
Graham Cormode Ke Yi
Antonios Deligiannakis Minos Garofalakis(Eds.)

First International Workshop on
Big Dynamic Distributed Data (BD3)

Workshop at VLDB 2013
Riva Del Garda, Italy, August 30, 2013

Proceedings

c©2013 for the individual papers by the papers’ authors. Copying permitted for private and
academic purposes. Re-publication of material from this volume requires permission by the copy-
right owners.

Editors’ contacts:
G.Cormode@warwick.ac.uk, yike@cse.ust.hk, adeli@softnet.tuc.gr, minos@softnet.tuc.gr

First International Workshop on Big Dynamic Distributed Data (BD3)

Preface

As the amount of streaming data produced by large-scale systems such as environmental mon-
itoring, scientific experiments and communication networks grows rapidly, new approaches are
needed to effectively process and analyze such data. There are several promising directions in
the area of large-scale distributed computation, that is, where multiple computing entities work
together over partitions of the massive, streaming data to perform complex computations. Two
important paradigms in this realm are continuous distributed monitoring (i.e., continually main-
taining an accurate estimate of a complex query), and distributed and cluster-based systems that
allow the processing of big, streaming data (e.g., IBM System S, Apache S4, and Twitter Storm).

The aim of the BD3 workshop is to bring together computer scientists with interests in this
field to present recent innovations, find topics of common interest and to stimulate further devel-
opment of new approaches to deal with massive dynamic and distributed data.

August 2013 Graham Cormode, Antonios Deligiannakis,
Minos Garofalakis, Ke Yi

3

First International Workshop on Big Dynamic Distributed Data (BD3)

Organizing Committee

General Chairs:
Minos Garofalakis
Technical University of Crete
minos@softnet.tuc.gr

Antonios Deligiannakis
Technical University of Crete
adeli@softnet.tuc.gr

Program Chairs:
Graham Cormode
University of Warwick
G.Cormode@warwick.ac.uk

Ke Yi
Hong Kong University of Science and Technology
yike@cse.ust.hk

Publicity Chair:
Odysseas Papapetrou
Technical University of Crete
papapetrou@softnet.tuc.gr

Program Committee

Alin Dobra U. Florida
Pascal Felber Universite de Neuchatel
Christof Fetzer TU Dresden
Ling Huang Intel Research
Daniel Keren Haifa
Andrew McGregor UMass-Amherst
Stavros Papadopoulos HKUST
Odysseas Papapetrou Technical University of Crete
Jeff Phillips Utah
Peter Pietzuch Imperial College London
Neoklis Polyzotis UC Santa Cruz
Assaf Schuster Technion
Izchak Sharfman Technion
Nesime Tatbul Intel Labs / MIT
Srikanta Tirthapura Iowa State
Suresh Venkatasubramanian Utah
Milan Vojnovic Microsoft Research
Qin Zhang IBM Research

4

Contents

Safe-Zones for Monitoring Distributed Streams
Daniel Keren, Guy Sagy, Amir Abboud, David Ben-David, Izchak Sharfman, and Assaf Schuster 7

Communication-Efficient Distributed Online Prediction using Dynamic Model Synchro-
nizations
Mario Boley, Michael Kamp, Daniel Keren, Assaf Schuster and Izchak Sharfman 13

Communication-efficient Outlier Detection for Scale-out Systems
Moshe Gabel, Daniel Keren and Assaf Schuster 19

Elastic Complex Event Processing under Varying Query Load
Thomas Heinze, Yuanzhen Ji, Yinying Pan, Franz Josef Grueneberger, Zbigniew Jerzak, and Christof
Fetzer 25

Adaptive Selective Replication for Complex Event Processing Systems
Franz Josef Grünberger, Thomas Heinze and Pascal Felber 31

Dynamic Partitioning of Big Hierarchical Graphs
Vasilis Spyropoulos and Yannis Kotidis 37

Scalable and Robust Management of Dynamic Graph Data
Alan G. Labouseur, Paul W. Olsen Jr. and Jeong-Hyon Hwang 43

Towards Elastic Stream Processing: Patterns and Infrastructure
Kai-Uwe Sattler and Felix Beier 49

Task Graphs of Stream Mining Algorithms
Sayaka Akioka 55

Large-scale Online Mobility Monitoring with Exponential Histograms
Christine Kopp, Michael Mock, Odysseas Papapetrou and Michael May 61

Multi-Stage Malicious Click Detection on Large Scale Web Advertising Data
Leyi Song, Xueqing Gong, Xiaofeng He, Rong Zhang and Aoying Zhou 67

5

6

Safe-Zones for Monitoring Distributed Streams

Daniel Keren
Haifa University

Guy Sagy
Technion

Amir Abboud
Technion

David Ben-David
Technion

Izchak Sharfman
Technion

Assaf Schuster
Technion

ABSTRACT
In many emerging applications, the data which has to be
monitored is of very high volume, dynamic, and distributed,
making it infeasible to collect the distinct data streams to
a central node and process them there. Often, the monitor-
ing problem consists of determining whether the value of a
global function, which depends on the union of all streams,
crossed a certain threshold. A great deal of effort is di-
rected at reducing communication overhead by transforming
the monitoring of the global function to the testing of local
constraints, checked independently at the nodes. Recently,
geometric monitoring (GM) proved to be very useful for
constructing such local constraints for general (non-linear,
non-monotonic) functions. Alas, in all current variants of
geometric monitoring, the constraints at all nodes share an
identical structure and are, thus, unsuitable for handling
heterogeneous streams, which obey different distributions
at the distinct nodes. To remedy this, we propose a general
approach for geometric monitoring of heterogeneous streams
(HGM), which defines constraints tailored to fit the distinct
data distributions at the nodes. While optimally selecting
the constraints is an NP-hard problem, we provide a prac-
tical solution, which seeks to reduce running time by hier-
archically clustering nodes with similar data distributions
and then solving more, but simpler, optimization problems.
Experiments are provided to support the validity of the pro-
posed approach.

1. INTRODUCTION
For a few years now, processing and monitoring of dis-

tributed streams has been emerging as a major effort in
data management, with dedicated systems being developed
for the task [1]. This paper deals with threshold queries
over distributed streams, which are defined as “retrieve all
items x for which f(x) ≤ T”, where f() is a scoring func-
tion and T some threshold. Such queries are the building
block for many algorithms, such as top-k queries, anomaly
detection, and system monitoring. They are also applied in

important data processing and data mining tools, including
feature selection, decision tree construction, association rule
mining, and computing correlations. Another important ap-
plication is data classification, which is often also achieved
by thresholding a function, such as the output of a neural
net or support vector machine.

Geometric monitoring (GM) [2, 3, 4, 5] has been recently
proposed for handling such threshold queries over distributed
data. While a more detailed presentation is deferred until
Section 2, we note that GM can be applied to the impor-
tant case of scoring functions f() evaluated at the average of
dynamic data vectors v1(t), . . . , vn(t), maintained at n dis-
tributed nodes. Here, vi(t) is an m-dimensional data vec-
tor, often denoted as local vector, at the i-th node Ni at
time t (often t will be suppressed). In a nutshell, each node
monitors a convex subset, often referred to as the node’s
safe-zone, of the domain of these data vectors, as opposed
to their range. What is guaranteed in GM is that the global
function f() will not cross its specified threshold as long as
all data vectors lie within their corresponding safe-zones.
Thus, each node remains silent as long as its data vector
lies within its safe zone. Otherwise, in case of a safe-zone
breach, communication needs to take place in order to check
if the function has truly crossed the given threshold.

The geometric technique can support any scoring function
f(), evaluated at the average of the dynamic data vectors.
Thus, f() is not assumed to obey some simple property (e.g.,
linearity or monotonicity). To add to the generality of the
technique [3, 6], the vi vector can contain not only the raw
data, but any function (i.e., norm, logarithm, power, vari-
ance, etc) computed over the data of Ni. Thus, GM allows
the monitoring of functions that are far more complex and
general than simple aggregates.

A crucial component for reducing the communication re-
quired by the geometric method is the design of the safe-zone
in each node. Nodes remain silent as long as their local vec-
tors remain within their safe-zone. Thus, good safe-zones
increase the probability that nodes will remain silent, while
also guaranteeing correctness: a global threshold violation
cannot occur unless at least one node’s local vector lies out-
side the corresponding node’s safe-zone.

However, prior work on geometric monitoring has failed to
take into account the nature of heterogeneous data streams,
in which the data distribution of the local vectors at differ-
ent nodes may vary significantly. This has led to a uniform
treatment of all nodes, independently of their characteris-
tics, and the assignment of identical safe-zones (i.e., of the
same shape and size) to all nodes.

17

As we demonstrate in this paper, designing safe-zones that
take into account the data distribution of nodes can lead
to efficiently monitoring threshold queries at a fraction (re-
quiring an order of magnitude fewer messages) of what prior
techniques achieve. However, designing different safe-zones
for the nodes is by no means an easy task. In fact, the prob-
lem is NP-hard (proof omitted due to lack of space). We
thus propose a more practical solution that hierarchically
clusters nodes, based on the similarity of their data distri-
butions, and then seeks to solve many small (and easier)
optimization problems.

The contributions of this work are:
• We formulate a far more general safe-zone assignment

problem than those which were treated so far. Instead of
constructing one safe-zone which is common to all nodes,
we seek to fit each node with a safe-zone that suits its
data distribution.

• We present a practical solution, which uses hierarchical
clustering of the nodes to construct the safe-zones, while
applying various geometric and computational tools.

• The resulting safe-zones were tested on real data, where
we demonstrate that: (i) the hierarchical clustering ap-
proach dramatically reduces the running time of the safe-
zone assignment process, (ii) our techniques may result
in one order of magnitude (or even larger) improvements
in communication over previous geometric monitoring
methods, even for a small number of nodes.

Outline. We survey prior work on the geometric approach
in Section 2. In Section 3 we formulate our optimization
problem, which involves the design of safe-zones at the nodes.
Section 4 presents our algorithmic framework. Experiments
are resented in Section 5. Lastly, conclusions are offered.

Hereafter we denote our proposed method for geometric
monitoring of heterogeneous streams as HGM, in contrast
to prior work on geometric monitoring that is denoted GM.

2. RELATED WORK
Space limitations allow us to only survey previous work

on geometric monitoring (GM). We now describe some basic
ideas and concepts of the GM technique, which was intro-
duced and applied to monitor distributed data streams in [2,
7].

As described in Section 1, each node Ni maintains a local
vector vi, while the monitoring function f() is evaluated
at the average v of the vi vectors. Before the monitoring
process, each node Ni is assigned a subset of the data space,
denoted as Si – its safe-zone – such that, as long as the local
vectors are inside their respective safe-zones, it is guaranteed
that the global function’s value did not cross the threshold;
thus the node remains silent as long as its local vector vi is
inside Si. If vi /∈ Si (local violation), a violation recovery
(“balancing”) algorithm [2] can be applied.

For details and scope of GM see [5] and the survey in [8].
Recently, GM was successfully applied to detecting outliers
in sensor networks [3], extended to prediction-based moni-
toring [4], and applied to other monitoring problems [9, 10,
11].

Basic definitions relating to GM. A basic construct is
the admissible region, defined by A , {v|f(v) ≤ T}. Since
the value we wish to monitor is f

(
v1+...+vn

n

)
, any viable

assignment of safe-zones must satisfy

n∧

i=1

(vi ∈ Si) → v = (v1 + ... + vn)/n ∈ A. This guarantees

that as long as all nodes are silent, the average of the vi

vectors remains in A and, therefore, the function has not
crossed the threshold. The question is, of course, how to
determine the safe-zone Si of each node Ni; in a sense to be
made precise in Section 3, it is desirable for the safe-zones
to be as large as possible.

In [5] it was proved that all existing variants of GM share
the following property: each of them defines some convex
subset C of A (different methods induce different C’s), such
that each safe-zone Si is a translation of C – that is, there
exist vectors ui (1 ≤ i ≤ n) such that Si = {ui + c|c ∈ C}

and

n∑

i=1

ui = 0. This observation unifies the distinct variants

of GM, and also allows to easily see why
n∧

i=1

(vi ∈ Si) implies

that v ∈ C ⊆ A – it follows immediately from the fact that
convex subsets are closed under taking averages and from
the fact that the ui vectors sum to zero.

Here we assume that C is given; it can be provided by
any of the abovementioned methods (obviously, if A itself
is convex, we just choose C = A). We propose to extend
previous work in a more general direction. Our goal here is
to handle a basic problem which haunts all the existing GM
variants: the shapes of the safe-zones at different nodes are
identical. Thus, if the data is heterogeneous across the dis-
tinct streams (an example is depicted in Figure 1), meaning
that the data at different nodes obeys different distributions,
existing GM algorithms will perform poorly, causing many
local violations that do not correspond to global threshold
crossing (“false alarms”).

C

1
N 2

N

1
S

2
S

Figure 1: Why GM may fail for heterogeneous
streams. Here C is equal to a square, and the data
distribution at the two nodes is schematically rep-
resented by samples. In GM, the safe-zones at both
nodes are restricted to be a translation of C, and
thus cannot cover the data; HGM will allow much
better safe-zones (see Section 3, and Figure 2).

In this paper, we present a more general approach that al-
lows to assign differently shaped safe-zones to different nodes.
Our approach requires tackling a difficult optimization prob-
lem, for which practical solutions need to be devised.

3. SAFE-ZONE DESIGN AS AN OPTIMIZA-
TION PROBLEM

We now seek to formulate an optimization problem, whose
solution defines the safe-zones at all nodes. The safe-zones
should satisfy the following properties:

2

Safe-Zones for Monitoring Distributed Streams

8

Correctness: If Si denotes the safe-zone at node Ni, we
must have:
n∧

i=1

(vi ∈ Si) → (v1 + ... + vn)/n ∈ C. This ensures that

every threshold crossing by f(v) will result in a safe-zone
breach in at least one node.
Expansiveness: Every safe-zone breach (local violation)
triggers communication, so the safe-zones should be as “large”
as possible. We measure the “size” of a safe-zone Si by its
probability volume, defined as

∫
Si

pi(v)dv where pi is the pdf

of the data at node Ni. Probabilistic models have proved
useful in predicting missing and future stream values in var-
ious monitoring and processing tasks [12, 13, 14], including
previous geometric methods [5], and their incorporation in
our algorithms proved useful in monitoring real data (Sec-
tion 5). To handle these two requirements, we formulate a
constrained optimization problem as follows:

Given: (1) probability distribution functions p1, . . . , pn at n nodes
(2) A convex subset C of the admissible region A

Maximize
∫
S1

p1dv1 · ... ·
∫
Sn

pndvn (expansiveness)

Subject to S1⊕···⊕Sn
n

⊆ C (correctness)

where S1⊕···⊕Sn
n

=
{

v1+···+vn
n

|v1 ∈ S1, . . . , vn ∈ Sn

}
, or the

Minkowski sum [15] of S1, . . . , Sn, in which every element
is divided by n (the Minkowski average). Introducing the
Minkowski average is necessary in order to guarantee cor-
rectness, since vi must be able to range over the entire safe-
zone Si. Note that instead of using the constraint S1⊕...⊕Sn

n
⊆

A, we use S1⊕...⊕Sn
n

⊆ C. This preserves correctness, since
C ⊆ A. The reason we chose to use C is that typically
it’s much easier to check the constraint for the Minkowski
average containment in a convex set; this is discussed in
Section 4.4.

To derive the target function
∫
S1

p1dv1 · ... ·
∫
Sn

pndvn, which

estimates the probability that the local vectors of all nodes
will remain in their safe-zones, we assumed that the data is
not correlated between nodes (hence we multiply the indi-
vidual probabilities), as it was the case in the experiments
in Section 5 (see also [13] and the discussion therein). If
the data is correlated, the algorithm is essentially the same,
with the expression for the probability that data at some
node breaches its safe-zone modified accordingly.

Note that correctness and expansiveness have to reach a
“compromise”: figuratively speaking, the correctness con-
straint restricts the size of the safe-zones, while the proba-
bility volume increases as the safe-zones become larger. This
trade-off is central in the solution of the optimization prob-
lem.

The advantage of the resulting safe-zones is demonstrated
by a schematic example (Figure 2), in which C and the
stream pdfs are identical to those in Figure 1. In HGM, how-
ever, the individual safe-zones can be shaped very differently
from C, allowing a much better coverage of the pdfs, while
adhering to the correctness constraint. Intuitively speaking,
nodes can trade “geometric slack” between them; here S1

trades “vertical slack” for “horizontal slack”.

4. CONSTRUCTING THE SAFE-ZONES

1
N

2
N1

S

2
S

2

1
S 2

S

C

Figure 2: Schematic example of HGM safe-zone as-
signment for two nodes, which also demonstrates the
advantage over previous work. The convex set C
is a square, and the pdf at the left (right) node is
uniform over a rectangle elongated along the hor-
izontal (vertical) direction. HGM can handle this
case by assigning the two rectangles S1, S2 as safe-
zones, which satisfies the correctness requirement
(since their Minkowski average is equal to C). GM
(Figure 1) will perform poorly in this case.

We now briefly describe the overall operation of the dis-
tributed nodes. The computation of the safe-zones is ini-
tially performed by a coordinator node, using a process
described in this section. This process is performed infre-
quently, since there is no need to change the safe-zones of
a node unless a global threshold violation occurs. As de-
scribed in Section 3, the input to the algorithm is: (1) The
probability distribution functions p1, . . . , pn at the n nodes.
These pdfs can be of any kind (e.g., Gaussian [7], random
walk [16], uniform, etc). (2) A convex subset C of the ad-
missible region A.

Given this input, the coordinator applies the algorithm
described in Sections 4.1 to 4.5 to compute S1...Sn which
solve the optimization problem defined in Section 3. Then,
node Nk is assigned Sk.

4.1 Solving the Optimization Problem
In order to efficiently solve our optimization problem, we

need to answer several questions:
• What kinds of shapes to consider for candidate safe-

zones? This is discussed in Section 4.2.
• The target function is defined as the product of integrals

of the respective pdfs on the candidate safe-zones. Given
candidate safe-zones, how do we efficiently compute the
target function? This is discussed in Section 4.3.

• Given candidate safe-zones, how do we efficiently test if
their Minkowski average lies in C? This is discussed in
Section 4.4.

• As we will point out, the number of variables to optimize
over is very large, with this number increasing with the
number of nodes. It is well-known that the computational
cost of general optimization routines increases at a super-
linear rate with the number of variables. To remedy this
issue, we propose in Section 4.5 a hierarchical clustering
approach, which uses a divide-and-conquer algorithm to
reduce the problem to that of recursively computing safe-
zones for small numbers of nodes.

3

Safe-Zones for Monitoring Distributed Streams

9

4.2 Shape of Safe-Zones to Consider
The first step in solving an optimization problem is de-

termining the parameters to optimize over. Here, the space
of parameters is huge – all subsets of the Euclidean space
are candidates for safe-zones. For one-dimensional (scalar)
data, intervals provide a reasonable choice for safe-zones,
but for higher dimensions no clear candidate exists.

To achieve a practical solution, we choose the safe-zones
from a parametric family of shapes, denoted by S. This fam-
ily of shapes should satisfy the following requirements:
• It should be broad enough so that its members can rea-

sonably approximate every subset which is a viable can-
didate for a safe-zone.

• The members of S should have a relatively simple shape.
In practice, this means that they are polytopes with a
restricted number of vertices, or can be defined by a small
number of implicit equations (e.g., polynomials [17]).

• It should not be too difficult to compute the integral of
the various pdfs over members of S (Section 4.3).

• It should not be too difficult to compute, or bound, the
Minkowski average of members of S (Section 4.4).

The last two conditions allow efficient optimization. If com-
puting the integrals of the pdf or the Minkowski average are
time consuming, the optimization process may be lengthy.
We thus considered and applied in our algorithms various
polytopes (such as triangles, boxes, or more general poly-
tope) as safe-zones; this yielded good results in [5].

The choices of S applied here have provided good results
in terms of safe-zone simplicity and effectiveness. However,
the challenge of choosing the best shape for arbitrary func-
tions and data distributions is quite formidable, and we plan
to continue studying it in the future.

4.3 Computing the Target Function
The target function is defined as the product of integrals

of the respective pdfs on the candidate safe-zones. Typi-
cally, data is provided as discrete samples. The integral can
be computed by first approximating the discrete samples by
a continuous pdf, and then integrating it over the safe-zone.
We used this approach, fitting a GMM (Gaussian Mixture
Model) to the discrete data and integrating it over the safe-
zones, which were defined as polytopes. To accelerate the
computation of the integral, we used Green’s Theorem to re-
duce a double integral to a one-dimensional integral over the
polygon’s boundary, for the two-dimensional data sets in the
experiments. For higher dimensions, the integral can also be
reduced to integrals of lower dimensions, or computed using
Monte-Carlo methods.

4.4 Checking the Constraints
A simple method to test the Minkowski sum constraint

relies on the following result [18]:

Lemma 1. If P and Q are convex polytopes with vertices
{Pi}, {Qj}, then P ⊕Q is equal to the convex hull of the set
{Pi + Qj}.
Now, assume we wish to test whether the Minkowski average
of P and Q is contained in C. Since C is convex, it contains
the convex hull of every of its subsets; hence it suffices to
test whether the points (Pi + Qj)/2 are in C, for all i, j.
If not all points are inside C, then the constraint violation
can be measured by the maximal distance of a point (Pi +
Qj)/2 from C’s boundary. The method easily generalizes to

more polytopes: for three polytopes it is required to test the
average of all triplets of vertices, etc.

4.5 Hierarchical Clustering
While the algorithms presented in Sections 4.3-4.4 reduce

the running time for computing the safe-zones, our opti-
mization problem still poses a formidable difficulty. For ex-
ample, fitting octagonal safe-zones [5] to 100 nodes with
two-dimensional data requires to optimize over 1,600 vari-
ables (800 vertices in total, each having two coordinates),
which is quite high. To alleviate this problem, we first orga-
nize the nodes in a hierarchical structure, which allows us to
then solve the problem recursively (top-down) by reducing
it to sub-problems, each containing a much smaller number
of nodes.

We first perform a bottom-up hierarchical clustering of
the nodes. To achieve this, a distance measure between
nodes needs to be defined. Since a node is represented by
its data vectors, a distance measure should be defined be-
tween subsets of the Euclidean space. We apply the method
in [19], which defines the distance between sets by the L2

distance between their moment vectors (vectors whose co-
ordinates are low-order moments of the set). The moments
have to be computed only once, in the initialization stage.
The leaves of the cluster tree are individual nodes, and the
inner vertices can be thought of as “super nodes”, each con-
taining the union (Minkowski average) of the data of nodes
in the respective sub-tree. Since the moments of a union of
sets are simply the sum of the individual sets’ moments, the
computation of the moment for the inner nodes is very fast.

After the hierarchical clustering is completed, the safe-
zones are assigned top-down: first, the children of the root
are assigned safe-zones under the constraint that their
Minkowski average is contained in C. In the next level,
the grandchildren of the root are assigned safe-zones under
the constraint that their Minkowski average is contained in
their parent nodes’ safe-zones, etc. The leaves are either
individual nodes, or clusters which are uniform enough and
can all be assigned safe-zones with identical shapes.

5. EXPERIMENTS
HGM was implemented and compared with the GM method,

as described in [5], which is the most recent variant of pre-
vious work on geometric monitoring that we know of. We
are not aware of other algorithms which can be applied to
monitor the functions treated here (the ratio queries in [20]
deal with accumulative ratios and not instantaneous ones as
in our experiments).

5.1 Data, Setup and Monitored Functions

5.1.1 Data and Monitored Functions
Our data consists of air pollutant measurements taken

from “AirBase – The European Air Quality Database” [21],
measured in micrograms per cubic meter. Nodes correspond
to sensors at different geographical locations. The data at
different nodes greatly varies in size and shape and is ir-
regular as a function of time. The monitored functions
were chosen due to their practical importance, and also as
they are non-linear and non-monotonic and, thus, cannot
be handled by most existing methods. In Section 5.2 re-
sults are presented for monitoring the ratio of NO to NO2,

4

Safe-Zones for Monitoring Distributed Streams

10

which is known to be an important indicator in air qual-
ity analysis [22]. An example of monitoring a quadratic
function in three variables is also presented (Section 5.3);
quadratic functions are important in numerous applications
(e.g., the variance is a quadratic function in the variables,
and a normal distribution is the exponent of a quadratic
function, hence thresholding it is equivalent to thresholding
the quadratic).

5.1.2 Choosing the Family of Safe-Zones
To solve the optimization problem, it is necessary to define

a parametric family of shapes S from which the safe-zones
will be chosen. Section 4.2 discusses the properties this fam-
ily should satisfy. In [5], the suitability of some families of
polytopes is studied for the simpler, but related, problem of
finding a safe-zone common to all nodes. The motivations
for choosing S here were:
• Ratio queries (Section 5.2) – the triangular safe-zones

(Figure 3) have the same structure, but not size or loca-
tion, as C, and are very simple to define and apply.

Figure 3: Triangular safe-zones used for ratio mon-
itoring.

• Quadratic function (Section 5.3) – here we allowed gen-
eral polytopes, and tested the results for increasing num-
bers of vertices. The model selected was with 12 vertices,
in which the target function to optimize was “saturated”
(i.e. adding more vertices increased the value by less than
0.1%).

5.1.3 Optimization Parameters and Tools
The triangular safe-zones (Section 5.2) have two degrees of

freedom each (Mi and βi, see Figure 3), hence for n nodes
we have 2n parameters to optimize over. The safe-zones
in Section 5.3 require 36 parameters each. In all cases we
used the Matlab routine fmincon to solve the optimization
problem [23]. To compute the integral of the pdf on the
safe-zones, data was approximated by a Gaussian Mixture
Model (GMM), using a Matlab routine [24].

5.2 Ratio Queries
This set of experiments concerned monitoring the ratio

between two pollutants, NO and NO2, measured in distinct
sensors. Each of the n nodes holds a vector (xi, yi) (the two

concentrations), and the monitored function is
∑

yi∑
xi

(in [20]

ratio is monitored but over aggregates over time, while here
we monitor the instantaneous ratio for the current readings).
An alert must be sent whenever this function is above a
threshold T (taken as 4 in the experiments), and/or when
the NO2 concentration is above 250. The admissible region
A is a triangle, therefore convex, so C = A. The safe-zones
tested were triangles of the form depicted in Figure 3, a
choice motivated by the shape of C. The half-planes method
(Section 4.4) was used to test the constraints. An example

with four nodes, which demonstrates the advantage of al-
lowing different safe-zones at the distinct nodes, is depicted
in Figure 4.

Figure 4: Example of safe-zones with four nodes.
The convex set C is the triangle outlined in black,
safe-zones are outlined in green. Nodes with more
compact distributions are assigned smaller safe-
zones, and nodes with high values of the monitored
function (NO/NO2 ratio) are assigned safe-zones
which are translated to the left in order to cover
more data. This is especially evident in the top right
node, in which the safe-zone is shifted to the left so
it can cover almost all the data points. In order
to satisfy the Minkowski sum constraint, the safe-
zone of top left node is shifted to the right, which in
that node hardly sacrifices any data points; also, the
larger safe-zones are balanced by the smaller ones.
Note that HGM allows safe-zones which are larger
than the admissible region A, as opposed to previous
work, in which the safe-zones are subsets of A.

Improvement Over Previous GM Work. We com-
pared HGM with GM in terms of the number of produced
local violations. In Figure 5, the number of safe-zone viola-
tions is compared for various numbers of nodes. HGM re-
sults in significantly fewer local violations, even for a small
number of nodes. As the number of nodes increases, the
benefits of HGM over GM increase. For a modest network
size of 10 nodes, HGM requires less than an order of mag-
nitude fewer messages than GM.

5.3 Monitoring a Quadratic Function
Another example consists of monitoring a quadratic func-

tion with more general polyhedral safe-zones in three vari-
ables (Figure 6). The data consists of measurements of three
pollutants (NO, NO2, SO2), and the safe-zones are polyhe-
dra with 12 vertices. The admissible region A is the ellipsoid
depicted in pink; since it is convex, C = A. As the extent of
the data is far larger than A, the safe-zones surround the re-
gions in which the data is denser. Here we did not compare
to previous methods.

