on the OWL Reasoner Evaluation Workshop 2012 and compares
the results received by HermiT (ver. 1.3.6) and FaCT++ (1.6.2) reasoners. They
implement hypertableau and tableau algorithms and support the SROIQ(D)
logic. Information about used ontologies is shown in table 1.

System testing results in comparison with other reasoners are shown in table
2. First column of the table contains name of used ontology, and every subse-
quent column shows time spent for ontology classification by the relevant system.
Testing was carried out on ASUS Notebook VX7SX Series Intel Core i7-2630QM
CPU@2.00 GHz 2.00 GHz; 6.00 GB RAM running under Windows 7.



TReasoner: System Description 5

Table 1. Used ontologies

Ontology Logic Axioms Concepts Roles Individuals

obi SHOIN(D) 8530 1161 60 140
plant trait ALC 4317 976 1 3177
po temporal ALC 2839 284 1 2559
DLPOnts Information 397 SHOIN 1037 120 198 12
DLPOnts DOLCE-Lite 397 SHIF 351 37 70 0
DLPOnts Plans 397 SHOIN 1281 117 264 27
pathway ALC 1927 646 1 1160
protein ALCS 5821 1055 2 4768
quality ALCSH 4815 1980 13 2653
rex ALC 1725 555 2 991

Table 2. Testing results

Ontology TReasoner FaCT++ HermiT

obi 17,065 1,313 130,359
plant trait 1,035 0,099 0,228
po temporal 0,098 0,071 0,064
DLPOnts Information 397.owl.txt 5,177 0,94 11,443
DLPOnts DOLCE-Lite 397.owl.txt 0,045 0,13 0,4
DLPOnts Plans 397.owl.txt 5,515 0,167 217,667
pathway.owl 0,458 0,094 0,519
protein.owl 0,851 0,179 0,376
quality.owl 3,337 0,101 0,411
rex.owl 0,504 0,53 0,124

The resulting classification coincides to the reference classification provided
together with chosen ontologies.

5 Conclusion

This system description presents the new reasoning system, implemented algo-
rithms and implemented optimization techniques, which contribute to reduce
worktime of different ontologies operations (classification, concept satisfiability
checking, consistency checking). The developed system allows to perform logical
analysis for expressive SHOIN(D) logic that is used in OWL DL. This fact
allows to use TReasoner to perform operations on a wide class of ontologies.

The presented testing results show that TReasoner may not compete yet with
most popular systems such as HermiT and FaCT++ reasoners, but in future
implementation of tableau algorithm will be improved and reduce of system
worktime is expected.



6 Andrey V. Grigoryev, Alexander G. Ivashko

In further researches improving of the TReasoner is expected in order to use
it not only as module of the enterprise architecture verification expert system,
but as self-dependent OWL reasoning system.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
CUP, 2003.

2. F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, E. Franconi. An Empirical
Analysis of Optimization Techniques for Terminological Representation Systems
or Making KRIS get a move on* KR-92, pages 270-281, 1992

3. Y. Ding and V. Haarslev. Tableau caching for description logics with inverse and
transitive roles. In Proc. DL-2006: International Workshop on Description Logics,
pages 143-149, 2006.

4. Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for OWL
Ontologies. Semantic Web 2(1): 11-21, 2011.

5. I. Horrocks. Optimising Tableaux Decision Procedures for DescriptionLogics. PhD
thesis, University of Manchester, 1997.

6. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the descrip-
tion logic SHIQ. In D. MacAllester, editor, Proc. of the CADE 2000, number 1831,
pages 482496. Springer-Verlag, 2000.

7. Ian Horrocks, Boris Motik, and Zhe Wang. The HermiT OWL Reasoner. OWL
Reasoner Evaluation Workshop. 2012.

8. A. Ivashko, E. Ivanova, E. Ovsyannikova, S. Kolomiyets. Applying DL for informa-
tion system architecture description. Vestnik of Tyumen State University, 98(4):
137-142, 2012.

9. A. Ivashko, A. Grigorjev, M. Grigorjev. Modification of tableau algorithm based
on checking disjointness of complex concepts. Vestnik of Tyumen State University,
98(4): 143-150, 2012.

10. Yevgeny Kazakov, Markus Krotzsch and Frantisek Simancik. ELK Reasoner: Ar-
chitecture and Evaluation. OWL Reasoner Evaluation Workshop. 2012.

11. Julian Mendez. jcel: A Modular Rule-based Reasooner. OWL Reasoner Evaluation
Workshop. 2012.

12. Linh Anh Nguyen. An Efficient Tableau Prover using Global Caching for the De-
scription Logic ALC. Artificial Intelligence, 93(1):273-288, 2009.

13. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL WebOntology Lan-
guage: Semantics and Abstract Syntax, W3C Recommendation, February 10 2004.
http://www.w3.org/TR/owl-semantics/.

14. P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Computa-
tional Intelligence. 9(3): 268-299, 1993.

15. D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System De-
scription. In Proc. IJCAR 2006, pages 292-297, 2006.