6. CONCLUSIONS AND FUTURE WORK
An approach for minimizing communication while moni-

toring threshold queries over heterogeneous distributed streams

5

Safe-Zones for Monitoring Distributed Streams

11

Figure 5: Comparison of our HGM (green) to
GM [5] (blue) in terms of number of violations, up
to 10 nodes.

Figure 6: Monitoring a quadratic function. The set
C is the pink ellipsoid, the safe-zones are polyhe-
dra with 12 vertices each (in pale blue), and their
Minkowski average is in green.

was presented. It is formulated as an optimization problem
of a geometric and probabilistic flavor, whose solution as-
signs each node a “safe-zone” with the property that a node
may remain silent as long as its data vector is in its safe-zone.
While the problem is known to be difficult, a practical so-
lution using a hierarchical clustering algorithm is presented
and implemented for two and three dimensional data, allow-
ing to achieve substantial improvement over previous work,
while using rather simple safe-zones which also reduce the
computational effort at the nodes.

7. ACKNOWLEDGMENT
This work was partially supported by the European Com-

mission under ICT-FP7-LIFT-255951 (Local Inference in
Massively Distributed Systems).

8. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B.
Zdonik, “The design of the borealis stream processing
engine,” in CIDR, 2005.

[2] I. Sharfman, A. Schuster, and D. Keren, “A geometric
approach to monitoring threshold functions over
distributed data streams,” ACM Trans. Database
Syst., vol. 32, no. 4, 2007.

[3] S. Burdakis and A. Deligiannakis, “Detecting outliers
in sensor networks using the geometric approach,” in
ICDE, 2012.

[4] N. Giatrakos, A. Deligiannakis, M. N. Garofalakis,
I. Sharfman, and A. Schuster, “Prediction-based

geometric monitoring over distributed data streams,”
in SIGMOD, 2012.

[5] D. Keren, I. Sharfman, A. Schuster, and A. Livne,
“Shape sensitive geometric monitoring,” IEEE Trans.
Knowl. Data Eng., vol. 24, no. 8, 2012.

[6] G. Sagy, D. Keren, I. Sharfman, and A. Schuster,
“Distributed threshold querying of general functions
by a difference of monotonic representation,” PVLDB,
vol. 4, no. 2, 2010.

[7] I. Sharfman, A. Schuster, and D. Keren, “Shape
sensitive geometric monitoring,” in PODS, 2008.

[8] G. Cormode, “Algorithms for continuous distributing
monitoring: A survey,” in AlMoDEP, 2011.

[9] J. Kogan, “Feature selection over distributed data
streams through optimization,” in SDM, 2012.

[10] O. Papapetrou, M. N. Garofalakis, and
A. Deligiannakis, “Sketch-based querying of
distributed sliding-window data streams,” PVLDB,
vol. 5, no. 10, 2012.

[11] M. N. Garofalakis, D. Keren, and V. Samoladas,
“Sketch-based geometric monitoring of distributed
stream queries,” PVLDB, 2013.

[12] A. Deshpande, C. Guestrin, S. Madden, J. M.
Hellerstein, and W. Hong, “Model-driven data
acquisition in sensor networks,” in VLDB, 2004.

[13] M. Tang, F. Li, J. M. Phillips, and J. Jestes, “Efficient
threshold monitoring for distributed probabilistic
data,” in ICDE, 2012.

[14] B. Kanagal and A. Deshpande, “Online filtering,
smoothing and probabilistic modeling of streaming
data,” in ICDE, 2008.

[15] J. Serra, “Image analysis and mathematical
morphology,” in Academic Press, London, 1982.

[16] S. Shah and K. Ramamritham, “Handling non-linear
polynomial queries over dynamic data,” in ICDE,
2008.

[17] D. Keren, D. B. Cooper, and J. Subrahmonia,
“Describing complicated objects by implicit
polynomials,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 16, no. 1, 1994.

[18] E. Fogel and D. Halperin, “Exact and efficient
construction of minkowski sums of convex polyhedra
with applications,” Computer-Aided Design, vol. 39,
no. 11, 2007.

[19] M. Elad, A. Tal, and S. Ar, “Content based retrieval
of vrml objects: an iterative and interactive
approach,” in Proceedings of the sixth Eurographics
workshop on Multimedia 2001, 2002.

[20] R. Gupta, K. Ramamritham, and M. K. Mohania,
“Ratio threshold queries over distributed data
sources,” in ICDE, 2010.

[21] “The european air quality database,” in
http://tinyurl.com/ct9bh7x.

[22] M. Kurpius and A. Goldstein, “Gas-phase chemistry
dominates o3 loss to a forest, implying a source of
aerosols and hydroxyl radicals to the atmosphere,”
Geophysical Research Letters, vol. 30, no. 7, 2007.

[23] http://tinyurl.com/kxssfgl.

[24] DCPR (Data Clustering and Pattern Recognition)
Toolbox, http://tinyurl.com/nxospq2.

6

Safe-Zones for Monitoring Distributed Streams

12

Communication-Efficient Distributed Online Prediction
using Dynamic Model Synchronizations

[Extended Abstract]

Mario Boley and Michael Kamp
Fraunhofer IAIS & University Bonn

{mario.boley,michael.kamp}@iais.fraunhofer.de

Daniel Keren
Haifa University

dkeren@cs.haifa.ac.il
Assaf Schuster and Izchak Sharfman

Technion, Israel Institute of Technology
assaf@technion.ac.il & tsachis@technion.ac.il

ABSTRACT
We present the first protocol for distributed online predic-
tion that aims to minimize online prediction loss and net-
work communication at the same time. Applications in-
clude social content recommendation, algorithmic trading,
and other scenarios where a configuration of local prediction
models of high-frequency streams is used to provide a real-
time service. For stationary data, the proposed protocol re-
tains the asymptotic optimal regret of previous algorithms.
At the same time, it allows to substantially reduce network
communication, and, in contrast to previous approaches,
it remains applicable when the data is non-stationary and
shows rapid concept drift. The protocol is based on con-
trolling the divergence of the local models in a decentralized
way. Its beneficial properties are also confirmed empirically.

1. INTRODUCTION
We consider online prediction problems where data points

are observed at local nodes in a distributed environment
and there is a trade-off between maximizing prediction ac-
curacy and minimizing network communication. This situ-
ation abounds in a wide range of machine learning applica-
tions, in which communication induces a severe cost. Ex-
amples are parallel data mining [Zinkevich et al., 2009, Hsu
et al.] where communication constitutes a performance bot-
tleneck, learning with mobile sensors [Nguyen et al., 2004,
Predd et al., 2006] where communication drains battery
power, and, most centrally, prediction-based real-time ser-
vices [Dekel et al., 2012] carried out by several servers, e.g.,
for social content promotion, ad placement, or algorithmic
trading. In addition to the above, here the cost of commu-
nication can also be a loss of prediction quality itself when
training examples have to be discarded due to network la-
tency.

1.1 Setting and Related Work
Despite the communication costs it induces, decentraliza-

tion is inevitable in many modern scale applications. Hence,
recent articles [Balcan et al., 2012, Daumé III et al.] explic-
itly investigate the communication complexity of learning
with decentralized data. They consider, however, the of-
fline task of finding a good global model over the union of
all data as a final computation result. The same applies
to some work on parallel machine learning (e.g., Zinkevich
et al. [2010], McDonald et al. [2010]) where data shards are
distributed among several processors and then all computa-
tion is carried out independently in parallel except for one
final model merging step. While these approaches avoid
communication for performance reasons, they do not intend
to optimize the predictive performance during the compu-
tation. In contrast, we are interested in the online in-place
performance, i.e., for every data point performance is as-
sessed locally when and where it is received or sampled.

To this end, research focused so far on specific environ-
ments with fixed communication constraints. Correspond-
ingly, the learning strategies that are proposed and analyzed
for these settings, do not aim to minimize communication
beyond the level that is enforced by these constraints. Zinke-
vich et al. [2009] considers a shared-memory model, in which
all local nodes can update a global model in a round-robin
fashion as they process their training examples. Since this
approach is problematic if there is a notable communication
latency, strategies have been investigated [Mann et al., 2009,
Dekel et al., 2012] that communicate only periodically after
a statically fixed number of data points have been processed.
Dekel et al. [2012] shows that for smooth loss functions and
stationary environments optimal asymptotic regret bounds
can be retained by updating a global model only after mini-
batches of O(3

√
m) data points. Here, m denotes the total

number of data points observed throughout the lifetime of
the system. For large values of m, the effect of bounded
latency values is asymptotically outgrown by the increasing
mini-batch size.

While a fixed periodic communication schedule reduces
the communication by some fixed amount, further reduction
is desirable: The above mentioned costs of communication
can have a severe impact on the practical performance—even
if they are not reflected in asymptotic performance bounds.
This is further amplified because a large number of modeling

113

tasks are performed simultaneously sharing the same limited
bandwidth. Moreover, distributed learning systems that are
deployed for a long lifetime relative to their data through-
put can experience periodical or singular target drifts (e.g.,
corresponding to micro-trends in social networks). In these
settings, a static schedule is bound to either provide only lit-
tle to no communication reduction or to insufficiently react
to changing data distributions.

1.2 Contributions and Outline
In this work, we give the first distributed prediction proto-

col for linear models that, at the same time, aims to provide
a high online in-place prediction performance and explic-
itly tries to minimize communication. In terms of predictive
power, as shown Sec. 3.1, the protocol retains the asymp-
totic optimal regret of the distributed mini-batch algorithm
of Dekel et al. [2012] for stationary data. In addition, it
allows to reduce the communication among the local nodes
substantially. This is achieved by a dynamic data depen-
dent communication schedule, which, in contrast to previ-
ous algorithms, remains applicable when the data is non-
stationary and shows rapid concept drifts. The main idea is
to synchronize the local models to their mean model in order
to reduce their variance, but to do so only in system states
that show a high divergence among the models. This diver-
gence, measured by the average model distance to the mean
model, indicates the synchronizations that are most impor-
tant in terms of their correcting effects on the predictions. In
stable phases this allows communicative quiescence, while,
in hard phases where variance reduction is crucial, the pro-
tocol will trigger a lot of model synchronizations. In order
to efficiently implement this strategy one has to monitor the
non-linear divergence function without communication over-
head. We propose a solution to this problem that adapts re-
cent ideas from distributed systems research based on local
safe-zones in the function domain (Sec. 3.2). Experiments
confirm the beneficial properties of the protocol (Sec. 4).

2. PRELIMINARIES
In this section we formally introduce the distributed on-

line prediction task. As simple local learning tool we recall
stochastic gradient descent for linear models. Finally, we
review the state-of-the-art communication protocol as a de-
parture point for developing a more communication-efficient
solution in subsequent sections.

2.1 Distributed Online Prediction
Throughout this paper we consider a distributed online

prediction system of k local learners that maintain individ-
ual linear models wt,1, . . . , wt,k ∈ Rn of some global envi-
ronment through discrete time t ∈ [T] where T ∈ N denotes
the total time horizon with respect to which we analyze the
system’s performance. This environment is represented by
a target distribution Dt : X × Y → [0, 1] that describes
the relation between an input space X ⊆ Rn and an output
space Y ⊆ R. The nature of Y varies with the learning task
at hand; Y = {−1, 1} is used for binary classification, Y = R
for regression. While we allow Dt to vary with time, we as-
sume that it remains constant most of the time and only
experiences a small number of rapid drifts. That is, there
are drift points 0 = d0 < d1 < · · · < dp = T such that for
all i ∈ [p] and t, t′ ∈ [T] with di−1 ≤ t ≤ t′ < di it holds that
Dt = Dt′ . Hence, there are identically distributed episodes

Ei = {di, . . . , di+1 − 1} between any two drift points. We
assume that all learners sample from D independently in
parallel using a constant and uniform sampling frequency,
and we denote by (xt,l, yt,l) ∼ Dt the training example
received at node l at time t. Generally, we assume that all
training examples are bounded by a ball with radius R.

Conceptually, every learner first observes the input part
xt,l and performs a real time service based on the linear
prediction score pt,l = 〈wt,l, xt,l〉, i.e., the inner prod-
uct of xt,l and the learner’s current model vector. Only
then it receives as feedback the true label yt,l, which it can
use to locally update its model to wt+1,l = ϕ(wt,l, xt,l, yt,l)
by some update rule ϕ : Rn × X × Y → Rn. Finally,
the learners are connected by a communication infrastruc-
ture that allows them to jointly perform a synchroniza-
tion operation σ : Rk×n → Rk×n that resets the whole
model configuration to a new state and that may take into
account the information of all local learners simultaneously.
The performance of such a distributed online prediction sys-
tem is measured by two quantities: 1) the predictive perfor-

mance
∑T

t=1

∑k
l=1 f(pt,l, yt,l) measured by a loss function

f : R × Y → R+ that assigns positive penalties to predic-
tion scores; and 2) the amount of communication within
the system that is measured by the number of bits sent in-
between learners to compute the sync operation. Next, spec-
ify possible choices for the update rule, the loss function, and
the synchronization operator.

2.2 Losses and Gradient Descent
Generally, the communication protocol developed in this

paper is applicable to a wide range of online update rules for
linear models from, e.g., the passive aggressive rule [Cram-
mer and Singer, 2001] to regularized dual averaging [Xiao,
2010]. However, the regret bound given in Theorem 2 as-
sumes that the updates are contractions. That is, there
is some constant c < 1 such that for all w,w′ ∈ Rn, and
x, y ∈ X × Y it holds that ‖ϕ(w, x, y) − ϕ(w′, x, y)‖ ≤
c‖w−w′‖. For the sake of simplicity, in this paper, we focus
on rules based on l2-regularized stochastic gradient descent,
for which this contraction property is readily available. We
note that by considering expected contractions the result can
be extended to rules that reduce on average the distance to
a (regularized) loss minimizer.

Before we can define gradient descent updates, we have to
introduce the underlying loss functions measuring predictive
performance. Again for convenience, we restrict ourselves to
functions that are differentiable, convex, and globally Lips-
chitz continuous in the prediction score, i.e., there is some
constant L such that for all p, p′, y ∈ R2n × Y it holds that
|f(p, y)− f(p′, y)| ≤ L|p− p′|. While these assumptions can
be relaxed by spending some technical effort, they already
include loss functions for all standard predictions tasks such
as the logistic loss flg(p, y) = ln(1 + exp(−yp)) for binary
classification (case Y = {−1, 1}) or the Huber loss for re-
gression (in the case Y = R)

fhu(p, y) =

{
1
2
(p− y)2 , for |p− y| ≤ 1

|p− y| − 1
2

.

See, e.g., Zhang [2004] for further possible choices. In both
of these cases the (best) Lipschitz constant is L = 1.

2

Communication-Efficient Distributed Online Prediction using Dynamic Model Synchronizations

14

Algorithm 1 Static Synchronization Protocol

Initialization:

local models w1,1, . . . , w1,k ← (0, . . . , 0)

Round t at node l:

observe xt,l and provide service based on pt,l
observe yt,l and update wt+1,l ← ϕ(wt,l, xt, yt)
if t mod b = 0 then

send wt,l to coordinator

At coordinator every b rounds:

receive local models {wt,l : l ∈ [k]}
send wt,1, . . . , wt,k ← 1

k

∑
l∈[k] wl

With this we can define stochastic gradient descent
(SGD) rules with l2-regularization, i.e., rules of the form

ϕ(w, x, y) = w − ηt∇w

(
λ

2
‖w‖2 + f(〈w, x〉, y)

)

where λ ∈ R+ is a strictly positive regularization pa-
rameter and ηt ∈ R+ are strictly positive learning rates
for t ∈ N. For stationary target distributions, one often
chooses a decreasing learning rate such as ηt = 1/

√
t in or-

der to guarantee convergence of the learning process. For
non-stationary targets this is infeasible, because for large t
it would prevent sufficient model adaption to target changes.
However, one can show [Zinkevich et al., 2010] that stochas-
tic gradient descent is a contraction for sufficiently small
constant learning rates. Namely, for η ≤ (RL + λ)−1 the
updates do contract with constant c = 1− ηλ. This can be
used to show that the stochastic learning process converges
to a distribution centered close to a regularized loss mini-
mizer even when the process is distributed among k nodes
(see the analysis of Zinkevich et al. [2010]). This refers to
the stochastic learning process defined by the mean of inde-
pendent local models that result from SGD with iid samples
from (episodes of) the target distribution. In this paper, the
contraction property is used for the regret bound of Thm. 2.

2.3 Communication and Mini-batches
For every episode Ei, the predictive performance of a dis-

tributed prediction system lies between two baselines that
correspond to the two extremes in terms of communication
behavior—complete centralization and no communication.
Let Ti = |Ei| denote the length of episode Ei and by R =∑

t∈Ei, l∈[k] f(pt,l, yt,l)−f∗ the regret with respect to the op-

timal expected loss f∗ = argminw∈Rn E(x,y)∼Di
[f(〈w, x〉, y)].

When all data points are centrally processed by one online
learner, for long enough episodes one can achieve an ex-
pected regret of O(

√
kTi) which is optimal (see Cesa-Bianchi

and Lugosi [2006] and Abernethy et al. [2009]). In contrast,
when the k nodes perform their learning processes in paral-
lel without any communication this results in an expected
regret of O(k

√
Ti), which is worse than the centralized per-

formance by a factor of
√
k. Therefore, we are interested

in algorithms that lie between these two extremes and that
show a beneficial trade-off between predictive performance
and the amount communication.

Mann et al. [2009] and Dekel et al. [2012] give algorithms
where information between nodes is only exchanged every
b rounds where b ∈ N is referred to as batch size. These
algorithms can be written as static model synchronization

protocol similar to Alg. 1. Here, after a batch of kb examples
has been processed globally in the system, all local models
are re-set to the mean model of the configuration w de-
fined as w = 1/k

∑k
l=1 wl. Formally, the synchronization

operator that is implicitly employed in these algorithms is
given by σ(wt) = (wt, . . . ,wt). We refer to this operation
as full mean synchronization. The choice of a (uniform)
model mixture is often used for combining linear models that
have been learned in parallel on independent training data
(see Mann et al. [2009], McDonald et al. [2010], Zinkevich
et al. [2010]). The motivation is that the mean of k models

provides a variance reduction of
√
k over an individual ran-

dom model (recall that all learners sample from the same
distribution, hence their models are identically distributed).
Dekel et al. [2012] shows that when the gradient variance is
bounded then the optimal regret can be asymptotically re-
tained by setting b = O(3

√
Ti) even if a constant number of

examples have to be discarded during each synchronization
due to network latency. Note that this reference considers
a slightly modified algorithm based on delayed gradient de-
scent, which only applies (accumulated) updates at synchro-
nization points. However, the expected loss of eager updates
(as used in Alg. 1) is bounded by the expected loss of de-
layed updates (as used in Dekel et al. [2012]) as long as the
updates reduce the distance to a loss minimizer on average
(which is the case for sufficiently small learning rates and
regularization parameters; see again Zhang [2004, Eq. 5]).

Closing this section, let us analyze the communication
cost of this protocol.Using a designated coordinator note as
in Alg. 1, σ can computed simply by all nodes sending their
current model to the coordinator, who in turn computes the
mean model and sends it back to all the nodes. For assessing
the communication cost of this operation, we only count the
number of model vectors sent between the learners. This is
feasible because, independently of the exact communication
infrastructure, the number of model messages asymptoti-
cally determines the true bit-based cost. Hence, asymptot-
ically the communication cost of static model synchro-
nization over k nodes with batch size b is O(kT/b). Dekel
et al. [2012] assumes that the data distribution is station-

ary over all rounds and b can therefore be set to O(3
√
T).

This results in an automatic communication reduction that
increases with a longer system lifetime. However, this strat-
egy is not applicable when we want to stay adaptive towards
changing data distributions. In this case, we have to set the
batch size with respect to the expected episode length and
not with respect to the overall system lifetime. This num-
ber can be much smaller than T resulting in batch sizes that
are too small to meet our communication reduction goal. In
the following section, we therefore design a synchronization
protocol that can substantially reduce this cost based on a
data-dependent dynamic schedule.

3. DYNAMIC SYNCHRONIZATION
The synchronization protocol of Alg. 1 is static because it

synchronizes after a fixed number of rounds independently
of the sampled data and its effect on the local models. Con-
sequently, it incurs the communication cost of a full synchro-
nization round even if the models are (almost) identical and
thus only receive little to none correction. In this section,
we develop a dynamic protocol for synchronizations based
on quantifying their effect. After showing that this approach

3

Communication-Efficient Distributed Online Prediction using Dynamic Model Synchronizations

15

is sound from a learning perspective, we discuss how it can
be implemented in a communication-efficient way.

3.1 Partial Synchronizations
A simple measure to quantify the correcting effect of syn-

chronizations is given by the average Euclidean distance be-
tween the current local models and the result model. We
refer to this quantity as the divergence of a model con-
figuration, denoted by δ(·), i.e., δ(w) = 1

k

∑k
l=1 ‖w −wl‖2.

In the following definition we provide a relaxation of the
full mean synchronization operation that introduces some
leeway in terms of this divergence.

Definition 1. A partial synchronization operator with
a positive divergence threshold ∆ ∈ R is an operator σ∆ :
Rk×n → Rk×n that 1) leaves the mean model invariant and
2) after its application the model divergence is bounded by
∆. That is, for all model configurations w ∈ Rk×n it holds
that w = σ∆w and δ(σ∆w) ≤ ∆.

An operator adhering to this definition does not generally
put all nodes into sync (albeit the fact that we still refer
to it as synchronization operator). In particular it allows
to leave all models untouched as long as the divergence re-
mains below the threshold ∆. The following theorem notes
that partial synchronization has a controlled regret over full
synchronization if the batch size is sufficiently large and the
divergence threshold is set proportional to the Lipschitz con-
stant L of the losses and the data radius R.

Theorem 2. Suppose the update rule ϕ is a contraction
with constant c. Then, for batch sizes b ≥ log−1

2 c−1 and
divergence thresholds ∆ ≤ ε/(2RL), the average regret of
using a partial synchronization operator σ∆ instead of σ is
bounded by ε, i.e., for all rounds t ∈ N it holds that the
average regret 1/k

∑k
l=1 |f(p∆

t,l, yt,l)−f(pt,l, yt,l)| is bounded

by ε where pt,l and p∆
t,l denote the prediction scores at learner

l and time t resulting from σ and σ∆, respectively.

We omit the proof here referring to the full version of this
paper. While the contraction assumption is readily avail-
able for regularized SGD, as mentioned in Sec. 2, it can be
relaxed: by requiring the updates to only contract on expec-
tation it is possible to extend the theorem to unregularized
SGD updates as well as to other rules. Moreover, we remark
that Thm. 2 implies that partial synchronizations retain the
optimality of the static mini-batch algorithm of Dekel et al.
[2012] for the case of stationary targets: By using a time-
dependent divergence threshold based on εt ∈ O(1/

√
t) the

bound of O(
√
T) follows.

3.2 Communication-efficient Protocol
After seeing that partial synchronization operators are

sound from the learning perspective, we now turn to how
they can be implemented in a communication-efficient way.
Every distributed learning protocol that implements a par-
tial synchronization operator has to implicitly control the
divergence of the model configuration. However, we cannot
simply compute the divergence by centralizing all local mod-
els, because this would incur just as much communication
as static full synchronization. Our strategy to overcome this
problem is to first decompose the global condition δ(w) ≤ ∆
into a set of local conditions that can be monitored at their
respective nodes without communication (see, e.g., Sharf-
man et al. [2007]). Secondly, we define a resolution protocol

Algorithm 2 Dynamic Synchronization Protocol

Initialization:

local models w1,1, . . . , w1,k ← (0, . . . , 0)
reference point r ← (0, . . . , 0)
violation counter v ← 0

Round t at node l:

observe xt,l and provide service based on pt,l
observe yt,l and update wt+1,l ← ϕ(wt,l, xt, yt)
if t mod b = 0 and ‖r − wt,l‖ > ∆/2 then

send wt,l to coordinator

At coordinator on violation:

let B be set of nodes with violation
v ← v + |B|
if v = k then B ← [k], v ← 0
while B 6= [k] and ‖r − 1

B

∑
l∈B wl‖ > ∆ do

augment B by augmentation strategy
receive models from nodes added to B

send to nodes in B model w = 1
B

∑
l∈B wl

if B = [k] also set new reference model r ← w

that transfers the system back into a valid state whenever
one or more of these local conditions are violated. This in-
cludes carrying out a sufficient amount of synchronization
to reduce the divergence to be less or equal than ∆.

For deriving local conditions we consider the domain of
the divergence function restricted to an individual model
vector. Here, we identify a safe-zone S (see Keren et al.
[2012]) such that the global divergence can not cross the
∆-threshold as long as all local models remain in S.1 The
following statement, which we give again without proof, pro-
vides a valid spherical safe zone Sr that is centered around
some global reference point r.

Theorem 3. Let r ∈ Rd be some reference point. If for
all nodes l ∈ {1, . . . , k} it holds that ‖r − wl‖ ≤ ∆/2 then
we have for the model divergence that δ(w) ≤ ∆.

We now incorporate these local conditions into a distributed
prediction protocol. As a first step, we have to guarantee
that at all times all nodes use the same reference point. For
a prediction t, let us denote by t′ the last time prior to
t when a full model synchronization was performed (resp.
t′ = 0 in case no full synchronization has happened un-
til round t). The mean model wt′ is known to all local
learners. We use this model as the reference model and set
r = wt′ . A local learners l can then monitor their local
condition ‖r − wl‖ ≤ ∆/2 in a decentralized manner.

It remains to design a resolution protocol that specifies
how to react when one or several of the local conditions are
violated. A direct solution is to trigger a full synchroniza-
tion in that case. This approach, however, does not scale
well with a high number of nodes in cases where model up-
dates have a non-zero probability even in the asymptotic
regime of the learning process. When, e.g., PAC models for
the current target distribution are present at all local nodes,
the probability of one local violation, albeit very low for an
individual node, increases exponentially with the number of
nodes. An alternative approach that can keep the amount

1Note that a direct distribution of the threshold across the
local nodes (as in, e.g., Keralapura et al. [2006]) is in-
feasible, because the divergence function is non-linear.

4

Communication-Efficient Distributed Online Prediction using Dynamic Model Synchronizations

16

0 500000 1000000 1500000
Number of messages

80000

100000

120000

140000

160000

180000

200000

220000

240000

E
rr

o
r

8
1216

2432

64

128

256

512

0.050.10.30.50.93.0

5.0

No Synchronization

static (batch sizes)
dynamic (div. thres.)

0 50000 100000 150000 200000 250000 300000 350000
Number of messages

86000

88000

90000

92000

94000

96000

98000

100000

E
rr

o
r

8

16

24

32

64

0.0250.05

0.075
0.1

0.15

0.2

No Synchronization

static (batch sizes)
dynamic (div. thres.)

Figure 1: Performance of static and dynamic model synchronization that track (left) a rapidly drifting
disjunction over 100-dimensional data with 512 nodes; and (right) a neural network with one hidden layer and
150 output variables. with 1024 nodes.

of communication low relative to the number of nodes is
to perform a local balancing procedure: on a violation, the
respective node sends his model to a designated note we
refer to as coordinator. The coordinator then tries to bal-
ance this violation by incrementally querying other nodes for
their models. If the mean of all received models lies within
the safe zone, it is transferred back as new model to all par-
ticipating nodes, and the resolution is finished. If all nodes
have been queried, the result is equal to a full synchroniza-
tion and the reference point can be updated. In both cases,
the divergence of the model configuration is bounded by ∆
at the end of the balancing process, because all local condi-
tions hold. Also this protocol leaves the global mean model
unchanged. Hence, it is complying to Def. 1.

While balancing can achieve a high communication reduc-
tion over direct resolution particularly for a large number
of nodes, it potentially degenerates in certain special situ-
ations: We can end up in a stable regime in which local
violations are likely to be balanced by a subset of the nodes;
however a full synchronization would strongly reduce the
expected number of violations in future rounds. In other
words: balancing can delay crucial reference point updates
indefinitely. A simple hedging mechanism for online opti-
mization can be employed to avoid this situation: we count
the number of local violations using the current reference
point and trigger a full synchronization whenever this num-
ber exceeds the number of nodes. This concludes our dy-
namic protocol for distributed prediction. All components
are summarized in Alg. 2

4. EMPIRICAL EVALUATION
In this section we investigate the practical performance

of the dynamic learning protocol for two controlled settings:
one with linearly separable data and one with unsepara-
ble data. Our main goal is to empirically confirm that the
predictive gain of static full synchronizations (using a batch
size of 8) over no synchronization can be approximately pre-
served for small enough thresholds, and to assess the amount
of communication reduction achieved by these thresholds.

We start with the problem of tracking a rapidly drifting
random disjunction. In this case the target distribution pro-
duces data that is episode-wise linearly separable. Hence, we
can set up the individual learning processes so that they con-

verge to a linear model with zero classification error within
each episode. Formally, we identify a target disjunction with
a binary vector z ∈ {0, 1}n. A data point x ∈ X = {0, 1}n
is labeled positively y = 1 if 〈x, z〉 ≥ 1 and otherwise re-
ceives a negative label y = −1. The target disjunction is
drawn randomly at the beginning of the learning process
and is randomly re-set after each round with a fixed drift
probability of 0.0002. In order to have balanced classes, the
disjunctions as well as the data points are generated such
that each coordinate is set independently to 1 with proba-
bility

√
1− 2−1/n. As loss function for the stochastic gradi-

ent descent we use the logistic loss. Corresponding to our
setting of noise-free linearly separable data, we choose the
regularization parameter λ = 0 and the learning rate η = 1.

In Fig. 1 (left) we present the result for dimensionality
n = 100, with k = 512 nodes, processing m = 12.8M data
points through T = 25000 rounds. For divergence thresholds
up to 3.0, dynamic synchronization can retain the error num-
ber of statically synchronizing every 8 rounds. At the same
time the communication is reduced to 3.9% of the original
number of messages. An approximately similar amount of
communication reduction can also be achieved using static
synchronization by increasing the batch size to 128. This
approach, however, only retains 51.5% of the error reduc-
tion over no communication. Analyzing the development of
the evaluation metrics over time reveals: At the beginning
of each episode there is a relatively short phase in which
additional errors are accumulated and the communicative
protocols acquire an advantage over the baseline of never
synchronizing. This is followed by a phase during which no
additional error is made. Here, the communication curve
of the dynamic protocols remain constant acquiring a gain
over the static protocols in terms of communication.

We now turn to a harder experimental setting, in which
the target distribution is given by a rapidly drifting two-
layer neural network. For this target even the Bayes op-
timal classifier per episode has a non-zero error, and, in
particular, the generated data is not linearly separable. In-
tuitively, it is harder in this setting to save communication,
because a non-zero residual error can cause the linear mod-
els to periodically fluctuate around a local loss minimizer—
resulting in crossings of the divergence threshold even when
the learning processes have reached their asymptotic regime.
We choose the network structure and parameter ranges in

5

Communication-Efficient Distributed Online Prediction using Dynamic Model Synchronizations

17

a way that allow for a relatively good approximation by
linear models (see Bshouty and Long [2012]). The pro-
cess for generating a single labeled data point is as fol-
lows: First, the label y ∈ Y = {−1, 1} is drawn uniformly
from Y . Then, values are determined for hidden variables
Hi with 1 ≤ i ≤ dlogne based on a Bernoulli distribution
P [Hi = · |Y = y] = Ber(phi,y). Finally, x ∈ X = {−1, 1}n
is determined by drawing xi for 1 ≤ i ≤ n according to
P [Xi = xi, |Hp(i) = h] = Ber(poi,h) where p(i) denotes the
unique hidden layer parent of xi. In order to ensure lin-
ear approximability, the parameters of the output layer are
drawn such that |poi,−1 − poi,1| ≥ 0.9, i.e., their values have
a high relevance in determining the hidden values. As in
the disjunction case all parameters are re-set randomly af-
ter each round with a fixed drift probability (here, 0.005).
For this non-separable setting we choose again to optimize
the logistic loss, this time with parameters λ = 0.5 and
η = 0.05 respectively. Also, in order to increase the stabil-
ity of the learning process, we apply averaged updates over
mini-batches of size 8.

Figure 1 (right) contains the results for dimensionality
150, with k = 1024 nodes, processing m = 2.56M data
points through T = 2500 rounds. For divergence thresholds
up to 0.05, dynamic synchronization can retain the error
of the baseline. At the same time the communication is
reduced to 46% of the original number of messages.

5. CONCLUSION
We presented a protocol for distributed online prediction

that aims to dynamically save on network communications
in sufficiently easy phases of the modeling task. The pro-
tocol has a controlled predictive regret over its static coun-
terpart and experiments show that it can indeed reduce the
communication substantially—up to 95% in settings where
the linear learning processes are suitable to model the data
well and converge reasonably fast. Generally, the effectivity
of the approach appears to correspond to the effectivity of
linear modeling by SGD in the given setting.

For future research a theoretical characterization of this
behavior is desirable. A practically even more important di-
rection is to extend the approach to other model classes that
can tackle a wider range of learning problems. In principle,
the approach of controlling model divergence remains appli-
cable, as long as the divergence is measured with respect
to a distance function that induces a useful loss bound be-
tween two models. For probabilistic models this can for
instance be the KL-divergence. However, more complex
distance functions constitute more challenging distributed
monitoring tasks, which currently are open problems.

References
Jacob Abernethy, Alekh Agarwal, Peter L. Bartlett, and

Alexander Rakhlin. A stochastic view of optimal regret
through minimax duality. In COLT 2009 - The 22nd Con-
ference on Learning Theory, 2009.

Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay
Mansour. Distributed learning, communication complex-
ity and privacy. Journal of Machine Learning Research -
Proceedings Track, 23:26.1–26.22, 2012.

Nader H. Bshouty and Philip M. Long. Linear classifiers are
nearly optimal when hidden variables have diverse effects.
Machine Learning, 86(2):209–231, 2012.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning,
and games. Cambridge University Press, 2006. ISBN 978-
0-521-84108-5.

Koby Crammer and Yoram Singer. On the algorithmic im-
plementation of multiclass kernel-based vector machines.
Journal of Machine Learning Research, 2:265–292, 2001.

Hal Daumé III, Jeff M. Phillips, Avishek Saha, and Suresh
Venkatasubramanian. Efficient protocols for distributed
classification and optimization. In ALT 2012.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin
Xiao. Optimal distributed online prediction using mini-
batches. Journal of Machine Learning Research, 13:165–
202, 2012.

Daniel Hsu, Nikos Karampatziakis, John Langford, and
Alexander J. Smola. Parallel online learning. In Scaling
up machine learning: Parallel and distributed approaches.
Cambridge University Press.

Ram Keralapura, Graham Cormode, and Jeyashankher Ra-
mamirtham. Communication-efficient distributed mon-
itoring of thresholded counts. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD
2006), pages 289–300, 2006.

Daniel Keren, Izchak Sharfman, Assaf Schuster, and
Avishay Livne. Shape sensitive geometric monitoring.
Knowledge and Data Engineering, IEEE Transactions on,
24(8):1520–1535, 2012.

G. Mann, R. McDonald, M. Mohri, N. Silberman, and
D. Walker. Efficient large-scale distributed training of
conditional maximum entropy models. In Advances in
Neural Information Processing Systems (NIPS 2009), vol-
ume 22, pages 1231–1239, 2009.

Ryan T. McDonald, Keith Hall, and Gideon Mann. Dis-
tributed training strategies for the structured perceptron.
In Human Language Technologies: Conf. of the North
American Chapter of the Association of Computational
Linguistics, Proceedings (HLT-NAACL), pages 456–464,
2010.

XuanLong Nguyen, Martin J Wainwright, and Michael I
Jordan. Decentralized detection and classification using
kernel methods. In Proceedings of the twenty-first inter-
national conference on Machine learning, page 80. ACM,
2004.

Joel B Predd, SB Kulkarni, and H Vincent Poor. Distributed
learning in wireless sensor networks. Signal Processing
Magazine, IEEE, 23(4):56–69, 2006.

Izchak Sharfman, Assaf Schuster, and Daniel Keren. A ge-
ometric approach to monitoring threshold functions over
distributed data streams. ACM Trans. Database Syst., 32
(4), 2007.

Lin Xiao. Dual averaging methods for regularized stochastic
learning and online optimization. The Journal of Machine
Learning Research, 11:2543–2596, 2010.

Tong Zhang. Solving large scale linear prediction problems
using stochastic gradient descent algorithms. In Proceed-
ings of the 21st int. conf. on Machine learning (ICML
2004), 2004.

Martin Zinkevich, Alex J. Smola, and John Langford. Slow
learners are fast. In Proc. of 23rd Annual Conference
on Neural Information Processing Systems (NIPS 2009),
pages 2331–2339, 2009.

Martin Zinkevich, Markus Weimer, Alexander J. Smola, and
Lihong Li. Parallelized stochastic gradient descent. In
Proc. of 24th Annual Conference on Neural Information
Processing Systems (NIPS 2010), pages 2595–2603, 2010.

6

Communication-Efficient Distributed Online Prediction using Dynamic Model Synchronizations

18

Communication-efficient Outlier Detection for Scale-out
Systems

Moshe Gabel
Technion

Haifa, Israel
mgabel@cs.technion.ac.il

Daniel Keren
Haifa University

Haifa, Israel
dkeren@cs.haifa.ac.il

Assaf Schuster
Technion

Haifa, Israel
assaf@cs.technion.ac.il

ABSTRACT
Modern scale-out services are built on top of large datacen-
ters composed of thousands of individual machines. These
must be continuously monitored because unexpected failures
can overload fail-over mechanism and cause large-scale out-
ages. Such monitoring can be accomplished by periodically
measuring hundreds of performance metrics and looking for
outliers, often caused by misconfigurations, hardware fail-
ures or even software bugs. Previous work has shown that
many failures are indeed preceded by such performance out-
liers, known as performance problems or latent faults.

In this work we adapt an existing unsupervised statistical
framework for latent fault detection to provide an online,
communication- and computation-reduced version. The ex-
isting framework is effective in predicting machine failures
days before they happen, but requires each monitored ma-
chine to send all its periodic metric measurements, which
is prohibitive in some settings and requires that the data-
center provide parallel storage and processing. Our adapted
framework is able to reduce the amount of data sent and the
processing cost at the central coordinator by processing the
data in situ, making it usable in wider settings.

We utilize techniques from the domain of stream process-
ing, specifically sketching and safe zones, to trade-off ac-
curacy for communication and computation, without com-
promising its advantages. Like the original framework, our
adapted framework is unsupervised, does not require do-
main knowledge, and provides statistical guarantees on the
rate of false positives. Initial experiments show that scores
yielded by the adapted framework match the original scores
very well, while reducing communications by over 90%.

1. INTRODUCTION
In recent years the demand for computing power and stor-

age has increased. Modern Web services and clouds rely on
large datacenters, often comprised of thousands of machines.
For such large services, it is unreasonable to assume that all
machines are working properly and are well configured.

Monitoring is essential in datacenters, since unnoticed
faults might accumulate to the point where redundancy and
fail-over mechanisms break. Yet the large number of ma-
chines in datacenters makes manual monitoring impracti-
cal. Instead machines are usually monitored by collecting
and analyzing performance counters [3, 5, 11]. Hundreds
of counters per machine are reported by the various service
layers, from service-specific metrics (such as database query
statistics) to general metrics (such as CPU utilization).

In this work we adapt an existing fault detection algorithm
[9] using sketching [8, 18, 7] and safe zones [17, 21] to reduce
communication and processing requirements by an order of
magnitude, while preserving its advantages.

Many existing failure detectors are inflexible [9], and most
require centralizing the data in some form. Rule-based fail-
ure detectors define a set of watchdogs [11] that monitor
specific counters and trigger an alert whenever a predefined
threshold is crossed. However, maintaining these static rules
requires ongoing manual adjustments.

More advanced methods model service behavior from his-
torical logs. Supervised machine learning approaches [3, 6,
20, 4] train detectors on historic annotated data. Others [5]
analyze logs from periods from when the service is guaran-
teed to be healthy to extract model parameters. Such ap-
proaches are sensitive to deviations in workloads and changes
in the monitored service itself [23, 10]. After such changes
the historical logs and the learned model are no longer rel-
evant. Approaches that require labeled data can be expen-
sive, since labels can be difficult to obtain, and re-labeling
may be needed after service changes.

More flexible, unsupervised approaches have been pro-
posed for high performance computing (HPC). Typical ap-
proaches [19, 22] analyze textual console logs to detect sys-
tem or machine failures by examining frequency of log mes-
sages. Console logs are impractical in high-volume services
for bandwidth and performance reasons: transactions are
very short, time-sensitive, and rapid.

Finally, some approaches [14, 16] are unsupervised and
flexible, but are not domain independent. They make use
of domain insights and knowledge of the monitored service,
for example in the domain of distributed file systems, and
are therefore limited to specific systems.

Recent approaches to the monitoring problem [9, 16, 15]
focus on early detection and handling of performance prob-
lems, or latent faults. These are outliers – machine behaviors
that are indicative of a fault, or could eventually result in a
fault, yet fly under the radar of monitoring systems because
they are not acute enough, or were not anticipated by the

119

monitoring system designers. Early detection of latent faults
can help prevent future failures and increase the reliability
of services.

In previous work [9] we provided evidence that latent
faults are common, and we presented a novel, unsupervised
outlier detection framework for latent fault detection. In
experiments on a real-world production system comprised
of 4500 machines, we showed that over 20% of machine fail-
ures were preceded by latent faults. Furthermore, we were
able to detect latent faults up to 14 days in advance of ac-
tual machine or software failures with up to 70% precision
and 2% false positive rate – comparable to state of the art
supervised techniques in controlled settings [4]. We demon-
strated that our system is adaptable, requiring no domain
knowledge, no labeled examples, and no parameter tuning
in the face of workload changes and software updates. Fi-
nally, our system has proven and demonstrated guarantees
on the false positive rates, it is non-intrusive, and it scales
to very large services.

One drawback of previous work is the large communi-
cation and processing costs, prohibitive in some settings.
Modern data centers are large, and consequently the resul-
tant counter logs are also large. It may be very difficult to
centralize and process such a large amount of data. In the
experiments described in [9], the log files were over 10TB
per day – too large to centralize and process in one location.
Instead we relied on a data-parallel infrastructure [12] built
into the data center. Parallel processing may not always
be feasible in all situations, however. Furthermore, some
large systems are not confined to a single datacenter but are
geographically distributed.

In this work we extend our latent fault detection using
techniques from the field of stream processing to reduce the
size of the data by an order of magnitude, reducing commu-
nication and processing requirements, and allowing contin-
uous online processing of distributed streams. The result-
ing technique is essentially a distributed outlier detector for
multiple multivariate data streams, designed for monitoring
large-scale online services.

2. SUMMARY OF PREVIOUS WORK
In [9] we presented a statistical latent fault detection frame-

work with 3 derived tests. What follows is a short summary
of that work, with the sign test as example.

2.1 Framework
We begin with a reasonable assumption: in a large clus-

ter of machines doing the same job, most machines perform
well most of the time. Further, we expect similar machines
with similar hardware and software1 to exhibit roughly sim-
ilar behavior when measuring performance counters. We
therefore compare these machines to find those whose per-
formance differs notably.

There are M machines, each reporting C performance
counters at every time t in a window of length T time points.
We denote by x(m, t) the vector of counter values for ma-
chine m at time t. The hypothesis is that the inspected
machine is working properly and hence the statistical pro-
cess that generated this vector for machine m is the same
statistical process that generated the vector for any other

1These are reasonable assumptions in practice for many ser-
vices and datacenters [14, 19].

machine m′. However, if we see that the vector x(m, t) for
machine m is notably different from the vectors of other ma-
chines, we reject the hypothesis and flag the machine m as
suspicious, meaning we suspect it manifests a latent fault.

We now make explicit our assumptions on the behavior
of the monitored machines: a) the majority of machines are
working properly at any given point in time; b) the machines
are homogeneous, meaning they perform a similar task and
use similar hardware and software2; c) on average, the work-
load is balanced across all machines; d) the counters are or-
dinal and are reported at the same rate; and e) the counter
values are memoryless in the sense that they depend only on
the current time period (and are independent of the identity
of the machine).

Formally, we assume that x(m, t) is a realization of a ran-
dom variable X(t) whenever machine m is working properly.
Since all machines perform the same task, and since the load
balancer attempts to split the load evenly between the ma-
chines, the homogeneous assumption implies that we should
expect x(m, t) to show similar behavior. We do expect to
see changes over time, due to changes in the workload, for
example. However, we expect these changes to be similarly
reflected in all machines.

At any time t, the input x(t) to a test S consists of the
vectors x(m, t) for all machines m. The test S(m,x(t)) ana-
lyzes the data and assigns a score (either a scalar or a vector)
to machine m at time t. Given a test S, and a significance
level α > 0, we can present the framework as follows:

1. Preprocess: select counters and scale to unit variance;

2. Compute for every machine m the vector:
vm = 1

T

∑
t S(m,x(t)) (integration phase);

3. Compute the p-values (defined below) p(m) from vm;

4. Report every machine with p(m) < α as suspicious.

Essentially, the scores for machine m are aggregated over
time, so that eventually the norm of the aggregated scores
converges, and is used to compute a p-value for m. The
longer the allowed time period for aggregating the scores
is, the more sensitive the test will be. At the same time,
aggregating over long periods of time creates latencies in the
detection process. In our previous work we aggregated data
over 24 hour intervals, as a compromise between sensitivity
and latency.

The p-value for a machine m is a bound on the probability
that a random healthy machine would exhibit such aberrant
counter values. If the p-value falls below a predefined sig-
nificance level α, the null hypothesis is rejected, and the
machine is flagged as suspicious.

In [9] we derived and evaluated 3 different tests within
the framework (different S functions). The sign test accu-
mulates the average normalized direction from machine m
to the rest of the machines. The Tukey test measures the
average depth of x(m, t) compared to the vectors of other
machines at the same time. The LOF test similarly com-
pares the local density of points around x(m, t) to the local
density of its neighbors. What follows is a summary of the
sign test.

2If this is not the case, we can often split the collection of
machines to a few large homogeneous clusters.)

2

Communication-efficient Outlier Detection for Scale-out Systems

20

2.2 The Sign Test
The sign test extends the classic statistical sign test to al-

low the simultaneous comparison of multiple machines. The
“sign” of a machine m at time t is the average direction of
its vector x(m, t) to all other machines’ vectors, and its score
vm is the sum of all these directions, divided by T .

The intuition is that healthy machines are similar on av-
erage, and any differences are random. Average directions
are therefore random and tend to cancel each other out
when added together, meaning vm will be a relatively short
vector for healthy machines. Conversely, if m has a latent
fault, then some of its metrics are consistently different from
healthy machines, and so the average directions are similar
in some dimensions. When summing up these average di-
rections, these similarities reinforce each other and therefore
vm tends to be a longer vector.

Formally, let M denote the set of all machines in a test,
and M = |M| the number of machines. T are the time
points where counters are sampled during preprocessing (for
instance, every 5 minutes for 24 hours in our experiments),
t denote a specific time point, and T = |T |. Let m and m′

be two machines and let x(m, t) and x(m′, t) be the vectors
of their reported and preprocessed counters at time t. We
use the test

S (m,x(t)) =
1

M − 1

∑

m′ 6=m

x(m, t)− x (m′, t)

‖x(m, t)− x (m′, t)‖ (1)

as a multivariate version of the sign function. If all the
machines are working properly, we expect this value to be
small. Therefore, the sum of several samples over time is
also expected not to grow far from zero.

Algorithm 1: The sign test.

foreach machine m do

S (m,x(t))← 1
M−1

∑
m′ 6=m

x(m,t)−x(m′,t)
‖x(m,t)−x(m′,t)‖ ;

vm ← 1
T

∑
t S (m,x(t));

end

v̂ ← 1
M

∑
m ‖vm‖;

foreach machine m do
γ ← max (0, ‖vm‖ − v̂);

p(m)← (M + 1) exp

(
− TMγ2

2(
√
M+2)2

)
;

if p(m) ≤ α then
Report machine m as suspicious;

end

end

If all machines are working properly, the norm of vm =
1
T

∑
t S(m,x(t)) should not be much larger than its empir-

ical mean. The p-value p(m) in Algorithm 1 controls this
statistic by guaranteeing a small number of false detections,
depending on the significance level α.

3. ONLINE DETECTOR WITH REDUCED
COMMUNICATION

We describe an online, communication-efficient version of
the latent fault detector summarized in Section 2.

Detecting latent faults requires that each node must send
all performance counters measured at each time point: T

samples of C counters for each of the M machines. Beyond
bandwidth costs, processing so much data is difficult to do
on a single machine in a timely manner, due to the size and
high dimensionality of the data. We apply two techniques
to alleviate this issue.

Sketching is used to reduce the amount of data sent from
each machine and processed by the coordinator. Instead of
sending all counters, each node calculates a sketch of the said
counters and sends only that. The coordinator (or monitor-
ing node) can then perform latent fault detection using the
sketches, rather than the original data. In addition to re-
ducing the communication load, this has the added benefit
of reducing the computational load, since the dimensionality
of the data is greatly reduced.

The framework in Section 2.1 requires that counter values
be normalized during preprocessing (step 1), and this is true
as well for the sketched version3. We use the safe zone ap-
proach [17] to monitor both the global mean and the global
variance of each counter so that they do not deviate too
much from their last known values. Each machine monitors
whether its data satisfies a local constraint. If all local con-
straints at all machines are satisfied, the global mean and
variance are known not to have deviated too far from their
last known values. These last known values are then used to
normalize the counter values at each node, before computing
the sketch. If there is any violation, the coordinator polls
each node for the current mean and variance, and distributes
the new global mean and variance to all nodes.

The general pseudocode is shown in Algorithm 2 and ex-
plained in detail below.

3.1 Sketches
Sketching [18, 8] is a common technique used to process

large, unpredictable data streams without having to send,
store and process all data. It reduces the size of the data,
while still enabling queries. See [7] for a recent survey of
sketched-based (and other) distributed monitoring.

For our purposes, a sketch is a summary function that
takes a vector and transforms it to a smaller vector while
approximately preserving some desired property, for exam-
ple inner products [1]. We use sketches to modify our tests
to greatly reduce the amount of data that must be sent and
processed. For example, 200 counters could be reduced to 10
dimensions, achieving an immediate 95% reduction in size.

Formally, rather than apply test S to the set of all local
counter vectors x(m, t), each machine m will first apply a
sketching function f to its vectors, and send only the sketch
x̂ = f(x(m, t)) for processing. The modified test Ŝ will
be applied to the sketches rather than the original vector:
vm = 1

T

∑
t Ŝ(m, x̂(t)).

One well-suited sketch is the AMS sketch [1], which in-
volves a random linear projection to k dimensions. In our
setting, each machine would project its counter vectors to k
dimensions using a specially constructed projection matrix:
x̂(m, t) = f(x(m, t)) = Rx(m, t) where R is a random C×k
matrix constructed as described in [1].

The AMS sketch is general enough so that the same sketch
can be used as input to different tests. Because the sign test
relies on normalized directions, and since AMS sketches are
linear projections, the sign test can be applied directly to
the sketch. In other words, the sum of projected vectors is

3Automatic counter selection (part step 1) can be done in
advance, offline, using the method described in [9].

3

Communication-efficient Outlier Detection for Scale-out Systems

21

Algorithm 2: Online detection pseudocode.

OFFLINE:
Automatically select counters.

INIT / COORDINATOR SYNC:
foreach counter i in counters do

Poll all nodes for mean and variance of counter i.
Distribute new global mean, variance, safe zones.

end

NODE at time point t:
foreach counter i in counters do

if counter not in safe zone then
Violation: send local mean, variance to
coordinator.
Wait for new global mean and variance.

end
Let xi = value of counter i at time t .
Normalize xi with last known global mean and
variance.

end
Let x = vector of normalized counter values.
Compute sketch of x and send to coordinator.

COORDINATOR at time point t:
if violation for counter i then

Run SYNC.
end
Receive sketches from all nodes.
Compute test function S on received sketches.
Add most recent test function result to vm.
Subtract least recent test function result from vm.
Calculate p-value for all machines and issue warnings.

the same as projecting the sum of the vectors. The result-
ing vector is still small for healthy machines and large for
outliers. The Tukey test described in our previous work al-
ready relies on a very similar technique, and has been shown
to be very effective. The LOF test depends on the distance
of pairs of points. In this case, the Johnson-Lindenstrauss
lemma [13] guarantees that the projection to k = O

(
logM
ε2

)

preserves the distances within a factor of 1 ± ε. Since our
method averages T comparisons per day in the integration
phase, we can further expect that in practice the error will
be smaller.

3.1.1 Sign Test on Linear Sketches
The sign test function (1) from Section 2.2 depends only

on the normalized direction from x(m, t) to the other vec-
tors. Let B be the unit sphere in C dimensions. Given the
assumptions in Section 2.1, for healthy machines the nor-
malized directions to other machines tend to be distributed
spherically symmetric over B, resulting in the vector vm =
1
T

∑
t S (m,x(t)) being relatively short. Conversely, for ma-

chines with consistently anomalous behavior, vm is a rela-
tively long vector.

Given the sketched vectors x̂(m, t) = Rx(m, t), the sign
test is still the sum of normalized directions from x(m, t), af-
ter some transformation R. We now show that applying R to
the unit sphere B maintains this symmetrical distribution.
Let R = UDV T be the singular value decomposition of R.

 0.2

 0.4

 0.6

 0.8

 0.2 0.4 0.6 0.8

S
ke

tc
h

sc
or

e

Normal score

Scores
Regression

y = 0.953x + 0.001
R2 = 0.966

Figure 1: Sign test scores with AMS sketch com-
pared to original scores. Sketch size is 8% of original
data.

U and V T are unitary matrices, and D is a diagonal matrix
with positive elements. In geometrical terms, the transfor-
mation R = UDV T is a composition of rotation, followed by
non-uniform scaling and dimensional reduction, and finally
another rotation – all of which preserve the symmetric dis-
tribution around the origin. Therefore the transformation R
maps the unit sphere B (in C dimensions) to an ellipsoid B′

in k dimensions while preserving the symmetric distribution
around the origin.

In summary, since the sign-test uses normalized directions
and R preserves their symmetry around x(m, t), we can ap-
ply the sign test directly to the sketched vectors x̂(m, t).
Moreover, the sign test p-value does not depend on the di-
mensionality of the vectors, and so we can use it as is.

Preliminary experiments on counter logs from a small
sample of 260 machines in a single day show that sign test
scores and p-values computed on sketched data match the
original very well. Figure 1 shows a comparison of sign test
scores based on AMS sketches to regular (centralized, or
parallel) sign test scores. The figure and linear regression
show that the scores match very well, with R2 = 0.966, very
close to 1. The sketch reduced the data size by 92% – from
123 counters to 10 dimensions. The p-values are similarly
close to the original values.

3.1.2 Online Integration Using a Sliding Window
The integration phase in stage 2 of the framework in

Section 2.1 computes vm = 1
T

∑
t S (m,x(t)). Computing

S (m,x(t)) only requires the data from time t, and therefore
it is trivial to turn any test into an online test by keeping a
window of test function (S) outputs for the last T sketches
sent from the monitored machines. When new data arrives
at time t, the coordinator updates the current vm by com-
puting and adding 1

T
S (m, x̂(t)), and subtracting the least

recent stored test result, 1
T
S (m, x̂(t− T − 1)). The p-value

for each machine in the time window can then be computed
in the usual manner. Since the test function S need only be
computed for the most recent time, and since the sketches
are of low dimension k, processing and memory costs are
low. This allows the computation to be done on a single
coordinator machine on time, before the next round starts.

3.2 Scaling By Monitoring Variance
Our tests require the data to be standardized during pre-

processing: each counter should be globally centered to zero
mean and unit variance. In some settings we can assume
that a counter’s mean and variance do not change much,

4

Communication-efficient Outlier Detection for Scale-out Systems

22

or that they have a daily cycle. However, we might wish to
avoid that assumption, and handle unpredictable workloads.

We use the safe zones approach [17, 21] to monitor both
the global mean and the global variance of each counter. In
this approach, each monitored machine receives a local con-
straint on its data x(m, t) from a coordinator machine, such
that if all local constraints are satisfied, the global monitored
value f(x(t)) for some function f of the global aggregate
is within a pre-defined threshold. Violations of local con-
straints are sent to the coordinator machine, which resolves
them and sends updated local constraints to participating
machines.

Given the last known global mean and variance of the last
T samples, we define some lower and upper threshold, for
example 0.9 and 1.1 times the last known values. If there is
any violation, the coordinator polls each node for the current
mean and variance, and distributes the new global mean and
variance to all nodes. We can trade-off accuracy and com-
munication by adjusting the high and low thresholds when
monitoring. Violations are less likely if global mean and
variance are allowed to drift further from their last known
values – reducing communication but also decreasing accu-
racy [17].

We monitor each counter independently, so it is enough to
show how we monitor a single counter X. Further note that
all tests described in [9] are invariant to data translation,
and so we do not monitor the global mean explicitly.

3.2.1 Notations
The set of values of counter X over the last T times and

over M nodes (machines) is denoted by X(t). We denote
by Xi(t) the values of X at node i for the last T times
up to t. Thus E[Xi(t)] is the mean of the last T values at
node i in time t, while E[X(t)] is the global mean of the
last values at all nodes. Denote µi(t) = E[Xi(t)] the local
means, and µ(t) = E[X(t)] the global mean. Similarly, we
denote λi = E

[
Xi(t)

2
]
, the local mean of the squares, and

λ = E
[
X(t)2

]
the global mean. Let V (t) = (µ(t), λ(t)), and

Vi = (µi(t), λi(t)), the global and local monitored vectors,
respectively.

3.2.2 Monitoring
We wish to monitor the global variance Var(X) at each

time t. Recall that:

Var(X) = E
[
X2]− (E [X])2 = λ− µ2 .

We therefore monitor the conditions L ≤ λ − µ2 ≤ H, for
some lower and upper variance thresholds L and H. Fig-
ure 2 shows the admissible region (the region in which the
conditions hold), 0.5 ≤ λ − µ2 ≤ 1.5 . Following [17], we
aim to find a convex safe zone G which is contained within
the admissible region. Since convex sets are closed under
averaging, when all local vectors are inside the safe zone,
the global mean is guaranteed to be inside as well.

Let t = 0 be the last global synchronization time, and let
V (0) = (µ(0), λ(0)) be the reference point, the last known
global mean and mean-of-squares, computed that time. For
each node i we define the local drift vector di(t) as the drift
of the current vector from the node’s vector during the last
synchronization: di(t) = Vi(t)− Vi(0).

Since we wish to monitor that the global V (t) is within
some convex set G, we define equivalent local conditions on
the drift vectors. The current local vectors can be written

 0
 0.5

 1
 1.5

 2
 2.5

 3

-4 -2 0 2 4

λ

µ

Figure 2: Admissible region for L = 0.5, H = 1.5.

in terms of drift vector di: Vi(t) = Vi(0) + di(t). Note that
the global vector is the mean of the local vectors, and can
therefore be written as the mean of drifts and the reference
point:

V (t) =
1

M

∑

i

Vi(t) = V (0) +
1

M

∑

i

di(t) . (2)

Let Wi(t) = V (0) + di(t) be the local drift from the last
reference point. Note that V (t) = 1

M

∑
iWi, recall G is

convex, and from (2) we arrive at the local conditions: if
∀i,Wi ∈ G then V (t) ∈ G.

To monitor that the variance is between L and H, we
derive separate safe zones: one for variance above L and
another for variance below H. As long as the local condi-
tions for both safe zones are maintained in all nodes, we are
guaranteed that the variance is within the allowed range.

Variance Above Lower Threshold. We wish to define a
convex safe zone GL so that as long as V (t) ∈ GL then
Var(X) ≥ L. This corresponds to monitoring that λ−µ2 ≥
L, which is already a convex set – the area above a parabola
– and can be directly used as safe zone. Therefore the local
condition for each node i is trivial: Ii(t) ∈ GL: Ii(t) =
V (0) + di(t) = (a, b) and monitor that b− a2 ≥ L.

Variance Below Upper Threshold. We wish to define
a convex safe zone G so that as long as V (t) ∈ G then
Var(X) ≤ H. This area is the area below a parabola, which
is not a convex set. However, we can find a tangent half-
plane I below this parabola. This half-plane is a convex set,
and since I ⊂ G, then as long as V (t) ∈ I, V (t) ∈ G and
therefore Var(X) ≤ H.

We use the reference point V (0) to find the optimal hy-
perplane. The thresholds H and L are reset during synchro-
nization, so obviously V (0) ∈ G. We can choose any half-
space I such that V (0) ∈ I, but to avoid future unnecessary
synchronization we choose I such that V (0) is far from the
boundary of G. Doing so ensures that drift has to be large
to cause a violation. Consequently, we choose I as the tan-
gent at point P , where P is the closest point to V (0) on the
parabola λ−µ2 = H, and the local condition is Wi ∈ I. We
can find P numerically, or by minimizing the distance from
the parabola to V (0). For example, if V (0) = (0.5, 1) and
H = 1.5, then the closest point on the parabola is µ ≈ 0.237.
This yields the point P = (0.237, 1.556), and finally the
induced safe zone I: the half-plane λ − 0.474µ < 1.443 .
Figure 3(a) shows V (0), P and the resulting safe zone, and
Figure 3(b) shows the intersection with the safe zone for the
lower limit L = 0.5.

5

Communication-efficient Outlier Detection for Scale-out Systems

23

 0

 0.5

 1

 1.5

 2

 2.5

 3

-3 -2 -1 0 1 2 3

λ

µ

P

V(0)

(a) Upper threshold.

 0

 0.5

 1

 1.5

 2

 2.5

 3

-3 -2 -1 0 1 2 3

λ

µ

V(0)

(b) Upper and lower.

Figure 3: Safe zones for L = 0.5, H = 1.5 where V (0) =
(0.5, 1).

3.2.3 Handling Violations
If one of the local conditions Wj ∈ G is violated, it may be

because Var(X) is no longer in the range, or due to a false
alarm. The simplest way to deal with a violation is to per-
form a global synchronization: each node sends its current
Vi(t) to the coordinator. The coordinator “resets the time”
to t = 0, computes the new global reference point V (0), and
sends it to the nodes, where it is used for monitoring and
scaling.

In terms of communication, our synchronizations are fairly
inexpensive. Each node sends only two numbers per counter
(µ and λ), rather than the entire time window of T samples.
They also improve the accuracy of scaling, since nodes have
fresh global mean and variance. There are safe zone tech-
niques that allow partial synchronization for further com-
munication reduction, for example by balancing a node with
local violation with another node that has enough slack [2].

4. FUTURE WORK
This work uses sketching and safe zones to adapt the la-

tent fault detector in [9] to a streaming setting, resulting in
an online, communication-efficient outlier detector for com-
mon scale-out systems. Preliminary results show that the
adapted detector obtains very similar results to those of
the original latent fault detector for the sign test. Future
work will concentrate on adapting additional tests, evalu-
ating the detector on real-world systems, and exploring the
communication-accuracy trade-off.

5. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Union’s Seventh Framework Programme
under grant agreement No 255951.

6. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space

complexity of approximating the frequency moments.
Journal of Computer and System Sciences, 1999.

[2] D. Ben-David. Violation resolution in distributed
stream networks. Master’s thesis, Technion I.I.T, 2012.

[3] P. Bod́ık, M. Goldszmidt, A. Fox, D. B. Woodard, and
H. Andersen. Fingerprinting the datacenter:
Automated classification of performance crises. In
Proc. EuroSys, 2010.

[4] G. Bronevetsky, I. Laguna, B. De Supinski, and
S. Bagchi. Automatic fault characterization via

abnormality-enhanced classification. In Proc. DSN,
2012.

[5] H. Chen, G. Jiang, and K. Yoshihira. Failure detection
in large-scale internet services by principal subspace
mapping. IEEE Trans. Knowl. Data Eng., 2007.

[6] I. Cohen, M. Goldszmidt, T. Kelly, and J. Symons.
Correlating instrumentation data to system states: A
building block for automated diagnosis and control. In
Proc. OSDI, 2004.

[7] G. Cormode. The continuous distributed monitoring
model. SIGMOD Rec., 2013.

[8] G. Cormode and M. Garofalakis. Sketching
probabilistic data streams. In SIGMOD, 2007.

[9] M. Gabel, A. Schuster, R.-G. Bachrach, and
N. Bjorner. Latent fault detection in large scale
services. In Proc. DSN, 2012.

[10] C. Huang, I. Cohen, J. Symons, and T. Abdelzaher.
Achieving scalable automated diagnosis of distributed
systems performance problems. Technical report, HP
Labs, 2007.

[11] M. Isard. Autopilot: automatic data center
management. SIGOPS Oper. Syst. Rev., 2007.

[12] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In Proc. EuroSys, 2007.

[13] W. Johnson and J. Lindenstrauss. Extensions of
Lipschitz mappings into a Hilbert space. In Conference
in modern analysis and probability (New Haven,
Conn., 1982), Contemporary Mathematics. 1984.

[14] M. P. Kasick, J. Tan, R. Gandhi, and P. Narasimhan.
Black-box problem diagnosis in parallel file systems.
In Proc. FAST, 2010.

[15] S. Kavulya, S. Daniels, K. Joshi, M. Hiltunen,
R. Gandhi, and P. Narasimhan. Draco: Statistical
diagnosis of chronic problems in large distributed
systems. In Proc. DSN, 2012.

[16] S. Kavulya, R. Gandhi, and P. Narasimhan. Gumshoe:
Diagnosing performance problems in replicated
file-systems. In Proc. SRDS, 2008.

[17] D. Keren, I. Sharfman, A. Schuster, and A. Livne.
Shape sensitive geometric monitoring. Knowledge and
Data Engineering, IEEE Transactions on, 2012.

[18] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 2005.

[19] A. J. Oliner, A. Aiken, and J. Stearley. Alert detection
in system logs. In Proc. ICDM, 2008.

[20] D. Pelleg, M. Ben-Yehuda, R. Harper, L. Spainhower,
and T. Adeshiyan. Vigilant: out-of-band detection of
failures in virtual machines. SIGOPS Oper. Syst. Rev.,
2008.

[21] I. Sharfman, A. Schuster, and D. Keren. A geometric
approach to monitoring threshold functions over
distributed data streams. TODS, 2007.

[22] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I.
Jordan. Detecting large-scale system problems by
mining console logs. In Proc. SOSP, 2009.

[23] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and
A. Fox. Ensembles of models for automated diagnosis
of system performance problems. In Proc. DSN, 2005.

6

Communication-efficient Outlier Detection for Scale-out Systems

24

Elastic Complex Event Processing under Varying Query
Load

Thomas Heinze1 Yuanzhen Ji1 Yinying Pan1 Franz Josef Grueneberger1
Zbigniew Jerzak1 Christof Fetzer2

1SAP AG 2System Engineering Group, TU Dresden
Dresden, Germany Dresden, Germany

firstname.lastname@sap.com christof.fetzer@tu-dresden.de

ABSTRACT
Distributed data stream processing systems, like Twitter
Storm or Yahoo! S4, have been primarily focusing on adapt-
ing to varying event rates. However, as these systems are
becoming increasingly multi-tenant, adaptation to the vary-
ing query load is becoming an equally important problem.

In this paper we present FUGU – an elastic allocator for
Complex Event Processing systems. FUGU uses bin pack-
ing to allocate continuous queries to a varying set of nodes.
Driven by elasticity requirements FUGU maximizes the over-
all system utilization while trying to maintain stable process-
ing latencies.

The specific contributions of this paper are: (1) introduc-
tion of a re-balancing scheme for bin packing allowing FUGU
to increase overall system utilization by six percent and (2)
a detailed study of achievable system utilization and latency
under real-life workload from Frankfurt Stock Exchange.

1. INTRODUCTION
Distributed complex event processing (CEP) has been

commonly used in context of financial trading systems [1].
Typical CEP use cases in financial domain usually revolved
around single user, single query usage pattern. However, with
recent proliferation of CEP in industries such as manufac-
turing [8] or analytics [11] the usage pattern is switching
towards multiple users, multiple queries per system. The
implication of this trend is the need for CEP systems to be
able to accommodate not only varying event load but also
varying query load.

In order to avoid constant overprovisioning and to be able
to handle sudden load surges distributed CEP systems must
be able to scale both in and out. Being able to scale both
in and out while maintaining high overall system utilization
is the ultimate goal of an elastic system [2]. Elasticity is an
important property of every distributed system as it ensures
its economic feasibility while being executed on any cloud
platform.

Several authors have studied building elastically scalable
complex event processing systems [7, 12]. However, we are not
aware of a work which would explicitly target the problem of
the varying query load in elastic CEP systems. In this paper
we present the design and evaluation of the elastic allocation
component – FUGU. FUGU can dynamically allocate and
de-allocate both stateless and stateful queries in order to
meet the utilization goals. To that end FUGU relies on bin
packing to allocate queries to hosts.

The contributions of this paper are following: (1) we present
a re-balancing extension of a state of the art bin packing
approach [4], which allows to improve the average utilization
of the system by up to 6% and (2) we present a detailed
evaluation of the achievable utilization as a function of a
given utilization target. The evaluation of our elastic alloca-
tion component has been performed on top of a commercial
distributed complex event processing system using tick data
streams from Frankfurt Stock Exchange.

2. SYSTEM ARCHITECTURE
Figure 1 shows the FUGU component and its interaction

with the underlying CEP system. The underlying CEP sys-
tem consists of several instances of a CEP engine running
in parallel on heterogeneous hosts. The CEP system accepts
and processes continuous queries consisting of direct acyclic
graphs of operators. Our system supports primitive relational
algebra operators (selection, projection, join, aggregation) as
well as additional CEP specific operators (sequence, source
and sink). Each operator can be executed on an arbitrary host.
Therefore, the computation of a query can be partitioned
over multiple hosts. The number of hosts is variable and
dynamically adapted to the changing resource requirements
by the FUGU component. FUGU is always provisioning one
or two hot hosts to allow for a fast scale out [6].

��������	�
�

�����

��������	�
�

�����

����

��
��
�
��
������

���
�
��
���������
��

	�
������

���
������

	�����������

Figure 1: System architecture

FUGU is a centralized component. The role of FUGU is
twofold: (1) it coordinates different instances of the CEP

125

engine and (2) it calculates placement decisions. When a
new query is added or an existing query is removed, a bin
packing algorithm is used (see Section 3) to calculate the
operator to host assignment. When a new operator needs
to be placed, FUGU will always try to locate a host with
enough available resources to host this operator. If no such
host can be found, a new host will be assigned to the system.
When all operators on a certain host are removed, the host
is then released by the system.

As soon as such an assignment has been derived, FUGU
coordinates the placement of new and re-placement of existing
operators. To that end FUGU communicates with all involved
hosts using a topic-based publish/subscribe protocol. Newly
added operators subscribe to their predecessor operators.
Data published by an operator is sent to all subscribers.
FUGU supports re-placement of both stateless (source, filters,
projection, sinks) as well as stateful operators (aggregation,
join, sequence) using a state transfer protocol similar to the
one of [13].

3. OPERATOR PLACEMENT
The foundation of our operator placement approach is a

load model, which estimates and measures CPU, memory and
network consumption for each individual operator. When new
queries are added, all variables in the model are first estimated
using a worst case assumption. These values are subsequently
updated during runtime with precise measurements.

The required CPU load (loadCPU) for a given operator (op)
is calculated based on the operator’s input rate (input(op))
and its per event processing time (proc(op)):

loadCPU(op) = proc(op) · input(op) (1)

During the estimation phase, we assume that the processing
time of a new operator is comparable to the processing time of
currently running/previously executed operators of the same
type. The input rate is derived based on the input rate of the
predecessor operators and estimations of their selectivities
in a fashion similar to the approach presented by Viglas et
al. [14]. For the purpose of the estimation we constantly
measure the source input rate and use the maximum value
observed so far. The major advantage of this scheme is that
it only requires the input rates of the sources.

We use similar approach to estimate operators’ memory
and network consumption. The network bandwidth is derived
from the operators’ input and output rates, their selectivity
(predicate) and the average size of input and output events.
The memory consumption is estimated using a linear model
which multiplies the operators’ event rate by the window size
and event size. The network consumption model is placement-
aware: operators placed on the same host are assumed to
communicate via in memory message passing. Operators on
different hosts are assumed to communicate via network.

3.1 Elastic Operator Placement
The placement is calculated using a global bin packing

algorithm [5] in a fashion similar to the one proposed by
Backman et al. [4]. Bin packing algorithm calculates an as-
signment of items (operators) to bins (hosts) in a way that a
minimal number of bins is used. The major criteria for assign-
ment is the required CPU load of an operator. In addition,
hosts with insufficient memory or network bandwidth are
removed from the list of potential target hosts. FUGU uses

�
�
�
�
��

��

�
�
�
�
��

�
�
�
�
��

��
��

���� ��

��
��

��

Figure 2: Example for applying the rebalancing
heuristics

a FirstFit bin packing variant, which assigns a newly added
operator to the first node with enough remaining capacity.

The placement algorithm can be configured to aim for a
certain target utilization. This is realized by an additional
user-defined parameter: the utilization threshold thres. The
thres value is used as the available capacity of a host, which
should not be exceeded by the bin packing algorithm.

3.2 Re-balancing Heuristics
The above bin packing approach allows to scale out and

to scale in with a changing number of queries. However,
after evaluating this approach we have observed that the
system is often reporting suboptimal utilization values – see
Section 4. This is caused by the fact that remaining operators
are scattered across all hosts in the system. This, in turn,
prevents FUGU from releasing these hosts.

There exist two alternative approaches towards solving
this issue. Either the bin packing algorithm is re-executed
for all operators left in the system or specific operators are
selected and re-placed so as to release least loaded hosts. A
re-execution of the bin packing approach with all remaining
operators would provide the best solution, however, it would
also result in a large amount of operators and state being
moved. This in turn would negatively impact the availability
of the system. Therefore, in order to minimize the impact on
the system availability we have implemented a re-balancing
approach.

As soon as a query is removed, the re-balancing algorithm
calculates the currently required minimal number of hosts
(hostmin):

hostmin =

⌈∑
∀op loadCPU(op)

thres

⌉
(2)

In case the current number of hosts used by the system is
larger than the calculated minimal number of hosts (hostmin)
a re-balancing is triggered. During re-balancing only oper-
ators from hosts with the minimal load are subject to bin
packing. Bin packing is executed for these operators until
the total number of used hosts reaches hostmin.

An additional heuristic is used to detect imbalance during
addition of queries. Let us consider the scenario shown in

2

Elastic Complex Event Processing under Varying Query Load

26

Figure 2, where three active hosts are used and a new operator
a5 should be placed. None of the hosts has enough remaining
capacity to allow an assignment of the operator a5. Therefore,
a new host needs to be allocated and the a5 operator needs
to be placed on this host. However, if we consider the total
remaining capacity on all hosts it should be possible to
place the operator without allocating any new hosts. The
re-balancing is triggered if during the addition of an operator
op a new host should be allocated and the following condition
holds:

loadCPU(op) < (n · thres−
∑

∀o
loadCPU(o)) (3)

where n is the number of currently active hosts in the system
and ∀o represents all operators currently running in the
system.

For re-balancing we choose the host, where the difference
between remaining capacity and the newly assigned operator
load is minimal. For this host we use a subset algorithm [10]
to identify a minimal set of operators to redistribute in order
to make place for the new operator to be added. We use the
algorithm to calculate all valid solutions with a summed CPU
load within the interval [loadCPU(op), loadCPU(op) + int],
where int describes the interval size. From this set we select
the solution, which requires the smallest amount of state
to be moved. Considering the example in Figure 2, Host 3
will be selected as one with the closest remaining capacity.
Subsequently, operator f4 will be selected and moved to Host
1 and operator a5 will be placed on Host 3.

4. EVALUATION
We have implemented FUGU on top of a state of the art,

commercial, distributed CEP engine. We have extended the
underlying CEP system with capabilities required for dy-
namic host addition and removal as well as state migration.
The evaluation is conducted in a shared, private cloud envi-
ronment with up to 10 hosts with 2 cores and 4 GB RAM
each. For evaluation we use a real-world tick stream from the
Frankfurt Stock Exchange. We can replay the tick stream
with a variable or a fixed data rate. For evaluating our system
we use the following query template:

SELECT avg(price) FROM tickStream WITHIN x SEC
GROUP BY comp WHERE sector=y;

The above query calculates the average price for each
company within a certain sector. The query workload is made
variable by choosing the window size (x) and the sector (y)
randomly. The query workload pattern was extracted from a
web server log [3] – see Figure 3(a) and 3(b).

Performance is evaluated based on the end to end latency.
We define the end to end latency as the difference between the
time an event enters the system via source operator and the
time it leaves the system via sink operator. Due to different
complexities of queries the end to end latency of different
queries can not be easily compared. Instead, for each query
we calculate the ratio between the initial latency measured
for the first ten seconds after the query has been added and
the current end to end latency. We label this value as latency
ratio. Latency ration should be ideally always equal to 1.

4.1 Elastic Scaling of FUGU
The goal of the first experiment is to demonstrate that

FUGU is able to elastically scale the underlying CEP system

���

���

���

���

���

���

	

���� ��� ���� ���

�
�
�
���

��
	�

�
��
�

�����������	
��
�����

��
��������������� �����
��
������������

Figure 4: System utilization as a function of utiliza-
tion threshold thres

�

���

�

���

�

���

�

���

�

���

���� ��	 ��	� ��

�
�
��
�
�
�
�	
�
�

�

�����������	
��
�����

��
���
������������ ����� ��
�������������

Figure 5: Latency ratio as a function of utilization
threshold thres

with a varying number of queries. For this experiment we
set the utilization threshold thres to 0.85. Figure 3(a) shows
the average system utilization and used hosts count as a
function of the query count. During peak load system runs
45 queries in parallel across six hosts. It can be observed that
FUGU automatically scales underlying CEP system out and
in depending on the query workload. The average utilization
remains constant and oscillates around 60%. Figure 3(c)
shows the corresponding maximum latency ratio across all
queries running in the system. The average latency ratio of
all queries stays close to 1, however certain queries experience
short latency peaks. According to expectations this behavior
manifests itself mainly during reconfigurations of the system,
i.e., addition or removal of hosts.

In the following experiment we have enabled the re-balancing
algorithm and re-executed the experiment. Figure 3(b) shows
that the system is able to release hosts earlier and in average
uses less hosts than the approach without re-balancing. The
average utilization increases to 65%. However, due to the
re-balancing more peaks in the latency ratio can be observed
– see Figure 3(d). This confirms the existence of a basic intu-
itive trade-off: the more aggressive the elasticity policy the
less stable the system becomes.

4.2 Achievable Utilization
The goal of FUGU is to maximize the system utilization

without significantly impacting the end to end latency of the
running queries. In order to study the maximal achievable
utilization of our system we changed the threshold thres

3

Elastic Complex Event Processing under Varying Query Load

27

���

�

�

�

�

��

	�

��

�

���

���

��	

���

���

���

��

���

���

�

� �� ��� ��� ��� ��� 	�� 	�� ��� ��� ��� ��� ��� ���
��
�� ��� ��� ��� ���

�
�
��
��

�
�
	

��
�
�

�

�
�
�
���

��
��
��
��
�

����

�
����
��� ��������������
� ���� ��
���

(a) Elastic scaling – average system utilization as a function of the query count

���

�

�

�

�

��

	�

��

�

���

���

��	

���

���

���

��

���

���

�

� �� ��� ��� ��� ��� 	�� 	�� ��� ��� ��� ��� ��� ���
��
�� ��� ��� ��� ���

�
�
��
��

�
�
	

��
�
�

�

�
�
�
���

��
��
��
��
�

����

�
����
��� ��������������
� ���� ��
���

(b) Elastic scaling with re-balancing – average system utilization as a function of the query count

�

�

�

�

�

��

��

��

� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� 	�� 	�� ��� ���
��
��

��
��
�
�
�
�	
�
�

�

����

���������	
�����
� ���������	
�����
�

(c) Elastic scaling – maximum and average latency ratios

�

���

�

���

�

���

�

�

�

�

�

��

��

��

� �� ��� ��� ��� ��� 	�� 	�� ��� ��� ��� ��� ��� ���
��
�� ��� ��� ��� ���

�
��
��
��
��
�
��
	

�

��
��

��
��
�
��
�

����

���������� ��	
������
������� ���
������
�������

(d) Elastic scaling with re-balancing – maximum and average latency ratios and migrated state size

Figure 3: Elastic scaling with and without re-balancing

4

Elastic Complex Event Processing under Varying Query Load

28

���

����

���

����

���

����

���� ��� ���� ���

�
�
�
���

��
	�

�
��
�

�����������	
��
�����

����	
��
�� �����	
��
�� �����	
��
��

Figure 6: Average utilization as a function of varying
event rate and utilization threshold

for the upper bound of utilization per host from 75% up to
90%. Figure 4 shows the resulting system utilization as a
function of the threshold thres. In addition, Figure 5 shows
the average latency ratio. We can observe that the achievable
utilization increases from 53% for thres = 0.75 to 64% for
thres = 0.9 while the latency ratio increases from 1.6 to 2.7.
The maximal achievable utilization saturates starting from a
value of utilization threshold thres = 0.85.

By using the re-balancing scheme the average utilization
can be improved by up to six percent points, e.g. for thres =
0.9 to 70%. The maximal latency ratio increases to 3.8. The
maximal latency ratio is proportional to the frequency with
which the re-balancing is executed.

4.3 Influence of Event Rate
We have also measured the achievable utilization as a func-

tion of different stable event rates – see Figure 6. We have
varied the event rate between 500 and 1250 events per second.
The number of queries is identical as in case of the previous
experiment. The number of hosts is automatically changing
from 3 hosts for 500 events per second run with threshold
0.9 up to 9 hosts for 1250 events per second run with thresh-
old of 0.75. From the experiment we can conclude that no
linear correlation between the input rate and the achiev-
able utilization can be drawn. This indicates that setting a
good utilization threshold for different system conditions is
a challenging problem.

To emphasize this result we re-ran above experiment with
a varying event rate – see Figure 7. For this experiment we
have fixed the utilization threshold at 0.9. The event rate
pattern over time is shown in Figure 7(a). The event rate
changes between 300 and 600 events per second for a speedup
value of 5, and between 400 and 1000 events per second for
a speedup value of 10.

Figure 7(b) shows that the average system utilization, in
case of variable event rate, is lower than in case of a fixed
event rate. It is also, to a large extent, independent of the
selected utilization threshold. Moreover, we have observed
(see Figure 7(c)) that for individual hosts the utilization
threshold is often exceeded. These two observations show
a need to combine our approach with run-time adaptation
and elasticity policies [6, 7], in order to be able to efficiently
handle varying event rates.

�

���

���

���

���

����

����

� �� ��� ��� ��� ��� ���

�
�
�
�
��
�
�
��
�	
�
�
�
�
�

�

��

����

	
��
���
�

(a) Variable event rate pattern for a speedup value of 10

���

����

���

����

���

����

���� ��� ���� ���

�
�
�
���

��
	�

�
��
�

�����������	
��
�����

�	
��
����
����
���
������� ����
����
����
��������
��

����
����
����
��������
���

(b) Average system utilization as a function of the utilization
threshold and data rate

��

��

��

��

��

��

�	�

�	�

�	

�	�

�	�

�

� �� ��
� ��� ��� ���

�
�
�
��
��
�
�
	

�
�

���

�
��
��

�
�
	

����

�
������
�� ������������������ ���������������

(c) Maximum utilization of an individual host

Figure 7: Variable event rate evaluation

4.4 Discussion
Based on the above evaluation we can conclude that our

approach is well suited for elastic scaling with a varying num-
ber of queries. The system under control of FUGU is able
to dynamically adjust the number of hosts and is able to
keep the latency ratio close to 1 for the presented scenario.
By trying to maximize the utilization we have also demon-
strated that a trade off between latency ratio and achievable
utilization exists. Specifically, finding a good upper threshold
for the utilization of the system seems to be both important
and non-trivial.

We have also outlined, that the event rate has a major
influence on the achievable utilization. Especially, in case
of varying event rates the system utilization significantly
decreases. This requires the addition of run-time adaptation
to FUGU, which we consider as future work.

5. RELATED WORK
Elasticity in context of data stream processing systems

has been studied by various authors [6, 7, 12], however, none

5

Elastic Complex Event Processing under Varying Query Load

29

of the proposed approaches considered a varying query load.
Schneider et al. [12] present a scheme for elastic resource
scaling within a single node. The system can adapt the num-
ber of threads used by a single operator to be able to handle
varying event rate. Other approaches focus on adapting a
distributed data stream processing system to changing event
rates. Gulisano et al. [7] describe a distributed system using
an upper and a lower bound on the load variance to trigger
operator migration whenever these bounds are violated. The
implication of this approach is the possibility of allocation of
new hosts and thus worsening of the overall system utiliza-
tion. Fernandez [6] et. al. present an integrated solution for
dynamic scale-out and fault tolerance. Presented system sup-
ports check-pointing-based fault tolerance and policy-based
scale out. However, it is not possible to scale the system
in, therefore, unlike FUGU, it cannot be considered as fully
elastic.

Balancing the load among hosts of a streaming system is re-
lated to a class of algorithms used for operator placement [15,
4]. Operator placement algorithms can target different ob-
jectives, most common being: end to end latency, network
bandwidth and load (im-)balance – see [9] for a comprehen-
sive survey of placement strategies. Xing et al. [15] presents
an algorithm which balances the load between all hosts of
the system by minimizing the load variation between hosts.
FUGU uses similar technique where an initial assignment is
optimized by partial re-balancing. However, the approach of
Xing et al. only works for a fixed number of hosts, whereas
FUGU can adjust the number of hosts dynamically. Back-
man et al. [4] present an approach, which balances the load
between hosts using bin packing. Using simulation Backman
et al. conclude that the system is able to provide latency
guarantees. Evaluation with FUGU demonstrates that this
claim is difficult to uphold in a system with a dynamic set of
queries. Moreover, it is in opposition to the high utilization
goal of elastic systems.

6. CONCLUSION
In this paper we have presented FUGU, an allocation

component for distributed complex event processing systems.
FUGU is able to elastically scale in and out the underlying
CEP system with a varying query load. We have evaluated
FUGU using real life workloads and demonstrated that it can
achieve a good average utilization with a stable latency ratio.
We have also presented a re-balancing extension allowing to
migrate stateful and stateless operators between hosts, thus
improving the overall system utilization by up to 6%.

For the future we plan to investigate how to improve the
ratio between achievable utilization and measured latency.
We also plan for provisioning QoS guarantees for a system
under the control of FUGU. In addition, we want to extend
the system to allow for run-time adaptation to dynamically
changing event rates.

7. REFERENCES
[1] A. Adi, D. Botzer, G. Nechushtai, and G. Sharon.

Complex event processing for financial services. In
SCW 2006: Proceedings of the 2006 IEEE Services
Computing Workshops, pages 7–12, 2006.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud

computing. Communications of the ACM, 53(4):50–58,
April 2010.

[3] M. Arrington. AOL proudly releases massive amounts
of private data. TechCrunch: http://www. techcrunch.
com/2006/08/06/aol-proudly-releasesmassive-
amounts-of-user-search-data,
2006.

[4] N. Backman, R. Fonseca, and U. Çetintemel. Managing
parallelism for stream processing in the cloud. In
Proceedings of the 1st International Workshop on Hot
Topics in Cloud Data Processing, page 1. ACM, 2012.

[5] E. Coffman Jr, M. Garey, and D. Johnson.
Approximation algorithms for bin packing: A survey. In
Approximation algorithms for NP-hard problems, pages
46–93. PWS Publishing Co., 1996.

[6] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch. Integrating scale out and fault tolerance in
stream processing using operator state management. In
Proceedings of the 2013 ACM SIGMOD international
conference on Management of data, 2013.

[7] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez,
C. Soriente, and P. Valduriez. StreamCloud: An Elastic
and Scalable Data Streaming System. IEEE
Transactions on Parallel and Distributed Systems,
23(12):2351–2365, 2012.

[8] Y. Ji, T. Heinze, and Z. Jerzak. HUGO: Real-Time
Analysis of Component Interactions in High-Tech
Manufacturing Equipment. In DEBS 2013: Proc. Of
the 7th ACM International Conference on Distributed
Event-Based Systems, 2013.

[9] G. T. Lakshmanan, Y. Li, and R. Strom. Placement
strategies for internet-scale data stream systems.
Internet Computing, IEEE, 12(6):50–60, 2008.

[10] S. Martello and P. Toth. Algorithms for knapsack
problems. Surveys in combinatorial optimization,
31:213–258, 1987.

[11] C. Mutschler, H. Ziekow, and Z. Jerzak. The DEBS
2013 grand challenge. In DEBS 2013: Proc. Of the 7th
ACM International Conference on Distributed
Event-Based Systems, 2013.

[12] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L.
Wu. Elastic scaling of data parallel operators in stream
processing. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages
1–12. IEEE, 2009.

[13] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and
M. J. Franklin. Flux: An adaptive partitioning operator
for continuous query systems. In Data Engineering,
2003. Proceedings. 19th International Conference on,
pages 25–36. IEEE, 2003.

[14] S. D. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 37–48. ACM,
2002.

[15] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load
distribution in the borealis stream processor. In Data
Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on, pages 791–802. IEEE,
2005.

6

Elastic Complex Event Processing under Varying Query Load

30

Adaptive Selective Replication for Complex Event
Processing Systems

Vision Paper

Franz Josef Grüneberger
SAP AG

Chemnitzer Str. 48
01187 Dresden, Germany

franz.josef.grueneberger@sap.com

Thomas Heinze
SAP AG

Chemnitzer Str. 48
01187 Dresden, Germany
thomas.heinze@sap.com

Pascal Felber
University of Neuchâtel

Switzerland
pascal.felber@unine.ch

ABSTRACT
As of today, active replication is used in complex event pro-
cessing systems to enable near zero latency take over in case of
host failures. Moreover, elastic complex event processing sys-
tems adapt their resource consumption to the actual system
load. However, active replication is a coarse-grained approach
demanding the duplication of all used resources. Therefore,
we envision a system adopting adaptive fine-grained repli-
cation strategies allowing to trade off availability and used
resources.

1. INTRODUCTION
The dissemination of high frequency event sources raises

the demand to extract information from high velocity data
streams. Prevalent application domains comprise automatic
stock trading, credit card fraud detection, automated home-
care, as well as scientific experiments, logistics, and telecom-
munication. To process high velocity data (> 10.000 events
per second) with low latency (< 100 ms), a new class of ap-
plications enabling the efficient analysis of data in real-time
has ermerged. Prominent examples of such complex event
processing systems comprise Borealis [1], IBM System S [9],
and Yahoo! S4 [17].

Distributed complex event processing systems spanning
thousands of hosts cope with very high data rates and exten-
sive computations. However, the error probability increases
with the number of components in a system. Because in data
centers the probability for a single host to fail at least once
a year is between 4 and 8 percent [6, 20] and distributed
complex event processing systems execute all computations
in memory, fault tolerance techniques have to be leveraged
to circumvent unrecoverable data loss.

Various fault tolerance techniques like active replication [2]
and check pointing [11, 14] have been studied in the context
of complex event processing systems. To ensure failover with

almost zero latency, we focus on active replication. How-
ever, actively replicating a system requires at least twice the
resources. Therefore, this paper envisions techniques and
outlines the major challenges for an elastic fault-tolerant com-
plex event processing system that achieves high availability
via adaptive selective replication. Specifically:

1. We present an approach that leverages spare resources
to increase the availability of queries by replicating
selected parts, i. e. operators, of the running system.
Specifically, we present different strategies to select op-
erators for replication. Moreover, striving for maximal
availability, we introduce different placement strategies
to deploy operators on hosts.

2. We envision an optimization component supporting the
replication of queries to hit a certain availability target
while adhering to resource constraints. Moreover, the
component should assist minimizing the resource usage
for a certain availability goal.

3. We explore the challenges arising from replication in
elastic distributed complex event processing systems,
where both queries and hosts are dynamically added
to and removed from the system.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces the assumed system model. Section 3
presents an approach leveraging spare resources to improve
the availability of queries. In Section 4 we propose an opti-
mization component to minimize the resource consumption
for a certain availability target. The challenges arising from
an application of the approaches in an elastic system are out-
lined in Section 5. Related research is discussed in Section 6.
Finally, Section 7 concludes the paper.

2. SYSTEM MODEL

2.1 Query Model
Queries in the system are continuous queries that can be

added and removed at any point in time. As opposed to
one-shot queries that are sent to the system and then produce
a result once, continuous queries remain in the system for a
certain period of time and produce results continuously. Let
Q = {q1, q2, . . . , ql} be the set of queries in the system.

Queries are specified by the user in an event processing
language (EPL). In the system queries are represented as

131

directed acyclic graphs (DAGs). Nodes represent operators
that are connected by unidirectional edges. A query compiler
transforms queries specified in EPL into a query graph.

Each operator has one or two inputs and multiple outputs.
Operators with two inputs are referred to as binary operators.
Each operator has a type defining its basic behaviour: source,
projection, filter, aggregation, sequence, join, and destination.
Besides a type all operators, except sources and sinks, have
a predicate refining its functionality. For example in case of
a filter operator the predicate specifies the filter condition.

The following example query calculates the average price
of the SAP stock over the last 10 minutes.

INSERT INTO outStream
SELECT compName, avg(tick)
FROM tickStream WITHIN 600 seconds
GROUP BY compName
WHERE compName = "SAP";

The corresponding query graph, which is depicted in Fig-
ure 2, contains a source, filter, aggregation, and destination
operator.

To minimize the number of operators in the system, all
queries are optimized via a query optimization component,
which analyses the query graph of already running queries
with respect to reusable operators leveraging incremental
multi query optimization (MQO) techniques [12]. The opti-
mizer maintains an internal global query graph subsuming
all currently deployed queries. When adding a new query,
reusable parts are discovered using a breadth-first search
on the global query graph. Figure 1 shows an example for
multi query optimization with two queries. Operators of
the already running query are depicted in the upper lane,
whereas operators for the newly added query are depicted in
the lower lane. Assuming that the same operator name indi-
cates the same operator type and predicate, the operators S1

and F1 are part of both queries. Instead of redeploying this
operators, they are reused from the already running query,
which is illustrated via the grey box.

Running
Query

New
Query

S1 F1 A1 D1

S1 F1 A2 D2

merge

Figure 1: Incremental multi query optimization

2.2 Replication Model
To ensure near zero latency takeover, we assume active

replication in the system. Each operator can have multiple
replicas exhibiting exact the same behaviour as the primary
operator. However, this approach results in the consumption
of additional resources.

Query operators and replicas are deployed independently
on available hosts. The current placement of operators on
hosts is described via a placement function plc : O → H,
where O = {o1, o2, . . . , om} is the set of operators for all
queries in the system and H = {h1, h2, . . . , hn} denotes the
set of used hosts.

2.3 Failure Model
According to the query model the system comprises several

operators (timed processes) that are executed on a set of
hosts. We assume that each host has a probability p to fail
with a crash stop failure. Crash stop failures result in an
immediate crash of all operators placed on the specific host.
Moreover, we assume that Byzantine (value) errors caused
by erroneous executions can be transformed into crash stop
failures, e. g. by means of Software Encoded Processing [8].
In the following we consider the time period of one day. Due
to the fact that in modern data centers the mean time to
repair (MTTR) can be up to two days [6], we assume that
crashed hosts will stay down for the whole day. Moreover,
host crashes are assumed to be uncorrelated, i. e. if some
hosts fail others will remain running.

A query is considered broken, iff for at least one of its
operators neither a primary operator nor an operator replica
is executed anymore.

2.4 Load Model
We assume a load model, which is based on work in the

context of the data streaming system Borealis [23] and by
Viglas et al. [19]. Each operator has one or two inputs and
multiple outputs that are associated with a certain event
rate. We assume that the input event rate for source opera-
tors is given and the output event rate for source operators
equals the input event rate. Each operator op has a certain
load load(op). A load of 1.0 represents 100 % CPU usage
in a fixed time interval - usually one second. This operator
load is calculated as product of the input event rate of an
operator multiplied by the cost c, which describes the time
required by the operator to process a single tuple.

For the example query depicted in Figure 2 the load of the
different operators can be specified as load(S1) = r1 ∗ c(S1),
load(F1) = r1 ∗ c(F1), load(A1) = r2 ∗ c(A1), load(D1) =
r3 ∗ c(D1). Since each operator is associated with a se-
lectivity value, input event rates of operators can be cal-
culated as linear combination of source stream rates and
operator selectivity of predecessor operators. For example
the input event rate r3 of operator D1 can be expressed as
r3 = sel(A1) ∗ r2 = sel(A1) ∗ (sel(F1) ∗ r1).

S1 F1 A1 D1
r1 r2 r3

Figure 2: Example query graph

Moreover, each operator has incoming (netin) and outgo-
ing (netout) network traffic. The incoming traffic netin(op)
is calculated as product of input rate and input tuple size
of the operator, whereas the outgoing traffic netout(op) is
calculated by the output rate multiplied with the output
tuple size.

For the sake of convenience in the remainder of this paper
the term load is used interchangeably with CPU resources.

3. HEURISTIC REPLICATION
Complex event processing systems are exposed to a vary-

ing workload caused by different event rates as well as the
addition and removal of queries. Figure 3 sketches a fictitious
workload of a system processing queries for traffic monitoring.
Peak loads indicate rush hour traffic. To deliver results for
the queries in real-time, the system has to be equipped with

2

Adaptive Selective Replication for Complex Event Processing Systems

32

enough resources to handle those peak loads. However, since
the peak load can only be estimated, phases of underpro-
visioning may occur, which are indicated by the dark gray
areas. Moreover, this leads to phases of overprovisioning
indicated by the dotted areas.

0

10

20

30

40

50

60

70

U
s

e
d

 H
o

s
ts

Time

Overprovisioning

Underprovisioning

Figure 3: Workload of a data stream processing sys-
tem

Heuristic replication targets the usage of such spare re-
sources in distributed complex event processing systems to
increase the availability of queries. Assume a system that
comprises a set of n hosts H = {h1, h2, . . . , hn} with an over-
all CPU capacity of loadcap = n ∗ hostcap. Query operators
are placed according to an operator to host mapping plc.
The unused CPU resources loadrem can be calculated as

loadrem = loadcap −
∑

op∈O
load(op)

Since queries can be added to and removed from the system
at runtime the amount of remaining resources usable to im-
prove the availability of queries in the system changes over
time. If the remaining load is smaller than the load of all
queries in the system, not all operators can be replicated
and, thus, a subset of operators has to be selected for repli-
cation. Thus, we propose a three step approach. First, all
operators are rated according to their potential to improve
query availability by means of an operator importance heuris-
tic (see Section 3.1). Second, the set of operators as well as
the replication level, i. e. the number of replica instances,
is determined for each operator using an operator selection
algorithm (see Section 3.2). Third, the replica instances
are deployed on hosts according to an operator placement
strategy (see Section 3.3). Finally, in Section 3.4 we present
an evaluation.

3.1 Operator Importance Heuristics
The potential of operators to improve the availability of

queries is rated using a normalized importance function
impheur : O → [0, 1] that associates each operator in the
system with a normalized importance value. Depending on
the source of information used for calculating this importance
value, static and dynamic heuristics can be distinguished.

3.1.1 Static Heuristics
Static heuristics calculate the importance of operators

based on properties observable in the global query graph.
Due to the multi query optimization operators can be reused
by multiple queries. Hence, if a reused operator fails, all
depending queries crash. One possible heuristic, referred to
as query out degree heuristic, is based on this observation
and rates the importance of operators that are reused by

multiple queries more important. The calculation of the
query out degree heuristic can be expressed as

impQOD(op) =
deg(op)

|Q|
where deg(op) is the number of queries leveraging the op-
erator op, and |Q| is the number of queries running in the
system.

3.1.2 Dynamic Heuristics
Dynamic heuristics assess runtime properties of operators

and are, thus, dependent on models providing estimations
if an operator is deployed for the first time. If for example
the required resources are considered, the heuristics are de-
pendent on the load model of the system (see Section 2.4).
One example for a dynamic heuristic is the low utilization
heuristic that tries to replicate as much operators as possible.
Therefore, operators with a small load are preferred. The
calculation of the heuristic can be expressed as follows:

impLU (op) = 1− load(op)

max(load(O))

where max(load(O)) is the maximum operator load among
all operators currently running in the system.

3.1.3 Query Level Heuristics
The heuristics introduced so far operate on an operator

level, i. e. operators are treated independent of each other.
Hence, operator-level heuristics might cause the selection of
only most but not all operators for a query. Not selected
operators are weak spots and decrease the achievable avail-
ability for the query tremendously. Therefore, we propose to
combine operator importance values into query importance
values, which are expressed using a normalized importance
function for queries impQheur : Q → [0, 1]. Operator selec-
tion algorithms operating on query level heuristics will ensure
that once a query was selected for replication all operators
of that query are replicated. Only if not enough resources
are available to replicate a full query, single operators would
be selected.

3.2 Operator Selection Strategies
Operator selection strategies take care of the actual op-

erator selection based on the operator importance and the
remaining load loadrem in the system. The calculated opera-
tor selection can be described as function sel : O → Z, which
associates each operator with a number of replicas referred
to as replication level rep(op).

3.2.1 Simple Operator Selection
A simple operator selection strategy sorts all operators

descending based on their relative importance defined via
impheur. Afterwards operators are selected for replication
until all spare resources loadrem are consumed. Selecting
operators for replication includes the determination of the
replication level, i. e. the number of replicas to create for
a single operator. Different selection procedures can be
established:

1. All operators can be selected for replication at least
once if enough remaining resources are available. If
afterwards spare resources are still available, the repli-
cation level for the already selected operators can be

3

Adaptive Selective Replication for Complex Event Processing Systems

33

increased stepwise. This procedure ensures that each
operator is replicated at least once, if enough resources
are available.

2. A replication level larger than one might be set di-
rectly for an operator. Hence, some operators might
be excluded from replication, if already all resources
are consumed.

3.2.2 Optimized Operator Selection
The simple operator selection strategy selects operators

for replication based on either a static or dynamic heuristic.
Thus, only one type of available information is incorporated
at a time and the resulting selection of operators can lead to
a non-optimal availability of queries. Therefore, we propose
to augment the selection process based on a static heuristic
with runtime information by modeling the operator selection
problem as 0-1 knapsack problem [16].

Each operator opi ∈ O has a value vi = impheur(opi)
and a weight wi = load(opi). The maximum weight of the
bag equals the remaining resources loadrem in the system.

Because the 0-1 knapsack problem is NP-hard and load
values of operators and, thus, the optimal solution changes
continuously, we suggest an approximation by means of a
combination of static and dynamic heuristics. The optimiza-
tion is based on the intuition that operators with the greatest
profit per weight unit have to be selected first. Thus, we
propose to leverage a product of the query out degree and
low utilization heuristic

impQOD∗LU (op) = impQOD(op) ∗ impLU (op)

as basis for the operator selection.

3.3 Fault-tolerant Operator Placement
Operators selected for replication via the operator selection

algorithm have to be deployed on hosts. However, depending
on the chosen operator placement for the same set of selected
operators different availabilities can result.

3.3.1 Simple Bin Packing
A bin packing algorithm [4] for fault-tolerant operator

placement minimizes the number of used hosts, so that idling
hosts can be turned off to save energy. This property is in
line with the notion of elasticity. We propose a bin packing
algorithm, which is an extended version of a first-fit bin
packing, which has a complexity of O(mn), where m is the
number of replicas that shall be placed and n the number of
hosts.

Each host is modeled as bin, where the available CPU
resources form the capacity. Replicas are first sorted in
decreasing order according to their normalized importance
and then assigned using their load as weight. Moreover, two
constraints are ensured: (i) the network capacity of a host
should not be exceeded, (ii) two replicas of the same operator
are never placed on the same host. To reduce the consumed
network bandwidth, possible hosts are ordered according to
a neighboring factor representing the amount of predecessor
and successor operators deployed on the same host.

3.3.2 Colored Bin Packing
Even though the simple bin packing algorithm is replica-

aware due to the additional placement constraint, the system
availability is not maximized because as many replicas of

●

●

●

●

●

●

92

94

96

98

100

0.0 0.5 1.0 2.0 3.0
Host Crash Probability (%)

R
un

ni
ng

 Q
ue

rie
s

(%
)

●

100%
Query Out Low Utilization (50%)
Low Utilization (50%)
Query Out (50%)
Random (50%)

Figure 4: Comparison of query availability for differ-
ent heuristics

different operators as possible are placed on one host. Thus,
multiple replicas crash in case of a host failure.

Therefore, we propose to use a bin packing algorithm with
color constraints [5]. Besides load and network consumption,
each replica will be associated with a unique color. The col-
ored bin packing algorithm ensures that each host contains
only replicas with at most c distinct colors, where c is a
pre-defined positive integer. Because the number of repli-
cas placed on the same host shall be minimized, an upper
bound C with c ≤ C is specified for the color constraint.
Then the placement problem can be formulated with an
additional constraint that strives to minimize the parame-
ter c. If no placement can be found without violating the
upper bound C, the simple bin packing algorithm is used to
calculate a placement.

3.4 Evaluation
We have performed a preliminary simulation-based evalua-

tion of the proposed approaches. We used a query generator
to generate queries based on six query templates that differ in
structure and operator parameters. Operators were deployed
on simulated hosts with a CPU capacity of loadcap = 1. We
assume a system comprising 100 hosts. Moreover, operators
were replicated at most once. To guarantee statistical cor-
rectness, 1000 runs were conducted for each experiment and
values have been averaged.

Figure 4 depicts the percentage of remaining running
queries after a time period of one day assuming different
host failure probabilities p = {0.0025; 0.005; 0.01; 0.02; 0.03}
and different heuristics for rating the importance of opera-
tors. Because a constant system load load(O) = 100 was
generated, the stated percentages of resources available for
replication are equal to the actual remaining load loadrem
in the system. Leveraging either the low utilization heuris-
tic or the query out degree heuristic to select operators for
replication improves the percentage of remaining running
queries by approximately 1.7 percentage points compared to
a random operator selection assuming a host failure proba-
bility of p = 0.02 and loadrem = 50. Using a combination
of both heuristics improves the query availability further by
0.4 percentage points, resulting in 99.2 % remaining running
queries.

Figure 5 shows the availability increase as a function of
available resources for replication. A combination of query
out degree and low utilization heuristic results in 99.2 %
remaining running queries, if a host failure probability of
p = 0.02 and loadrem = 50 is assumed. Moreover, the
achievable percentage of running queries is only diminished

4

Adaptive Selective Replication for Complex Event Processing Systems

34

●

●

●

●

●

●

92

94

96

98

100

0.0 0.5 1.0 2.0 3.0
Host Crash Probability (%)

R
un

ni
ng

 Q
ue

rie
s

(%
)

●

100%
90%
50%
10%
1%
0%

Figure 5: Query availability for combination of query
out degree and low utilization heuristic

by approximately one percentage point compared to full
replication, if 50 % less spare resources are used for replication
and the host failure probability is p = 0.03. This result can
be explained by the fact that with loadrem = 50 available for
replication still 80 % of the query operators are replicated.
Moreover, those operators are reused to a large extent or
have small cost.

4. REPLICATION OPTIMIZER
Service level agreements are important in scenarios where

a certain availability is required. However, achieving a higher
availability by replicating more operators requires more re-
sources. Therefore, the solicited availability and the resulting
resource consumption should be traded off. Replication of
operators in a system can be optimized with respect to two
different optimization goals:

1. For a given resource limit costmax, the availability of
queries A(Q) can be maximized.

2. For a given availability of queries A(Q), the resource
consumption cost(Q) can be minimized.

The achieved availability of queries is influenced by the set
of operators selected for replication, the number of replicas
that is created for each of the selected operators, as well
as the placement of replicas on hosts. All those influential
parameters are reflected in the placement plc and, thus, the
placement can serve as predictor for the achievable availability.
To optimize the replication decisions according to the two
specified optimization goals, additional models have to be
incorporated. To estimate the costs for a placement, the load
model for query operators can be leveraged. Moreover, an
availability model is required that enables the estimation of
the query availability resulting from a certain placement.

Assuming the availability of those models, the optimization
problems can be formulated as follows:

max{A(plc) | plc ∈ P; cost(plc) ≤ costmax}
and

min{cost(plc) | plc ∈ P;A(plc) ≥ A(Q)}
where P is the set of all possible placements resulting from
different operator selections, different replication levels, as
well as different placement strategies.

Those optimization problems can be solved using well-
known optimization algorithms like genetic search [10]. How-
ever, to lower the effort for the optimization, heuristics to
restrict the search space have to be developed.

5. DYNAMIC REPLICATION
Elastic data stream processing systems are able to cope

with varying query as well as event load. Mechanisms to dy-
namically allocate and release hosts depending on the actual
demand prevent costly overprovisioning and performance
barriers due to underprovisioning. Ideally the system can
scale out indefinitely to serve high event rates and scale in
to lower the used resources in case of low utilization.

Processing queries in an elastic environment poses various
challenges. Once new queries are submitted to the system,
the encompassed operators have to be distributed to the
running hosts. Because of operator reuse the load of already
deployed operators changes. To not impair the performance
of the system two reactive actions are taken: (i) overloaded
hosts might be relieved by automatically migrating operators
from one host to another, (ii) overload situations that cannot
be resolved by moving operators from one host to another
are resolved by splitting the operator into several operator
instances that handle only a portion of the overall load and
can be deployed independently.

However, handling replicas in a dynamic system is demand-
ing:

• The complexity of the reconfiguration caused by the
exoneration of overloaded hosts is increased since addi-
tional communication channels for replicas have to be
maintained.

• If operators are split into several instances, all replicas
have to be split too in order to maintain a consistent
system state.

• Systems that are used in conjunction with heuristic
replication (see Section 3), have to decide in case of
spare resources whether to release hosts or to create
additional replicas.

• Reconfiguration routines have to ensure that the new
placement does not violate existing service level con-
straints for the queries (see Section 4).

6. RELATED WORK
Fault tolerance techniques for data stream processing sys-

tems like active replication [2], check pointing [14], and a
combination of active and passive replication [24], are key
enablers for our proposed approaches.

Moreover, operator placement algorithms are leveraged,
which have been studies extensively by various authors. A
survey is available in [15]. Repantis et al. [18] presented
a procedure for replica placement considering performance
constraints like end-to-end latency. The ZEN system [3]
models different levels of availability in a systems and tries
to assign most important operators to hosts with the highest
availability. Another replication scheme based on graph
coloring is presented in [22].

Optimization in the area of data stream processing systems
is done for example to achieve an optimal overall utiliza-
tion [21], or optimal utilization with limited resources [13].

An approach related to that in this paper has been studied
by Fernandez et al. in [7]. The authors present an integrated
approach to scale out streaming systems while achieving fault
tolerance via check pointing. In this paper we focus, however,
on active replication to ensure minimal latency and envision
also scale in.

5

Adaptive Selective Replication for Complex Event Processing Systems

35

7. SUMMARY
As of today, many data stream processing systems use

replication to ensure high availability in case of host failures.
However, to replicate a system completely, at least twice the
resources have to be allocated, which is costly.

We proposed a heuristic replication approach enabling the
use of remaining system resources to increase the availabil-
ity of queries. An operator selection algorithm is used to
determine a subset of operators for replication that are then
placed via an operator placement algorithm. Moreover, we
suggested a replication optimizer which allows users to guide
the replication while trading off cost and availability. Finally,
the challenges arising from a combination of these techniques
with elastic data stream processing systems were discussed.
Using heuristic replication as well as the replication opti-
mizer with a system reacting on changes, e. g. in event rate
and selectivities, demands the adaptation of the placement
routines. However, the normalized importance functions as
well as the optimization routines might be reused unchanged.

To validate the approaches we simulated a heuristic repli-
cation approach comprising operator selection as well as
operator placement strategies. Given a set of remaining
resources, the fault tolerance of complex event processing
systems is improved. Choosing a proper heuristic can im-
prove the availability two percentage points compared to a
random operator selection. Compared to full replication only
one percentage point is lost spending 50 % less resources for
replication.

In the future, we plan to implement the proposed ap-
proaches with a state-of-the-art streaming system.

8. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B.
Zdonik. The design of the Borealis stream processing
engine. In CIDR, pages 277–289, 2005.

[2] M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-tolerance in the borealis
distributed stream processing system. ACM Trans.
Database Syst., 33(1), 2008.

[3] N. Bansal, R. Bhagwan, N. Jain, Y. Park, D. S.
Turaga, and C. Venkatramani. Towards optimal
resource allocation in partial-fault tolerant applications.
In INFOCOM, pages 1319–1327, 2008.

[4] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson.
Approximation algorithms for np-hard problems.
chapter Approximation algorithms for bin packing: a
survey, pages 46–93. PWS Publishing Co., Boston, MA,
USA, 1997.

[5] M. Dawande, J. Kalagnanam, and J. Sethuraman.
Variable sized bin packing with color constraints.
Electronic Notes in Discrete Mathematics, 7:154–157,
2001.

[6] J. Dean. Handling Large Datasets at Google: Current
Systems and Future Directions. In Data-Intensive
Computing Symposium, 2008.

[7] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch. Integrating scale out and fault tolerance in
stream processing using operator state management. In
ACM International Conference on Management of

Data (SIGMOD), New York, NY, 06/2013 2013. ACM,
ACM.

[8] C. Fetzer, U. Schiffel, and M. Süßkraut. An-encoding
compiler: Building safety-critical systems with
commodity hardware. In SAFECOMP, pages 283–296,
2009.

[9] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and
M. Doo. SPADE: the system s declarative stream
processing engine. In SIGMOD Conference, pages
1123–1134, 2008.

[10] D. E. Goldberg. Genetic Algorithms. Pearson
Education, 2013.

[11] J.-H. Hwang, Y. Xing, U. Çetintemel, and S. B.
Zdonik. A Cooperative, Self-Configuring
High-Availability Solution for Stream Processing. In
ICDE, pages 176–185, 2007.

[12] C. Jin and J. G. Carbonell. Predicate Indexing for
Incremental Multi-Query Optimization. In ISMIS,
pages 339–350, 2008.

[13] E. Kalyvianaki, W. Wiesemann, Q. H. Vu, D. Kuhn,
and P. Pietzuch. Sqpr: Stream query planning with
reuse. In ICDE, pages 840–851, 2011.

[14] Y. Kwon, M. Balazinska, and A. G. Greenberg.
Fault-tolerant stream processing using a distributed,
replicated file system. PVLDB, 1(1):574–585, 2008.

[15] G. T. Lakshmanan, Y. Li, and R. E. Strom.
Placement strategies for internet-scale data stream
systems. IEEE Internet Computing, 12(6):50–60, 2008.

[16] S. Martello and P. Toth. Knapsack problems:
algorithms and computer implementations.
Wiley-Interscience series in discrete mathematics and
optimization. J. Wiley & Sons, 1990.

[17] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed Stream Computing Platform. In ICDM
Workshops, pages 170–177, 2010.

[18] T. Repantis and V. Kalogeraki. Replica placement for
high availability in distributed stream processing
systems. In DEBS, pages 181–192, 2008.

[19] S. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
SIGMOD Conference, pages 37–48, 2002.

[20] K. V. Vishwanath and N. Nagappan. Characterizing
cloud computing hardware reliability. In SoCC, pages
193–204, 2010.

[21] J. L. Wolf, N. Bansal, K. Hildrum, S. Parekh,
D. Rajan, R. Wagle, K.-L. Wu, and L. Fleischer. Soda:
An optimizing scheduler for large-scale stream-based
distributed computer systems. In Middleware, pages
306–325, 2008.

[22] F. Xiao, T. Kitasuka, and M. Aritsugi. Economical and
fault-tolerant load balancing in distributed stream
processing systems. IEICE Transactions,
95-D(4):1062–1073, 2012.

[23] Y. Xing, J.-H. Hwang, U. Çetintemel, and S. B.
Zdonik. Providing resiliency to load variations in
distributed stream processing. In VLDB, pages
775–786, 2006.

[24] Z. Zhang, Y. Gu, F. Ye, H. Yang, M. Kim, H. Lei, and
Z. Liu. A hybrid approach to high availability in stream
processing systems. In ICDCS, pages 138–148, 2010.

6

Adaptive Selective Replication for Complex Event Processing Systems

36

Dynamic Partitioning of Big Hierarchical Graphs∗

Vasilis Spyropoulos
Athens University of Economics and Business

76 Patission Street
Athens, Greece

vasspyrop@aueb.gr

Yannis Kotidis
Athens University of Economics and Business

76 Patission Street
Athens, Greece

kotidis@aueb.gr

ABSTRACT
Hierarchical graphs are multigraphs, which have as vertices the leaf
nodes of a tree that lays out a hierarchy, and as edges the interac-
tions between the entities represented by these nodes. In this paper
we deal with the management of records that are the edges of such
a graph by describing a model that fits well in a number of appli-
cations, many of which deal with very big volumes of streaming
distributed data that have to be stored in a way so as their future re-
trieval and analysis will be efficient. We formally define a partition-
ing schema that respects the hierarchy tree, and apply these ideas
by using well known open source big data tools such as Apache
Hadoop and HBase on a small cluster. We built a framework on
which we examine some basic policies for the partitioning of such
graphs and draw interesting conclusions regarding the quality of the
partitions produced and their effectiveness in processing analytical
queries drawn from the imposed hierarchy.

1. INTRODUCTION
There are numerous applications such as management and visu-

alization of Telecommunications data [1], Web log mining [2] or
Internet traffic analysis [3], in which data records can be described
as edges between vertices of a hierarchical graph, i.e a directed
multigraph whose vertices are also the leaf nodes in a hierarchy
tree. As an example, Call Detail Records (CDRs) can be naturally
depicted via a massive graph structure in which nodes represent
customers’ phone numbers and edges between them their calls. At
the same time, the nodes of this graph are the leaves of a tree that
indicates their location and superimposes a geographical hierarchy
over this data [4].

You can see such an example in Figure 1 which presents a small
part of the hierarchy of locations in Greece. In this Figure, At-
tiki and Messinia are states of Greece, while Athens, Piraeus and
Kalamata are cities in these states. The unlabeled nodes represent

∗This research has been co-financed by the European Union (Euro-
pean Social Fund ESF) and Greek national funds through the Op-
erational Program ”Education and Lifelong Learning” of the Na-
tional Strategic Reference Framework (NSRF) - Research Funding
Program: RECOST

Greece

Attiki Messinia

Athens Piraeus Kalamata

Figure 1: Example of a hierarchical graph - the graph consists
of the unlabeled nodes, which are also the leaves of a hierarchy
tree, and the edges/interactions between them

subscribers of a telephony network. Then, each call serviced by the
telephony network instantiates a new directed edge in the graph, be-
tween the respective vertices (caller and callee) located at the leaves
of the hierarchy tree, as is shown in the Figure. This hierarchy is
exploited in order to help pose queries that seek to retrieve cer-
tain records for further analysis. For instance in order to calculate
statistics on the out-of-state calls originating in Athens, this inten-
tion may be described by a query edge between Athens and Greece
in the tree. Similarly, query edge (Attiki, Attiki) denotes the set of
calls originating and terminating within this state. The aforemen-
tioned query edges are shown in Figure 1 (dashed lines). Another
example where similar hierarchical graphs exist, is social networks
where users are organized in groups according to their location or
other characteristics such as age or interests and we need to record
the interactions between them. Users (e.g. analysts) of such data
often need to answer queries regarding interactions or distributions
of records between hierarchy groups not necessarily belonging to
the same level of the hierarchy.

In the aforementioned applications, this kind of graphs can grow
to enormous size. For instance a large telecom provider may ser-
vice hundreds of millions of calls per day, each triggering a new
edge in the graph. Moreover, this data is distributed by nature
as it is being streamed from distant locations (e.g. call centers,
web hosts, ip routers). Thus, we need solutions that can cope with
the volume, but also with the streaming and distributed nature that
characterize this kind of data.

In our work we address these challenges by moving the storage
and processing of these graphs to the cloud. We propose a sys-
tem that uses the distributed data store HBase [5] running on the

37

Hadoop distributed file system [6], but also MapReduce [7] tech-
niques so as to handle a continuous stream of updates efficiently.
Our system leverages the available degree of hardware parallelism
by devising a dynamic partitioning scheme over the streamed edges
of the hierarchical graph. Our techniques aim at generating parti-
tions that correspond to clusters of graph edges, which are naturally
mapped to collections of nodes in the hierarchy tree, while respect-
ing the distribution of the streamed records. In this way, analysis of
the records based on the superimposed hierarchy can be performed
in an efficient manner. Our contributions are:

• We revisit the problem of managing massive hierarchical
graphs that are streamed by many applications of interest.
Our techniques utilize emerging computational and data man-
agement platforms for manipulating large, dynamic and dis-
tributed collections of records in a cluster of machines. Avail-
able parallelism is exploited via a dynamic partitioning
scheme we propose for the streamed records.

• We formally define the space of choices for partitioning the
streamed graph, while respecting the hierarchy tree that is
superimposed over its nodes. We then present a number of
interesting partitioning policies, and describe the details of
the system we built for implementing our framework while
utilizing off-the-shelf tools.

• We present an experimental evaluation of our system using a
small cluster of machines. Our results demonstrate the effi-
ciency of our system in managing massive graphs scaling to
millions of edges. We also provide a comparison among the
partitioning policies we implemented based on the results of
a number of experiments that we conducted.

The rest of the paper is organized as follows. In Section 2 we dis-
cuss related work. In Section 3 we formally introduce our frame-
work, discuss the type of graph data and queries we consider. Then,
we describe a partitioning scheme based on the tree hierarchy that
accompanies the graph data, a number of partitioning policies that
we implemented and discuss the architecture of our system. Sec-
tion 4 presents our experiments and Section 5 contains concluding
remarks.

2. RELATED WORK
Interest in graphs and their applications in data management has

been renewed due to the wide spread of fields such as social net-
works and the semantic web. In the same time there is a profound
need for the efficient management of big distributed data. As a
result we can see a lot of recent work done in the area, ranging
from graph databases to distributed graph processing or graph par-
titioning techniques. The latter mainly cope with the problem of
splitting a large graph by assigning its vertices into independent
partitions. While there are several variations of the problem, a typ-
ical objective is to obtain partitions such that the sum of the vertex
weights across partitions is even while the sum of the inter-partition
edges is minimized [8, 9]. The work in [10] proposes data parti-
tioning that is guided by the user’s queries. Another approach that
aims at the partitioning of graphs across clusters of servers in a dy-
namic way by using queries during the runtime of the system can
be found in [11]. Our query-driven partitioning policy described in
Section 3 is motivated by these ideas but the actual setting is dif-
ferent. In [12] the authors present SPAR, a social partitioning and
replication middle-ware that uses the social graph structure in or-
der to achieve data locality. In our work we also use a structure to
guide the partitioning but the structure we use is a hierarchy tree.

(Greece,Greece)

(Attiki,Greece) (Messinia,Greece)

(Attiki,Attiki) (Attiki,Messinia)

(Attiki,Athens) (Attiki,Piraeus)

Figure 2: Example state of a partition tree TP

The objective in our work is quite different to vertex partition-
ing since we actually do partitioning of the edges of a hierarchical
multigraph. These edges represent interactions between nodes that
need to be investigated according to the imposed hierarchy. In a
typical scenario aggregation of these edges at the higher levels of
the hierarchy tree is more important for the application, while in
certain applications, such as analysis of call detail records, deci-
sion making based on fine-granularity statistics (i.e. low-level ag-
gregations) is in-fact prohibited by law, so that certain carriers can-
not obtain unfair advantage over their competitors. Our techniques
can benefit systems built for visualizing hierarchical multigraphs
(e.g. [1]). Moreover, indexing techniques for hierarchical multi-
graphs such as [4] and multi-dimensional indexes over key-value
stores as in [13] can be incorporated in our system for providing
fast access to individual records within the partitions created by
our framework.

3. SYSTEM OVERVIEW

3.1 Definitions
Assuming a rooted hierarchy tree T , we denote the set of its

leaves as Leaves(T). We refer to a subtree rooted at a vertex
x ∈ T as Tx. For vertices u and v of T we say that v is de-
scendant of u if there is a path descending from u to v, including
the case that u equals v. Vertices u and v are called comparable in
T if one of them is descendant of the other and incomparable in T
if neither u nor v is a descendant of the other. Also, by depth(u)
we shall refer to the number of edges that have to be crossed so as
to get from u to the tree root node.

A hierarchical graph is a multigraph G(T, V,E), where T is a
tree, V is the set of vertices in the graph, which are also the leaves
of T (V =Leaves(T)) and E is a multiset of edges between the
nodes in V . We assume that each instance of an edge is labeled
with a unique identifier in order to be able to assign data on them
(i.e. in the CDRs example, each edge is associated with a unique
key that identifies the corresponding CDR).

In order to represent the set of edges between nodes in T and
their relationships, we define the graph GT2 . Each possible pair of
nodes u and v in T is a vertex [u, v] in GT2 and we refer to u as the
source node in T and v as the destination node in T . The edges in
GT2 imply a hierarchy inherited from the hierarchy described by
tree T . In particular, there is an edge between nodes [u1, v1] and
[u2, v2] in GT2 if exactly one of the following conditions hold: (i)
u2 is a child of u1 in T , (ii) v2 is a child of v1 in T .

Graph GT2 is used in our framework in order to define our par-
titioning scheme on the edges of the hierarchical graph. Moreover,
the nodes of GT2 , as will be explained in Section 3.2, are used
in order to model possible queries on this data. Then, the edges of
GT2 will determine partitions that contain relevant data for a query.

Each vertex [u, v] ∈ GT2 is a candidate partition Pu,v to be ma-

Dynamic Partitioning of Big Hierarchical Graphs

38

terialized by our partitioning scheme. Keeping all GT2 in memory
is not a feasible solution at its size is quadratic on the size of T .
As will be explained, our partitioning process progressively splits
the hierarchical graph and constructs a partition tree TP , which is a
subgraph of GT2 . When we need to locate partitions so as to insert
new records or answer queries we use TP as our lookup structure.
An example partition tree TP which follows the hierarchy of Figure
1 is shown in Figure 2

Finally, by Cu,v we refer to a counter of how many records are
contained in the partition Pu,v and by threshold to the value that
when the number of records in a partition grows bigger than, the
partition has to be split in smaller ones and then get dropped.

3.2 Hierarchical Queries
In our framework, retrieval of edges belonging to the hierarchi-

cal graph is accomplished via queries that are modeled using the
hierarchy tree T . In particular a query Qu′,v′ is denoted as a query
edge in T (see Figure 1). This query denotes our intention to re-
trieve all edges that have as source vertices the leaves of Tu′ and as
destination vertices the leaves of Tv′ . When such a query arrives we
need to be able to decide which of the materialized partitions in TP

may contain relevant graph edges. In order to achieve that we tra-
verse TP in a top-down fashion and check each vertex Pu,v against
the query Qu′,v′ . The partition is considered useful in answering
the query when their respective source and destination vertices are
comparable in T . We continue traversing TP descending the use-
ful partitions until we get to the active partitions (active partitions
are these that contain data and are pointed by the leaf nodes of TP

as explained in Section 3.3), which are returned to the query for
further processing (e.g. filtering of relevant edges). In case that
during the traversal we come across a Pu,v for which it stands that
u is equal to u′ and v is equal to v′ then we stop the traversal and
retrieve the leaf nodes in the subtree rooted at Pu,v . In that case,
all the edges in the respective partitions are returned to the user.

In our running example, assuming that the partition tree TP is
at the state shown in Figure 2 and that we have to answer query
QAthens,Messinia that retrieves all CDRs from locations in Athens
to locations in the state of Messinia, we first check the root of TP

which is [Greece, Greece]. Since Athens is comparable to Greece
and Messinia is comparable to Greece we continue with examin-
ing the children of [Greece, Greece], which are [Attiki, Greece]
and [Messinia, Greece]. Athens is comparable to Attiki and so is
Messinia to Greece, so node [Attiki, Greece] is useful, but Athens
is incomparable to Messinia so we do not have to further investi-
gate the node [Messinia, Greece] or any node in TMessinia,Greece.
Next we have to check nodes [Attiki, Attiki] and [Attiki, Messinia]
which are the children of [Attiki, Greece]. Athens is comparable
to Attiki but Messinia is incomparable to Attiki so [Attiki, Attiki]
is not considered useful. On the other hand [Attiki, Messinia] is
useful since Athens is comparable to Attiki and Messinia is compa-
rable to Messinia. [Attiki, Messinia] is a leaf node in TP and so the
traversal ends here and the partition pointed by [Attiki, Messinia]
is the result returned to the query.

3.3 Overview of the Partitioning Process
A high level description of the partitioning process is as follows:

In the beginning let TP consist of just one vertex [r, r] where r
refers to the root of T . That means that we initially materialize
just one global partition Pr,r containing all possible edges amongst
leaves in T . When Cr,r grows greater than threshold the split
process is triggered. The split process decides whether Pr,r will
be split by its source or destination node, depending on the rules
of the chosen partitioning policy, which is discussed later. Each

outcome is encoded by a set of nodes that are reachable from node
[r, r] in graph GT2 , depending whether the respective edge denotes
a parent-child relationship on the source or destination node.

After the split, the vertices representing the new partitions are
added to TP . Vertex [r, r] in TP points no longer to an active par-
tition but we keep it since it describes the records contained in the
active partitions pointed by its descendants (the new vertices that
we added) and we use this information when we traverse TP in
order to insert new records or answer a query. This process takes
place for every active partition Pu,v when Cu,v grows greater than
threshold after the insertion of new records. This way the vertices
in TP that point, or previously have been pointing, to an active par-
tition, form a hierarchical tree. At any moment the leaves of TP

point to the active partitions while the inner nodes, including the
root, are “aggregations” of these partitions.

Any node in TP can optionally maintain a series of useful ap-
plication specific statistics such as the number of records in the
partition, aggregations over measures of these records, calculations
regarding heavy hitters such as top-k sources and top-k destina-
tions, etc. Furthermore, when fast approximate answers are desired
by the application (for example during exploratory data analysis or
as a preview while the exact answer is computed) it is also possible
to maintain synopses such as Sketches [14], Histograms [15, 16]
or Wavelets [17, 18] on the nodes of TP . Since these nodes are
traversed while new data is added in the partitions, maintenance of
these synopses can be easily incorporated in the process. While
these extensions are applicable in our framework, their discussion
is beyond the scope of this paper.

In what follows we describe the different split/partitioning poli-
cies that we implemented in our system and used in our experi-
ments. First we describe two simple query agnostic policies and
next, in more detail, a partitioning policy that we call Query-Driven
Partitioning that decides the split to materialize by taking under
consideration a set of queries that are most important to the user
and makes the split decisions according to them.

Query-Agnostic Policies: The first two policies assume no previ-
ous knowledge about the interests of the user. Each of them though
utilizes a different heuristic as explained below.

• Round-Robin Partitioning: Round-Robin is a simple ap-
proach to partitioning the hierarchical graph. Partitions in
TP that need to split, are split alternately by source or des-
tination. This process results in creating balanced partitions
in the sense that source and destination nodes in a partition
have a maximum distance of one hierarchy level. That way
the partitions created are not biased towards the source or
destination nodes of the constituent edges.

• Min-Split Partitioning: Min-Split partitioning policy is a
heuristic method, which tries to create the minimum number
of new partitions, when an active partition overflows. This
policy seems preferable when the goal is to create as few
active partitions as possible, while keeping their size close
to the selected threshold. Thus, when it has to make a split
choice, it simply chooses between the candidate splits the
one containing fewer partitions.

Query-Driven Partitioning: In Query-Driven Partitioning we as-
sume that we have a prior knowledge of the queries that the users
of the system are mostly interested in. So, when we have to make
a split choice we chose the candidate split that suggests a parti-
tioning better suited to answer the set of queries. In what follows
we present the idea of Query-Driven Partitioning for hierarchical
graphs in a formal way.

Dynamic Partitioning of Big Hierarchical Graphs

39

Let Pu,v be a partition in the partition tree TP and Qu′,v′ be a
query asking for all records having as source and destination all the
nodes that are leaves of the hierarchy tree’s T subtrees Tu′ and Tv′ ,
respectively. Recall that a partition is useful for answering a query
if their respective source and destination nodes are comparable in
T , otherwise the partition is pruned while navigating the partition
tree in search of answers to the query.

For a useful partition, we can define a measure of the overhead
that the retrieval of Pu,v adds to the overall cost of answering the
query by considering the number of records that belong to Pu,v but
are not part of the result of Qu′,v′ . We can use this measure to make
the split choice for a partition to be split, by calculating the query
answering overhead for each of the candidate splits. Extending this,
we can calculate the overhead not just for one query but for a set of
queries that the users are mostly interested in.

In order to measure the overhead of a useful partition for a given
query, we have to estimate the portion of the partition records that
are not useful for the query, but will have to be retrieved when scan-
ning the partition for relevant data. Since both the partition and
the query follow the hierarchy implied by the hierarchy tree T we
should check the partition’s source and destination nodes u and v
against the query’s source and destination nodes u′ and v′, respec-
tively. We will describe the procedure for u and u′, but whatever
we mention holds true also for v an v′.

Since nodes u and u′ are comparable (otherwise the partition is
not useful), we have to consider the following three cases: (i) u
equals u′, (ii) u is a descendant of u′ (depth(u) > depth(u′),
and (iii) u′ is a descendant of u (depth(u) < depth(u′)). Let
fitness(u′, u) denote the portion of the leaf nodes in Tu that are
also leaves in the subtree of Tu′ . In the first and second cases we
can safely infer that fitness(u′, u) equals to 1, since Tu is con-
tained in Tu′ . On the contrary, in the third case, Tu′ is contained in
Tu and, thus, fitness(u′, u) is calculated by considering the ratio
of the leaves of Tu′ over the leaves of Tu.

fitness(u′, u) =





0 , if u and u′ are not comparable
1 , if u and u′ are comparable

and depth(u) ≥ depth(u′)
|leaves(Tu′)|
|leaves(Tu)| , otherwise

Then, the fitness of the partition for the query is computed as:

fitness(Qu′,v′ , Pu,v) = fitness(u′, u) · fitness(v′, v)
Intuitively, this measure estimates the percentage of records in the
partition that are useful for the query, assuming no additional knowl-
edge on the data distribution is given.

In case the partition is split into k sub-partitions, assuming a
uniform distribution of the records in Pu,v , then each of these par-
titions will receive Cu,v

k
of records, where Cu,v is the size of the

partition. Then, given that we have calculated the fitness for each
of these smaller partitions denoted as f1, . . . fk, respectively, we
compute the overhead of the split as the number of non-useful to
the query records expected to be retrieved from the set of partitions
belonging to the candidate split as:

overhead(Qu′,v′ , Split(Pu,v)) =
Cu,v

k

∑

i=1...k,fi>0

(1− fi)

For a set of queries the cumulative overhead of the split is com-
puted by summing the estimated overhead for each query. Thus,
given a choice of splitting the partition by source of destination,
we compare the overheads that we calculated for each of the splits
and select to materialize the one with the lowest number. As have

HDFS

MapReduce
Insertion Job Query JobPartitioning Job

HBase

Buffer
Storage

new data

Admission
Manager

Partitioning
Engine Query

Engine

Metadata

Data

client

Figure 3: Framework overview

been explained, our calculations are based on the assumption that
the data distribution within the partition is uniform. Of course, this
is a bold assumption and we expect that the system may occasion-
ally make wrong decisions, leading to suboptimal splits. An easy
workaround is to consider additional statistics, for instance in the
form of sketches, that will help better estimate the distribution of
records within a partition, at the cost of increased overhead due
to bookkeeping of these synopses. We leave exploration of such
choices as future work.

3.4 Implementation Overview
We implemented our system as a framework consisting of four

main modules, the Buffer Storage, the Admission Manager, the
Partitioning Engine and the Query Engine. It uses the well-known
distributed data store HBase running on top of HDFS (the Hadoop
Distributed File System) and also the Hadoop MapReduce engine
in order to accomplish tasks such as loading and repartitioning of
the data. We materialize each partition as an HBase table so as to
make easier the retrieval of records belonging to one partition by
involving the scan of one and only table. Another choice would be
to use one big table to store all the records and define each partition
space by applying a compound row-key design.

Figure 3 provides a high-level view of the framework. The Buffer
Storage module is located at the input of the system and stores tem-
porarily the new records that are streamed from distributed sources,
into text files. When the size of these records grows bigger than
a maximum buffer size, then the Buffer Storage module sends a
message to the Admission Manager module, which executes the
task of pulling the records from Buffer Storage and loading them
into HBase. After each load of new records, Admission Manager
checks for partitions that grew over the partitioning threshold. For
any such partition, Admission Manager passes the required instruc-
tions to Partitioning Engine, which decides a split according to the
selected policy amongst the ones described earlier and applies it.

For the support of these tasks, the system maintains a set of meta-
data, such as the hierarchy and partition trees that are used, updated
and shared by all the different modules. The actual execution of
the tasks is taking place as a number of MapReduce jobs, with the
most important of them being the Insertion Job which puts each
new record in the appropriate partition by looking up the hierarchy
and partition trees, and the Partitioning Job which moves the data
from a splitting partition to the new partitions.

Finally, we also implemented a Query Engine, which accepts a

Dynamic Partitioning of Big Hierarchical Graphs

40

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

round-robin min-split query-driven

lo
a
d
in

g
/p

a
rt

it
io

n
in

g
 t
im

e

policy

20M
200M

Figure 4: 20M vs 200M Records Loading Times

user query or set of queries and, by looking up the hierarchy and
partition trees, discovers the partitions that possibly contain rele-
vant records, scans them and returns the results to the user.

4. EXPERIMENTS

4.1 Experimental Setup
All experiments were conducted on a cluster of seven virtual

machines located at the GRNET’s cloud infrastructure Okeanos1.
Each machine had 4 processors, 4 GB of memory, while the disk
sizes varied from 40 to 100 GB. The operating system installed was
Ubuntu Server 12.04 and we used Hadoop version 1.1.2 and HBase
version 0.94.6.1. We used one machine as the system master run-
ning the NameNode, JobTracker and HMaster daemons, while each
of the remaining six slave machines were running instances of the
DataNode, TaskTracker and HRegionServer daemons.

In order to be able to generate massive graph data records, we
wrote a custom CDR data generator. We used the geopolitical hier-
archy of Greece as described by the Ministry of Interior2 to create
the hierarchy tree and then we generated a number of phone num-
bers for each city in it. The resulting hierarchy tree consisted of
five levels, which from top to bottom are Country, District, State,
City and Phone Number, each of them having a node count of 1,
13, 58, 324 and 1134698 nodes, respectively. The phone num-
bers consist of regular phone numbers that make and receive calls,
inbound-only phones as those found in customer service depart-
ments or telemarketing, and outbound-only phones as those used
by marketing agencies. Each record in the experiment data sets
consists of a source and destination phone number and a unique
call record id. Last, we created a random set of 10 queries which
we used to guide the Query-Driven policy, but also to examine the
performance of each policy in answering them. The queries were
picked randomly amongst all possible queries having as source or
destination inner nodes of the hierarchy tree, meaning we excluded
the root (country) and the leaves (single phone numbers).

4.2 Loading/Partitioning Time
The first experiment we conducted is a comparison of the load-

ing times for each of the partitioning policies we implemented. We
created a data set of a total of 50 million CDR records and broke
it into an initial ingest set of 20 million records and 10 append sets
of 3 million records each. For each of these 11 steps we traced
the total time it took to insert the records in HBase and perform

1https://okeanos.grnet.gr/
2http://www.ypes.gr/

the repartitioning of the schema, when needed. The results of this
experiment are summarized in Figure 5. We can see that the Min-
Split and Query-Driven policies spent slightly more time in repar-
titioning the hierarchical graph. This is explained since Min-Split
follows a conservative approach of repartitioning the data by taking
the minimum number of splits at each step, resulting in more sub-
sequent splits. The Query-Driven policy is often keen to repartition
the data by extending the partitioning tree in order to best fit the
input queries that drive its selection process. Finally, in Figure 4
we compare the scalability of our framework using a larger number
of input data (200 million records) for each policy. Compared to
the smaller dataset, the Figure suggest a sublinear increase of the
loading times, something that is contributed to the overhead times
of the underlying frameworks (e.g. MapReduce jobs setup) that
affects more (proportionally) the smaller input.

4.3 Partitions’ Quality
In order to examine the quality of the partitions created by each

of the policies tested, we propose a measure that we call distance.
This metric can be used in applications where the goal is to derive
the fewer number of partitions that are each smaller or equal to
the selected threshold. Given the actual final partition sizes sizei,
where i=1 . . . pm and pm is the number of the active partitions for
policy m at the end of the loading phase, we define distancem to
be:

distancem =

√√√√
pm∑

i=1

(sizei − threshold)2

Intuitively, a smaller distance value denotes a set of partitions that
are created evenly near, but not exceeding, the selected threshold.
We have calculated and present the value of the distance metric for
each policy and after each loading/partitioning job in Figure 6(a).

What is worth noticing in this Figure is that the Min-Split policy,
while in the beginning was the best amongst the others, later on it
created partitions that had a larger collective distance. This is ex-
plained by the fact that the choice of the smaller split, leads to many
deep splits of the partition tree and, subsequently, when the leaves
are reached, the deep partitions that need to be split are getting split
in high levels of the hierarchy (on the opposite direction) since this
is the only feasible split left. This fact also leads to the increase
of the number of active partitions that is evident in Figure 6(b).
Thus, even though at each step Min-Split makes (locally) optimal
decisions regarding the split that leads to the smaller increase of
the distance metric, the final resulting partitioning is worse that the
ones achieved by the other policies.

4.4 Queries Answering
In order to examine the effectiveness of the dynamic partitioning

schema, for each of the policies we ran the set of queries men-
tioned in Section 4.1. We used these same queries to guide the
Query-Driven policy. In Figure 6(c) we can see a comparison of the
total records retrieved by each of the policies, and the fraction of
them that were useful in answering these queries. As expected the
Query-Driven policy has better precision than the other two poli-
cies, while the Min-Split policy, which has gone deep in the hierar-
chy tree, was not able to create partitions suitable for the selected
set of random queries.

5. CONCLUSIONS
In this paper we considered the problem of managing big hierar-

chical graphs by exploiting the implied hierarchy so as to partition
the data edges in a way that would better support future retrieval

Dynamic Partitioning of Big Hierarchical Graphs

41

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5 6 7 8 9 10 11

ti
m

e
 (

s
e

c
o

n
d

s
)

loading/partitioning job

loading
partitioning

(a) Round-Robin

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5 6 7 8 9 10 11

ti
m

e
 (

s
e

c
o

n
d

s
)

loading/partitioning job

loading
partitioning

(b) Min-Split

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5 6 7 8 9 10 11

ti
m

e
 (

s
e

c
o

n
d

s
)

loading/partitioning job

loading
partitioning

(c) Query-Driven

Figure 5: Policies’ loading and partitioning times

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

1 2 3 4 5 6 7 8 9 10 11

d
is

ta
n

c
e

loading/partitioning job

round-robin
min-split

query-driven

(a) Partitions’ distance

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 5 6 7 8 9 10 11

n
u

m
b

e
r

o
f

p
a

rt
it
io

n
s

loading/partitioning job

round-robin
min-split

query-driven

(b) Number of active partitions

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

round-robin min-split query-driven

n
u

m
b

e
r

o
f

re
tr

ie
v
e

d
 r

e
c
o

rd
s

policy

overhead
result

(c) Queries

Figure 6: Comparison between policies

and analysis. We evaluated a number of dynamic partitioning poli-
cies using open source big data tools on a small cluster of nodes.
From the policies considered, the Query-Driven partitioning policy
lead to partition schemes that enable faster analysis of the records,
assuming that some a-priori knowledge of the user queries is given.
In an uncertain environment, the Round-Robin policy seems to
result in more balanced partitions with good query performance.
Moreover, it has been shown to have the best performance in the
loading and partitioning processes.

6. REFERENCES
[1] J. Abello and J. Korn, “Visualizing massive multi-digraphs,”

in Proceedings of INFOVIS, pp. 39–47, 2000.
[2] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,

S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, “Graph
structure in the web,” Comput. Netw., vol. 33, June 2000.

[3] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law
relationships of the internet topology,” SIGCOMM Comput.
Commun. Rev., vol. 29, pp. 251–262, Aug. 1999.

[4] J. Abello and Y. Kotidis, “Hierarchical graph indexing,”
Proceedings of the twelfth international conference on
Information and knowledge management, 2003.

[5] “Apache HBase.” http://hbase.apache.org/.
[6] “Apache Hadoop.” http://hadoop.apache.org/.
[7] J. Dean and S. Ghemawat, “MapReduce : Simplified data

processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 1–13, 2008.

[8] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for
partitioning power-law graphs,” in Proceedings of IPDPS,
pp. 124–124, 2006.

[9] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts

without eigenvectors a multilevel approach,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 29, Nov. 2007.

[10] K. Tzoumas, A. Deshpande, and C. S. Jensen,
“Sharing-aware horizontal partitioning for exploiting
correlations during query processing,” Proc. VLDB Endow.,
vol. 3, pp. 542–553, Sept. 2010.

[11] S. Yang, X. Yan, B. Zong, and A. Khan, “Towards effective
partition management for large graphs,” in Proceedings of
ACM SIGMOD, pp. 517–528, 2012.

[12] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris,
P. Chhabra, and P. Rodriguez, “The little engine(s) that
could: scaling online social networks,” SIGCOMM Comput.
Commun. Rev., vol. 40, pp. 375–386, Aug. 2010.

[13] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi,
“MD-HBase: A scalable multi-dimensional data
infrastructure for location aware services,” 2011.

[14] G. Cormode and S. Muthukrishnan, “An improved data
stream summary: the count-min sketch and its applications,”
J. Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[15] F. Reiss, M. N. Garofalakis, and J. M. Hellerstein, “Compact
histograms for hierarchical identifiers,” in VLDB, 2006.

[16] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis,
S. Muthukrishnan, and M. Strauss, “Fast, small-space
algorithms for approximate histogram maintenance,” in
STOC, pp. 389–398, 2002.

[17] A. Deligiannakis, M. N. Garofalakis, and N. Roussopoulos,
“Extended wavelets for multiple measures,” ACM Trans.
Database Syst., vol. 32, no. 2, 2007.

[18] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss,
“One-pass wavelet decompositions of data streams,” IEEE
Trans. Knowl. Data Eng., vol. 15, no. 3, pp. 541–554, 2003.

Dynamic Partitioning of Big Hierarchical Graphs

42

Scalable and Robust Management of Dynamic Graph Data∗

Alan G. Labouseur, Paul W. Olsen Jr., and Jeong-Hyon Hwang
{alan, polsen, jhh}@cs.albany.edu

Department of Computer Science, University at Albany – State University of New York, USA

ABSTRACT
Most real-world networks evolve over time. This evolution
can be modeled as a series of graphs that represent a net-
work at different points in time. Our G* system enables
efficient storage and querying of these graph snapshots by
taking advantage of the commonalities among them. We
are extending G* for highly scalable and robust operation.

This paper shows that the classic challenges of data distri-
bution and replication are imbued with renewed significance
given continuously generated graph snapshots. Our data
distribution technique adjusts the set of worker servers for
storing each graph snapshot in a manner optimized for pop-
ular queries. Our data replication approach maintains each
snapshot replica on a different number of workers, making
available the most efficient replica configurations for differ-
ent types of queries.

1. INTRODUCTION
Real-world networks, including social networks and the

Web, constantly evolve over time [3]. Periodic snapshots of
such a network can be represented as graphs where vertices
represent entities and edges represent relationships between
entities. These graph snapshots allow us to analyze the evo-
lution of a network over time by examining variations of
certain features, such as the distribution of vertex degrees
and clustering coefficients [17], network density [20], the size
of each connected component [17, 18], the shortest distance
between pairs of vertices [20, 23], and the centrality or eccen-
tricity of vertices [23]. Trends discovered by these analyses
play a crucial role in sociopolitical science, marketing, se-
curity, transportation, epidemiology, and many other areas.
For example, when vertices represent people, credit cards,
and consumer goods, and edges represent ownership and
purchasing relationships, disruptions in degree distribution,
viewed over time, may indicate anomalous behavior, perhaps
even fraud.

Several single-graph systems are available today: Google’s
Pregel [21], Microsoft’s Trinity [29], Stanford’s GPS [24],

∗This work is supported by NSF CAREER Award
IIS-1149372.

the open source Neo4j [22], and others [2, 5, 6, 7, 12, 14].
They, however, lack support for efficiently managing large
graph snapshots. Our G* system [13, 27] efficiently stores
and queries graph snapshots on multiple worker servers by
taking advantage of the commonalities among snapshots.
DeltaGraph [16] achieves a similar goal. Our work is com-
plementary to DeltaGraph in that it focuses on new chal-
lenges in data distribution and robustness in the context of
continuously creating large graph snapshots.

Single-graph systems typically distribute the entirety of
a single graph over all workers to maximize the benefits of
parallelism. When there are multiple graph snapshots, how-
ever, distributing each snapshot on all workers may slow
down query execution. In particular, if multiple snapshots
are usually queried together, it is more advantageous to
store each snapshot on fewer workers as long as the over-
all queried data are balanced over all workers. In this way,
the system can reduce network overhead (i.e., improve query
speed) while benefiting from high degrees of parallelism. We
present a technique that automatically adjusts the number
of workers in a manner optimized for popular queries.

As implied above, there are vast differences in execution
time depending on the distribution configurations and the
number of snapshots queried together. Replication gives us,
in addition to enhanced system reliability, the opportunity
to utilize as many distribution configurations as there are
replicas. G* constructs r replicas for each snapshot to toler-
ate up to r− 1 simultaneous worker failures. Our technique
classifies queries into r categories and optimizes the distri-
bution of each replica for one of the query categories.

In this paper, we make the following contributions:

• We define the problem of distributing graph snapshots
and present a solution that expedites queries by ad-
justing the set of workers for storing each snapshot.

• We provide a technique for adaptively determining
replica placement to improve system performance and
reliability.

• We present preliminary evaluation results that show
the effectiveness of the above techniques.

• We discuss our research plans to complete the con-
struction of a highly scalable and reliable system for
managing large graph snapshots.

The remainder of the paper is organized as follows: Sec-
tion 2 presents the research context and provides formal
definitions of the problems studied in the paper. Sections 3
and 4 describe our new techniques for distributing and repli-
cating graph snapshots. Section 5 presents our preliminary
evaluation results. Section 6 discusses related work. Sec-
tion 7 concludes this paper.

143

(1, 2, {G1, G2, G3}), (1, 1, {G1, G2, G3}), (2, 0, {G1}), (3, 1, {G2} (4, 2, {G3})

(1, 1, {G1,G2,G3})

(a, 2, {G1,G2,G3}) (b, 1, {G1,G2,G3})

(a, ..., {G1,G2,G3}) (b, ..., {G1,G2,G3})

(1, 2, {G1,G2,G3}) (2, 0, {G1}), (3, 1, {G2}), (4, 2, {G3}))

vertex

degree

count, sum

average

union

degree

count_sum

avg

union

degree

count_sum

degree

count_sum

(3/4, {G1}), (4/5, {G2}), (5/6, {G3})

{G1,G2,G3} {G1,G2,G3} {G1} {G3}{G2,G3}{G1,G2}

a c

b
b d

c e

d f
c

d

α γβ

(c, 0, {G1}), (d, 0, {G1, G2}), (c, 1, {G2, G3}), ...

(c, ..., {G1}), (d, ..., {G1, G2}), (c, ...,{G2, G3}), ...
vertex vertexvertex

Figure 1: Parallel Calculation of Average Degree

2. BACKGROUND

2.1 Summary of G*
G* is a distributed system for managing large graph snap-

shots that represent an evolving network at different points
in time [13, 27]. As Figure 1 shows, these graph snapshots
(e.g., G1, G2, and G3) are distributed over workers (e.g., α,
β, and γ) that both store and query the graph data assigned
to them. The master of the system (not shown in Figure 1)
transforms each submitted query into a network of opera-
tors that process graph data on workers in a parallel fashion.
Our previous work on G* can be summarized as follows:

Graph Storage. In G*, each worker efficiently stores its
data by taking advantage of commonalities among graph
snapshots. Figure 2 shows how worker γ from Figure 1 in-
crementally stores its portion of snapshots G1, G2, and G3

on disk. The worker stores c1 and d1, the first versions of
c and d, when it stores G1. When vertex c obtains a new
edge to e in G2, the worker stores c2, the second version of
c, which shares commonalities with the previous version and
also contains a new edge to e. When vertex d obtains a new
edge to f in G3, the worker stores d2, the second version of d
which contains a new edge to f . All of these vertex versions
are stored on disk only once regardless of how many graph
snapshots they belong to.

To track all of these vertex versions, each worker main-
tains a Compact Graph Index (CGI) that maps each com-
bination of vertex ID and graph ID onto the disk location
that stores the corresponding vertex version. For each vertex
version (e.g., c2), the CGI stores only one (vertex ID, disk
location) pair in a collection for the combination of snap-
shots that contain that vertex version (e.g., {G2, G3}). In
this manner, the CGI handles only vertex IDs and disk lo-
cations while all of the vertex and edge attributes are stored
on disk. Therefore, the CGI can be kept fully or mostly in
memory, enabling fast lookups and updates. To prevent the
CGI from becoming overburdened by managing too many
snapshot combinations, each worker automatically groups
snapshots and then separately indexes each group of snap-
shots [13, 27].

Query Processing. Like traditional database systems, G*
supports sophisticated queries using a dataflow approach
where operators process data in parallel. To quickly process
queries on multiple graph snapshots, however, G* supports
special operators that share computations across snapshots.

c

d

e

e

f

CGI

e f

c1

{G1,+G2}{G1} {G2,+G3} {G3}

c2 e1 d1 d2 f1

c de f

c c e d d f

G2G1 G3
G1

G2

G3

c

d

c

d disk

Figure 2: Storage of Snapshots G1, G2, G3 and CGI

PageRank Query Shared-Nothing Shared-Everything

One snapshot 285 seconds 22 seconds
All snapshots 285 seconds 2,205 seconds

Table 1: Impact of Graph Snapshot Configuration

Figure 1 shows how the average degree calculation takes
place in parallel over three workers. The vertex and degree

operators in Figure 1 compute the degree of each vertex
only once while associating the result with all of the rele-
vant graph snapshots (e.g., the degree of vertex a is shared
acrossG1, G2, andG3). In the example, the count sum oper-
ators aggregate the degree data, the union operator merges
these data, and the avg operator produces the final result.
Details of our graph processing operators and programming
primitives for easy implementation of custom operators are
provided in our earlier papers [13, 27].

2.2 Problem Statements
Our previous work [13, 27] focused on efficiently storing

and querying graph snapshots. We now take up the chal-
lenge of doing so in a highly scalable and robust manner.

2.2.1 Multiple Snapshot Distribution
Accelerating computation by distributing data over mul-

tiple servers has been a popular approach in parallel
databases [10] and distributed systems [9]. Furthermore,
techniques for partitioning graphs to facilitate parallel com-
putation have also been developed [15, 24, 25, 26]. How-
ever, distributing large graph snapshots over multiple work-
ers raises new challenges. In particular, it is not desirable
to use traditional graph partitioning techniques which con-
sider only one graph at a time and incur high overhead
given a large number of vertices and edges. Solutions to
this problem must (re)distribute with low overhead graph
snapshots that are continuously generated and take advan-
tage of the property that query execution time depends on
both the number of snapshots queried and the distribution
of the graph snapshots as illustrated below.

Example. Consider a scenario where each of 100 similarly-
sized graph snapshots contains approximately 1 million ver-
tices and 100 million edges. Assume also that the system
consists of one master and 100 workers. Table 1 compares
two snapshot distribution configurations: Shared-Nothing,
where each of the 100 snapshots is stored on one dis-
tinct worker, and Shared-Everything, where each snapshot
is evenly distributed over all of the 100 workers. For each of
these configurations, two types of queries for computing the
PageRank of each vertex are executed: Query One Snap-

2

Scalable and Robust Management of Dynamic Graph Data

44

shot, and Query All Snapshots. The explanations below are
based on our evaluation results (see Section 5 for details).

In the case of Shared-Nothing, querying one snapshot us-
ing only one worker takes 285 seconds (205 seconds to con-
struct the snapshot from disk and 80 seconds to run 20 iter-
ations of PageRank). Querying all snapshots on all workers
in parallel takes the same amount of time. When the Shared-
Everything configuration is used, querying one snapshot on
all workers takes approximately 22 seconds, mainly due to
network communications for the edges that cross worker
boundaries (the disk I/O and CPU costs correspond to only
205/100 seconds and 80/100 seconds, respectively, due to
the distribution of the snapshot over 100 workers). In this
configuration, querying 100 snapshots takes 2,205 seconds as
the PageRank of each vertex varies across graph snapshots,
thereby causing 100 times more message transmissions than
the previous case. This example shows the benefits of dif-
ferent snapshot distribution approaches for different types
of queries (e.g., Shared-Nothing for queries on all snapshots
and Shared-Everything for queries on one snapshot).

Formal Definition. Our ultimate goal is to keep track
of the popularity of graph snapshots and to optimize the
storage/distribution of unpopular snapshots for space effi-
ciency (Section 2.1) and popular snapshots for query speed.
In this paper, we focus on the problem of distributing pop-
ular snapshots over workers in a manner that minimizes the
execution time of queries on these snapshots. This problem
can be formally defined as follows:

Problem 1. (Snapshot Distribution) Given a series
of graph snapshots {Gi(Vi, Ei) : i = 1, 2, · · · }, n workers,
and a set of queries Q on some or all of the snapshots, find
a distribution {Vi,w : i = 1, 2, · · · ∧ w = 1, 2, · · · , n} that
minimizes

∑
q∈Q time(q, {Vi,w}) where Vi,w denotes the set

of vertices that are from snapshot Gi(Vi, Ei) and that are
assigned to worker w, and time(q, {Vi,w}) represents the ex-
ecution time of query q ∈ Q on the distributed snapshots
{Vi,w} satisfying (1) ∪n

w=1Vi,w = Vi (i.e., the parts of a
snapshot on all workers cover the original snapshot) and (2)
Vi,w∩Vi,w′ = ∅ if w 6= w′ (i.e., workers are assigned disjoint
parts of a snapshot).

Our solution to the above problem is presented in Section 3.

2.2.2 Snapshot Replication
There have been various techniques for replicating data to

improve availability and access speed [8, 11, 28]. A central
data replication challenge in G* is to distribute each replica
of a snapshot over a possibly different number of workers
to maximize both performance and availability. For each
query, the most beneficial replica also needs to be found
according to the characteristics of the query (e.g., the num-
ber of snapshots queried). If two replicas of a graph snap-
shot are distributed using the Shared-Nothing and Shared-
Everything approaches, queries on a single snapshot should
use the Shared-Everything replica configuration rather than
the other. In practice, however, each query can access an
arbitrary number of graph snapshots (not necessarily one or
all), thereby complicating the above challenges. The prob-
lem of replicating graph snapshots can be defined as follows:

Problem 2. (Snapshot Replication) Given a series
of graph snapshots {Gi(Vi, Ei) : i = 1, 2, · · · }, the degree of
replication r, n workers, and a set of queries Q on some

! "

G1,1

G2,1

G2,2

G1,2

G3,1

G3,2

(a) Before Exchange

! "

G3,1

G2,1

G2,2

G3,2

G1,1

G1,2

(b) After Exchange

Figure 3: Exchanging Segments. If snapshots G1 and
G2 are queried together frequently, workers α and β in Fig-
ure 3(a) can better balance the workload and reduce the
network overhead by swapping G1,1 and G3,1.

or all of the snapshots, find a replica distribution {Vi,j,w :
i = 1, 2, · · · ∧ j = 1, 2, · · · , r ∧ w = 1, 2, · · · , n} that
minimizes

∑
q∈Q time(q, {Vi,j,w}) where Vi,j,w denotes the

set of vertices that are from the jth replica Gi,j(Vi,j , Ei,j)
of snapshot Gi(Vi, Ei) and that are assigned to worker w,
and time(q, {Vi,j,w}) denotes the execution time of query q
on the distributed snapshot replicas {Vi,j,w} satisfying (1)
∪n

w=1Vi,j,w = Vi,j = Vi for j = 1, 2, · · · , r, (i.e., the parts of
a snapshot replica on all workers cover the original replica),
(2) Vi,j,w ∩ Vi,j,w′ = ∅ if w 6= w′ (i.e., workers are assigned
disjoint parts of a snapshot replica), and (3) Vi,j,w∩Vi,j′,w =
∅ if j 6= j′ (i.e., no worker w contains multiple copies of
a vertex and its edges, which tolerates r − 1 simultaneous
worker failures).

Section 4 presents our solution to the above problem.

3. GRAPH SNAPSHOT DISTRIBUTION
As mentioned in Section 2.2.1, G* needs to store each

graph snapshot on an appropriate number of workers while
balancing the utilization of network and CPU resources.
In contrast to traditional methods for partitioning a static
graph [15, 25], G* must determine the location of each ver-
tex and its edges on the fly in response to a continuous influx
of data from external sources.

Our dynamic data distribution approach meets the above
requirements. In this approach, each G* worker partitions
its graph data into segments with a certain maximum size
(e.g., 10GB) so that it can control its load by migrating
some segments to other workers (Section 3.1). Our ap-
proach continuously routes incoming messages for updating
vertices and edges to appropriate workers with low latency
(Section 3.2). When a segment becomes full, G* splits that
segment into two that are similar in size while maintaining
data locality by keeping data accessed together within the
same segment (Section 3.3). It does all of the above while
supporting G*’s graph processing operators (Section 3.4).

3.1 Load Balancing
In G*, each worker periodically communicates with a ran-

domly chosen worker to balance graph data. Our key prin-
ciples in load balancing are to (1) maximize the benefits of
parallelism by uniformly distributing data that are queried
together and (2) minimize network overhead by co-locating
data from the same snapshot. Consider Figure 3(a) where
three snapshots are partitioned into a total of 6 similarly-
sized segments. In this example, each of workers α and β
are assigned a segment from snapshot G1, α is assigned two
segments from G2, and β is assigned two segments from
G3. If snapshots G1 and G2 are frequently queried together

3

Scalable and Robust Management of Dynamic Graph Data

45

(see those shaded in Figure 3(a)), this snapshot distribu-
tion leads to inefficient query execution due to imbalanced
workload between the workers and network communications
for the edges between G1,1 and G1,2. This problem can be
remedied by exchanging G1,1 and G3,1 between the workers,
which results in a balanced distribution of the data queried
together (i.e., G1 and G2) and localized processing of G1 on
β and G2 on α, respectively.

Given a pair of workers, our technique estimates, for each
segment, the benefit of migrating that segment to the other
worker, and then performs the most beneficial migration.
This process is repeated a maximum number of times or un-
til the migration benefit falls below a predefined threshold.
The benefit of migrating a segment is calculated by multi-
plying the probability that the segment is queried with the
expected reduction in query time (i.e., the difference be-
tween expected query time before and after migration).

For a set Si of segments on worker i and another set Sj of
segments on worker j, the expected query time is computed
as

∑
q∈Qk

p(q) · time(q, Si, Sj) where Qk is a collection of k

popular query patterns, p(q) is the probability that query
pattern q is executed, and time(q, Si, Sj) denotes the esti-
mated duration of q given segment placements Si and Sj .

Our technique obtains Qk (equivalently, k popular combi-
nations of segments queried together) as follows: Sort seg-
ments from Si ∪ Sj in order of decreasing popularity. Ini-
tialize Qk (for storing k popular query patterns) with the
first segment. Then, for each of the remaining segments,
combine it with each element from Qk and insert the result
back into Qk. Whenever |Qk| > k, remove its least popular
element. We estimate the popularity of each combination
of segments by consolidating the counting synopses [4] for
those segments. Whenever a query accesses a segment, the
associated synopsis is updated using the ID of the query.

We compute time(q, Si, Sj) as max(c(q, Si), c(q, Sj)) +
c′(q, Si, Sj) where c(q, Si) is the estimated duration of pro-
cessing the segments from Si for query q, and c′(q, Si, Sj)
represents the estimated time for exchanging messages be-
tween workers i and j for query q.

3.2 Updates of Vertices and Edges
Each new vertex (or any edge that emanates from the ver-

tex) is first routed to a worker chosen according to the hash
value of the vertex ID. That worker assigns such a vertex to
one of its data segments while saving the (vertex ID, segment
ID) pair in an index similar to the CGI (Section 2.1). If a
worker receives an edge that emanates from an existing ver-
tex v, it assigns that edge to the segment that contains v. If
a worker w has created a segment S and then migrated it to
another worker w′ for load balancing reasons (Section 3.1),
worker w forwards the data bound to S to w′. To support
such data forwarding, each worker keeps track of the worker
location of each data segment that it has created before.
Updates of vertices and edges, including changes in their at-
tribute values, are handled as in the case of edge additions.
This assignment of graph data to workers is scalable because
it distributes the overhead of managing data over workers.
It also proceeds in a parallel, pipelined fashion without any
blocking operations.

3.3 Splitting a Full Segment
If the size of a data segment reaches the maximum (e.g.,

10GB), the worker that manages the segment creates a new

segment and then moves a half of the data from the previ-
ous segment to the new segment. To minimize the number
of edges that cross segment boundaries, we use a traditional
graph partitioning method [15]. Whenever a segment is split
as above, the worker also updates the (vertex ID, segment
ID) pairs for all of the vertices migrated to the new segment.
This update process incurs relatively low overhead since the
index can usually be kept in memory as in the case of the
CGI (Section 2.1). If a worker splits a segment which was
obtained from another worker, it sends the update infor-
mation to the worker that originally created it in order to
enable data forwarding as mentioned in Section 3.2.

3.4 Supporting Graph Processing Operators
G*’s graph processing operators, such as those for com-

puting clustering coefficients, PageRank, or the shortest dis-
tance between vertices, are usually instantiated on every
worker that stores relevant graph data [13]. These opera-
tors may exchange messages to compute a value for each
vertex (e.g., the current shortest distance from a source ver-
tex). If an operator needs to send a message to a vertex, the
message is first sent to the worker whose ID corresponds to
the hash value of the vertex ID. This worker then forwards
the message to the worker that currently stores the vertex.
This forwarding mechanism is similar to that for handing
updates of vertices and edges (Section 3.2).

4. GRAPH SNAPSHOT REPLICATION
G* masks up to r−1 simultaneous worker failures by cre-

ating r copies of each graph data segment. As discussed in
Sections 2.2 and 3, the optimal distribution of each graph
snapshot over workers may vary with the number of snap-
shots frequently queried together. Based on this observa-
tion, we developed a new data replication technique that
speeds up queries by configuring the storage of replicas to
benefit different categories of queries. This approach uses
an online clustering algorithm [1] to classify queries into r
categories based on the number of graphs that they access.
It then assigns the j-th replica of each data segment to a
worker in a manner optimized for the j-th query category.
The master and workers support this approach as follows:

4.1 Updates of Vertices and Edges
Updates of vertices and edges are handled as described in

Section 3.2 except that they are routed to r data segment
replicas on different workers. For this reason, each worker
keeps a mapping that associates each segment ID with the
r workers that store a replica of the segment. Our approach
protects this mapping on worker w by replicating it on work-
ers (w+1)%n, (w+2)%n, · · · , (w+r−1)%n where n denotes
the number of workers. If a worker fails, the master assigns
another worker to take over.

4.2 Splitting a Full Segment
The replicas of a data segment are split in the same way

due to the use of a deterministic partition method. For each
vertex migrated from one data segment to another, the r
workers that keep track of that vertex update their (vertex
ID, segment ID) pairs accordingly.

4.3 Query-Aware Replica Selection
For each query, the master identifies the worker locations

of the data segment replicas to process. To this end, the

4

Scalable and Robust Management of Dynamic Graph Data

46

Message passing (12-bytes/message) 1M messages/sec
Disk I/O bandwidth 200 Mbytes/sec
Snapshot construction in memory 200 seconds
PageRank iteration per snapshot 4 seconds

Table 2: Speed and Bandwidth Observations

Cores 1 2 4 8 16 24 48

Speedup 1.0 1.9 3.7 5.9 9.7 12.5 14.7

Table 3: Actual Speedup Result

master keeps track of the mapping between graph snapshots
and the data segments that constitute them. The master
also maintains the mapping between data segment replicas
and the workers that store them. Using these mappings, the
master selects one replica for each data segment such that
the overall processing load is uniformly distributed over a
large number of workers and the expected network overhead
is low. Next, as Figure 1 shows, the master instantiates
operators on these workers and starts executing the query.

4.4 Load Balancing
Each worker balances its graph data as explained in Sec-

tion 3. The only difference is that whenever a query of cat-
egory j accesses a replica of a data segment, the counting
synopsis of the j-th replica of the data segment is updated
using the ID of the query (Section 3.1). In this way, the j-th
replica of each segment is assigned to a worker in a manner
optimized for query category j.

5. PRELIMINARY EVALUATION
This section presents our preliminary results obtained by

running G* on a six-node, 48-core cluster. In this cluster,
each machine has two Quad-Core Xeon E5430 2.67 GHz
CPUs, 16GB RAM, and a 2TB hard drive. We plan to
extend these experiments with more queries on larger data
sets in a bigger cluster (Section 7).

To construct a realistic example in Section 2.2.1, we mea-
sured the overhead of key operations summarized in Table 2.
In our evaluation, a worker was able to transmit up to 1 mil-
lion messages to other workers within a second, although a
1Gbps connection may enable 10 million transmissions of
12-byte messages in theory. The reason behind this result
is that there is inherent overhead when writing and creating
message objects to and from TCP sockets in Java. Further-
more, reading approximately 1Gbytes of data from disk to
construct a graph snapshot took 5 seconds. However, con-
structing a snapshot in memory by creating 100 million edge
objects and registering them in an internal data structure
took approximately 200 seconds.

In the next set of experiments, we created a series of 500
graph snapshots using a binary tree generator. Each snap-
shot in the series was constructed by first cloning the pre-
vious snapshot and then inserting 20,000 additional vertices
and edges to the new graph. Therefore, the last graph in
the series contained 10 million vertices. We ran a query
that computes, for each graph, the distribution of the short-
est distances from the root to all other vertices. Table 3
shows, for the shortest distance query, the speedup achieved
by distributing the snapshots over more workers. The high-
est speedup was achieved with 48 workers. This table also

SSSP Query All Workers Subset of Workers

One snapshot 8.2 seconds 19.2 seconds
All snapshots 80.5 seconds 53.2 seconds

Table 4: Impact of Graph Data Distribution

shows that the relative benefit of data distribution (i.e., the
speedup relative to the number of workers) tends to decrease
with more workers. This is mainly due to increased network
traffic, which shows the importance of balancing CPU and
network resources in the context of continuously creating
large graph snapshots.

The effectiveness of two different distributions is demon-
strated in Table 4. If most queries access only the largest
snapshot, then it is beneficial to distribute that snapshot
over all workers to maximize query speed. On the other
hand, if all of the snapshots are queried together, our ap-
proach stores each graph on a smaller subset of workers to
reduce network overhead. In this case, all of the workers
can still be used in parallel since the entire graph data is
distributed over all workers. The benefits of distribution
configurations are less pronounced in Table 4 than Table 1
due to a smaller number of message transmissions and fewer
workers. Table 4 also demonstrates the benefit of G* in
executing queries on multiple snapshots. In particular, the
time for processing 500 snapshots (e.g., 80.5 seconds) is only
up to 10 times longer than that for processing the largest
snapshot (e.g., 8.2 seconds) since the computations on the
largest snapshot are shared across smaller snapshots.

6. RELATED WORK
In this section, we briefly summarize related research, fo-

cusing on previous graph systems, data distribution, and
data replication.

Previous Graph Systems. In contrast to systems which
process one graph at a time [2, 5, 6, 7, 12, 14, 21, 22, 24,
29], G* efficiently executes sophisticated queries on multi-
ple graph snapshots. G*’s benefits over previous systems are
experimentally demonstrated in our prior work [13]. Delt-
aGraph [16] and GraphChi [19] are promising systems for
dynamic graphs but do not directly address the data distri-
bution/replication issues considered in this paper.

Data Distribution. Traditional graph partitioning tech-
niques split a static graph into subgraphs in a manner that
minimizes the number of crossing edges [15, 25]. There are
also recent graph repartitioning schemes that observe com-
munication patterns and then move vertices to reduce net-
work overhead [24, 26]. In contrast to them, our technique
dynamically adjusts the number of workers that store each
graph snapshot according to the real-time influx of graph
data and popular types of queries (Section 3).

Data Replication. There has been extensive work on data
replication that focused on improving data availability and
performance [8, 11, 28]. Researchers developed techniques
for ensuring replica consistency [11] and finding most advan-
tageous replica placement [8]. Stonebraker et al. proposed
an approach that stores each database replica differently,
optimized for a different query type [28]. While our repli-
cation approach has some similarity in terms of high-level
ideas, it is substantially different in that it distributes each

5

Scalable and Robust Management of Dynamic Graph Data

47

graph snapshot over a different number of workers to speed
up different types of queries.

7. CONCLUSIONS AND FUTURE WORK
We presented G*, a scalable and robust system for storing

and querying large graph snapshots. G* tackles new data
distribution and replication challenges that arise in the con-
text of continuously creating large graph snapshots. Our
data distribution technique efficiently stores graph data on
the fly using multiple worker servers in parallel. This tech-
nique also gradually adjusts the number of workers that
store each graph snapshot while balancing network and CPU
overhead to maximize overall performance. Our data repli-
cation technique maintains each graph replica on a different
number of workers, making available the most efficient stor-
age configurations for various combinations of queries.

We are working on full implementations of the techniques
presented in this paper to enable new experiments with ad-
ditional queries on larger data sets. We will analyze these
techniques to classify their complexity. We plan to look
into the challenges of scheduling groups of queries, dealing
with varying degrees of parallelism, resource utilization, and
user-generated performance preferences. We are exploring
failure recovery techniques for long-running queries while
exposing the tradeoff between recovery speed and execution
time. We also want to study opportunities for more granu-
lar splitting, merging, and exchanging of data at the vertex
and edge level rather than in large segments as discussed
in this paper. We intend to seek opportunities for gains in
execution speed at the expense of storage space by segre-
gating recent and popular “hot” data (which we could store
in a less compressed manner) from less popular “cold” data
(which could be highly compressed).

8. REFERENCES
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A

Framework for Clustering Evolving Data Streams. In
VLDB, pages 81–92, 2003.

[2] Apache Hama. http://hama.apache.org.

[3] B. Bahmani, R. Kumar, M. Mahdian, and E. Upfal.
PageRank on an Evolving Graph. In KDD, pages
24–32, 2012.

[4] K. S. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and
R. Gemulla. On Synopses for Distinct-Value
Estimation Under Multiset Operations. In SIGMOD,
pages 199–210, 2007.

[5] Cassovary. Open Sourced from Twitter
https://github.com/twitter/cassovary.

[6] A. Chan, F. K. H. A. Dehne, and R. Taylor.
CGMGRAPH/CGMLIB: Implementing and Testing
CGM Graph Algorithms on PC Clusters and Shared
Memory Machines. IJHPCA, 19(1):81–97, 2005.

[7] R. Chen, X. Weng, B. He, and M. Yang. Large Graph
Processing in the Cloud. In SIGMOD, pages
1123–1126, 2010.

[8] Y. Chen, R. H. Katz, and J. Kubiatowicz. Dynamic
Replica Placement for Scalable Content Delivery. In
IPTPS, pages 306–318, 2002.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, pages
137–150, 2004.

[10] D. DeWitt, R. Gerber, G. Graefe, M. Heytens,
K. Kumar, and M. Muralikrishna. Gamma - A High
Performance Dataflow Database Machine. In VLDB,
pages 228–237, 1986.

[11] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The
Dangers of Replication and a Solution. In SIGMOD,
pages 173–182, 1996.

[12] D. Gregor and A. Lumsdaine. The Parallel BGL: A
Generic Library for Distributed Graph Computations.
In POOSC, 2005.

[13] J.-H. Hwang, J. Birnbaum, A. Labouseur, P. W. Olsen
Jr., S. R. Spillane, J. Vijayan, and W.-S. Han. G*: A
System for Efficiently Managing Large Graphs.
Technical Report SUNYA-CS-12-04, CS Department,
University at Albany – SUNY, 2012.

[14] U. Kang, C. E. Tsourakakis, and C. Faloutsos.
PEGASUS: A Peta-Scale Graph Mining System. In
ICDM, pages 229–238, 2009.

[15] G. Karypis and V. Kumar. Analysis of Multilevel
Graph Partitioning. In SC, page 29, 1995.

[16] U. Khurana and A. Deshpande. Efficient Snapshot
Retrieval over Historical Graph Data. CoRR,
abs/1207.5777, 2012.

[17] G. Kossinets and D. J. Watts. Empirical Analysis of
an Evolving Social Network. Science, 311(5757):88–90,
2006.

[18] R. Kumar, J. Novak, and A. Tomkins. Structure and
Evolution of Online Social Networks. In KDD, pages
611–617, 2006.

[19] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
large-scale graph computation on just a pc. In OSDI,
pages 31–46, 2012.

[20] J. Leskovec, J. M. Kleinberg, and C. Faloutsos.
Graphs over Time: Densification Laws, Shrinking
diameters and Possible Explanations. In KDD, pages
177–187, 2005.

[21] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: A System for Large-Scale Graph Processing.
In SIGMOD, pages 135–146, 2010.

[22] Neo4j The Graph Database. http://neo4j.org/.

[23] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On
Querying Historical Evolving Graph Sequences.
PVLDB, 4(11):726–737, 2011.

[24] S. Salihoglu and J. Widom. GPS: A Graph Processing
System. In SSDBM, 2013.

[25] K. Schloegel, G. Karypis, and V. Kumar. Graph
Partitioning for High Performance Scientific
Simulations. Technical Report TR 00-018, Computer
Science and Engineering, U. of Minnesota, 2000.

[26] Z. Shang and J. X. Yu. Catch the Wind: Graph
Workload Balancing on Cloud. In ICDE, pages
553–564, 2013.

[27] S. R. Spillane, J. Birnbaum, D. Bokser, D. Kemp,
A. Labouseur, P. W. Olsen Jr., J. Vijayan, and J.-H.
Hwang. A Demonstration of the G* Graph Database
System. In ICDE, pages 1356–1359, 2013.

[28] M. Stonebraker et al. C-Store: A Column-oriented
DBMS. In VLDB, pages 553–564, 2005.

[29] Trinity.
http://research.microsoft.com/en-us/projects/trinity/.

6

Scalable and Robust Management of Dynamic Graph Data

48

Towards Elastic Stream Processing: Patterns and
Infrastructure

Kai-Uwe Sattler
Ilmenau University of Technology

Ilmenau, Germany

kus@tu-ilmenau.de

Felix Beier
∗

Ilmenau University of Technology
Ilmenau, Germany

felix.beier@tu-ilmenau.de

ABSTRACT
Distributed, highly-parallel processing frameworks as
Hadoop are deemed to be state-of-the-art for handling big
data today. But they burden application developers with
the task to manually implement program logic using low-
level batch processing APIs. Thus, a movement can be ob-
served that high-level languages are developed which allow
to declaratively model dataflows that are automatically op-
timized and mapped to the batch-processing backends. How-
ever, most of these systems are based on programming mod-
els as MapReduce that provide elasticity and fault-tolerance
in a natural manner since intermediate results are mate-
rialized and, therefore, processes can simply be restarted
and scaled with partitioning input datasets. For continuous
query processing on data streams, these concepts cannot be
applied directly since it must be guaranteed that no data
is lost when nodes fail. Usually, these long running queries
contain operators that maintain state information which de-
pends on the data that has already been processed and hence
they cannot be restarted without information loss. This also
is an issue when streaming tasks should be scaled. Therefore,
integrating elasticity and fault-tolerance in this context is a
challenging task which is subject of this paper. We show how
common patterns from parallel and distributed algorithms
can be applied to tackle these problems and how they are
mapped to the Mesos cluster management system.

1. INTRODUCTION
Processing and analyzing big data is one of todays big

challenges. A popular definition from a Gartner report
names the three ’V’ s – volume, velocity, and variety as the
main characteristics of big data. Among them, velocity refers
to the analytics of dynamic data even in (near) realtime.

Several approaches and techniques have been developed
in the past to process dynamic data. Data stream manage-
ment systems (DSMS) like STREAM, Aurora, IBM Infos-

∗This work is partially funded by an IBM PhD Fellowship.

phere Streams or our own AnduIN engine provide abstrac-
tions to process continuous and possibly infinite streams
of data instead of disk-resident datasets. Typically, this in-
cludes standard (relational) query operators, window-based
operators for computing joins and aggregations as well as
more advanced data analytics and data mining operators
working on portions of the stream, e.g. windows or synopses
of data. Complex Event Processing systems (CEP) partic-
ularly support the identification of event patterns in (tem-
poral) streams of data such as a sequence of specific event
types within a given time interval. Typically, systems of both
classes provide a declarative interface, either in form of SQL-
like query languages like CQL for DSMS, event languages
like SASE, or in the form of dataflow specifications like SPL
in IBM Infosphere Streams.

Recently, several new distributed stream computing plat-
forms have been developed, aiming at providing scalable and
fault-tolerant operation in cluster environments. Examples
are Apache S4 or Storm. In contrast to DSMS or CEP en-
gines theses platforms do not (yet) provide declarative inter-
faces and, therefore, require to program applications instead
of writing queries. Developers of these systems argue that
they provide the same for stream processing what Hadoop
did for batch processing – which raises the hope of a similar
movement towards higher-level languages as we can see with
Pig, Jaql etc. for MapReduce.

However, there are some challenges in scalable and elastic
stream processing which are different from batch processing
with Hadoop. Whereas in Hadoop, input data as well as
intermediate results are materialized on disk and, therefore,

• both, map and reduce tasks can be restarted arbitrarily
in case of failures until the entire job is finished,

• since computation state is saved, the number of nodes
assigned to map and reduce tasks can be simply adjusted
by partitioning input and intermediate results.

This is more difficult when processing dynamic data – even
with platforms as S4 or Storm which to some extent support
a reliable and scalable operation. The main differences are:

(1) Partitioning of streams for data-parallel processing is not
always easily possible, for example in case of window-
or sequence-based operators including CEP operators.
Also, elastic operation by adding new nodes at runtime
of a query requires at least rerouting of data.

(2) Stream queries are typically long running queries which
cannot be simply restarted without losing data. Further-
more, because of this, the deployment and resource allo-
cation (placement of queries on nodes, allocating mem-
ory and CPUs) are much more critical.

149

In this paper, we try to answer the question how to bridge
the gap between an easy-to-use, high-level declarative in-
terface for data stream analytics and scalable cluster-based
stream computing platforms in order to address these chal-
lenges. The contribution of this paper is twofold:

• Based on a basic dataflow model for stream queries we de-
scribe patterns for fault-tolerant and scalable query pro-
cessing and discuss constraints of their application.

• We show the implementation and deployment of these pat-
terns using our distributed stream and CEP engine An-
duIN and the Mesos cluster infrastructure by describing
techniques supporting flexible and elastic deployment.

Though, we use the AnduIN system for describing and im-
plementing the concepts, we think the ideas and patterns
are applicable to other platforms, too.

2. RELATED WORK
The relevant work related to this paper can be classified

into the main categories: continuous query processing and
scalable dataflow platforms.

Continuous query processing is usually implemented in
data stream management systems (DSMS). Pioneered by
systems like STREAM, Borealis, and Telegraph, several
approaches and systems have been developed in the last
decade including commercial products such as IBM Info-
Sphere Streams and StreamBase. Typically, these systems
provide a SQL-like query language enhanced by features for
dealing with continuous queries such as sliding windows.

Partitioning, distributed processing, and fault tolerance
have been studied to some extent, e.g., in Borealis [1] by in-
troducing replicated processing nodes as well as several new
tuple types such as punctuation tuples and control tuples
like undo tentative (tuples resulting from processing a sub-
set of the input which can be corrected later) and done tuples
indicating that state reconciliation finished. State reconcil-
iation is the process of stabilizing the output result, e.g.,
by replacing previously tentative results. In this way, this
approach aims at fault-tolerance but not at partitioning.

Another approach in the form of a programming model
has been proposed in [14] as so-called discretized streams (D-
Streams). This idea is based on resilient distributed datasets
which are storage abstractions used for rebuilding lost data.

An approach addressing load balancing issues by par-
titioning while providing fault tolerance for pipelined
dataflows is Telegraph’s FluX [10]. FluX is a dataflow opera-
tor extending the idea of the exchange operator form parallel
query processing. The operator encapsulates state partition-
ing and tuple routing and allows to repartition even stateful
operators while executing the dataflow pipeline.

Scalable dataflow platforms try to extend the applicabil-
ity of the MapReduce paradigm for large-scale parallel batch
processing to pipeline processing and continuous query sup-
port. One example is HOP (Hadoop Online Prototype) [4].
In HOP, map tasks maintain TCP sockets to reducers for
pipelining their output. In addition, pipelining is also sup-
ported between jobs by sending the output of reducers di-
rectly to mappers of a subsequent job. Further, distributed
dataflow systems are Twitter’s Storm and Apache S4. Storm
implements fault detection at task level and guaranteed mes-
sage passing, whereas in S4 messages can be lost. Storm runs
so-called topologies – subsets of these topologies are assigned
to worker processes of a cluster. However, these systems only
offer a simple programming model and, therefore, operators

and topologies have to be implemented in a programming
language like Java or Python. Furthermore, state recovery
and partitioning have to be implemented manually, too.

Optimus [11] is a framework for dynamic rewriting of
execution plans for data-parallel computing, e.g., formu-
lated in DryadLINQ. The framework supports rewriting of
MapReduce programs at runtime, addressing issues like re-
partitioning, fault tolerance, and handling data skew. But
the required algorithms have to be implemented by the user.

3. PATTERNS FOR SCALABLE PROCESS-
ING OF DATA STREAM QUERIES

In the following we assume a simple processing model for
data stream queries: a query is represented by a dataflow
graph which is a common model in literature [9, 11].

In such a directed acyclic graph, nodes represent query
operators and edges describe the tuple flow between them.
Query nodes can be arbitrary pipeline operators of a stream
query algebra [2] like filter, projection etc. as well as window-
or synopsis-based operators as sliding window joins and ag-
gregations, but also more complex data analytics operators
including CEP and data mining. Communication between
query operators is performed either directly by invoking op-
erator functions or via buffers/queues. Obviously, this repre-
sents a very generic execution model to which a wide range
of declarative query languages like CQL, dataflow specifi-
cations such as IBM’s SPL, or implementation-oriented ap-
proaches as used in S4 or Storm can be mapped. This model
can be easily extended to the distributed case by inserting
network reader/writer nodes which use appropriate com-
munication protocols and APIs, e.g., TCP/UDP sockets or
more advanced solutions like ZeroMQ.

There are two main reasons for distributing query nodes:
increasing processing reliability by introducing redundancy,
and increasing performance and/or scalability by load distri-
bution. The following patterns support these goals to differ-
ent degrees. In this discussion, we use the term “query task”
as the unit of distribution/scheduling for both, elementary
algebra operators, and for dataflow (sub-)graphs with well-
defined properties (input/output, stateless vs. statefulness).

Pattern 1: Simple standby: For a critical query node N
a standby node S is maintained on a separate compute unit
which is activated if N fails. This requires monitoring of N ,
e.g. by a combination of heartbeats and cluster coordination
service such as ZooKeeper as well as rerouting the input
tuple stream to S. Since in case of a failure the state of N
is lost, this pattern is applicable only for stateless nodes.

Pattern 2: Checkpointing: This pattern is similar to pat-
tern 1 but supports stateful operators. Failover is achieved
by periodically checkpointing the state of the critical node N
to a shared disk and restarting the standby node S from the
checkpoint. Examples of such checkpoints are the content of
sliding windows or hash tables for joins and aggregations.

Pattern 3: Hot standby: If the failover time of pattern
2 is not acceptable, a hot standby approach can be chosen
where redundant query nodes S are kept actively. To achieve
this, the input stream has to be sent to all redundant nodes,
either by using multicast strategies at the network or at the
application level. This pattern works both with stateless and
stateful query operators but requires a special node to elim-
inate duplicate results, e.g., a stream selector node which
forwards the input from only one of multiple streams.

2

Towards Elastic Stream Processing: Patterns and Infrastructure

50

N

S

failover

network writer

Figure 1: Simple Standby

N

S

failover

network writer

log

Figure 2: Checkpointing

N

S

failover

multicast writer stream selector

Figure 3: Hot Standby

Pattern 4: Stream partitioning: This pattern exploits
data parallelism by partitioning the input stream. It can be
implemented by a splitter node redirecting each input tuple
to one of the query nodes N1 . . . Nk or by a multicast writer
with an additional partitioning node P1 . . . Pk for filtering
the input stream according to the partitioning scheme. Fi-
nally, the results are merged into a single stream.

Pattern 5: Stream pipelining: In contrast to pattern 4
this pattern exploits task parallelism by splitting a complex
query node N into a sequence of query nodes N1 . . . Nk and
placing them on separate compute units.

Usually, multiple patterns will be applied in order to
achieve certain quality of service (QoS) guarantees as fault
tolerance (patterns 1-3) or elasticity for adapting resource
consumption (patterns 4-5) according to the needs of the
applications. Of course this pattern list does not claim com-
pleteness. There are several others that are applicable under
certain circumstances, e.g., parallelization through aggrega-
tion trees for commutative and associative aggregation op-
erators [9]. Nevertheless, these basic patterns described here
are well-known in distributed and parallel algorithms, and
– with slight modifications – cover various use cases 1.

In the following we will describe how these patterns can
be utilized in a dataflow framework to dynamically restruc-
ture the physical representation of the graph in a continuous
query context that is executed in a cluster infrastructure.
The restructuring is achieved with a simple set of rewriting
rules that are automatically applied on the graph without
the need to manually code them as in existing approaches
[11] while guaranteeing that no state information is lost dur-
ing the restructuring phase. We present the algorithms based
on our AnduINv2 stream processing engine but highlight
that they are also applicable on other frameworks as Dryad
with slight modifications to achieve streaming semantics.

4. QUERY DEPLOYMENT INFRASTRUC-
TURE

Fig. 6 illustrates the dataflow model used in AnduINv2
and how it is mapped to the physical layer of executable
code. While the first prototype of the system aimed at pro-
cessing sensor data as well as in-network processing [12] and
complex event processing (CEP) [8], our current research fo-
cuses on processing techniques for cluster environments. The
AnduINv2 system comprises three components: (1) the run-
time environment containing the implementation of query
operators including a CEP engine as well as operators for
controlling the query execution, (2) a query compiler trans-
lating a dataflow-based query specification given in an XML
file into query tasks, i.e., executable code linked to the run-
time environment, (3) a query scheduler and executor inte-
grated with the Mesos cluster framework that deploys query
tasks for processing them on physical nodes.

1Actually, aggregation trees are just combinations of parti-
tioning and pipelining patterns.

AnduINv2 queries are deployed as separate processes in
Mesos which are just-in-time compiled using the system’s
C++ compiler. This provides an easy mechanism to plug-in
user defined operators and exchange operator implementa-
tions. During deployment, processes are interlinked by query
channels which simply represent an abstraction over network
connections (TCP/UDP sockets, ZeroMQ connections).

Query tasks can be shared among multiple queries when
they share some common (sub)streams or operators as de-
scribed in [3]. Further, a query can be implemented as a set
of tasks which are distributed across multiple nodes in the
cluster. Therefore, the logical query tree is partitioned into
smaller subtrees that are translated separately. We will use
these mechanisms for implementing the elasticity patterns.

4.1 Dataflow Graph Rewriting
dataflows are specified in an XML format which can be

seen as an intermediate representation, allowing to use dif-
ferent frontends such as CQL or graphical tools. A dataflow
specification consists of stream type definitions and operator
definitions with name, type, type-specific parameters as well
as input and output channels. These channels are typed and
are used to interconnect operators to form a graph. The fol-
lowing example shows a simple dataflow specification. (We
omitted the XML notation for better readability).

type name = ”aStreamType” {
column name = ”x”, type = ”int” . . .

}
operator name = ”source”, type = ”reader” {

output name = ”aStream”, type =”aStreamType”
}
operator name = ”myFilter”, type = ”filter” {

input name = ”aStream”
param condition = ”aStream.x < 42”
output name = ”filteredStream”, type = ”aStreamType”

}
operator name = ”sink”, type = ”writer” {

input name = ”filteredStream”
}

Mesos
master

Mesos
slave

Query
executor

Task

Standby
master

deploy

Query

Query
scheduler

Query 1: t1, t2, t3, ...
Query 2: ...
Query 3: ...

<t1, cores, mem, ports, …>
<t2, cores, mem, ports, …>

...

Query
operator

Query task

Query Task

In
pu

t C
ha

nn
el

s

O
utput C

hannels

Task State

Parameters (Meta-Query)

~I(t)

~P (t)

~O(t)

~S(t)

�

⌧i ⌧p

... ...

Tfuture tuples processed tuples

Input Queue Operator States Output Queue
T T

Mesos
slave

Query
executor

Task

Mesos
slave

Query
executor

Task

Mesos
slave

Query
executor

Task

Figure 6: query model

3

Towards Elastic Stream Processing: Patterns and Infrastructure

51

multicast
writer

stream
merger

P1 N1

P2 N2

Pk Nk

Figure 4: Partitioning

N1 N2 Nk

Figure 5: Pipelining

Note, that apart from stream input and possible output
no communication operators have to be specified as part
of the query. Such operators are added during rewriting if
necessary. For formulating rewriting rules we use a simple
notation. A dataflow as given above is written as

sink := writer(f := filter(src := reader))

where writer, filter, and reader are operator types and the
optional sink, f, and src names denote operator instances.

During rewriting, graph patterns have to be matched and
constraints are checked. For this purpose, the pseudo-type
any is used as a placeholder for any possible type, and any*
represents a dataflow of arbitrary operator types. The fol-
lowing pattern matches a dataflow subgraph containing a
stateless filter operator (which is the case for any filter):

a2 := any(f := filter(a1 := any*))[stateless(f)]

To apply the patterns, a rewriting rule can be specified:

⇒ a2(stream-selector(failover
︸ ︷︷ ︸

@p1

(writer(f(reader
︸ ︷︷ ︸

@p∗

(multicast(a1)︸ ︷︷ ︸
@p2

))))))

Besides inserting or replacing operators (such as stream-
selector, failover, and multicast operators in the previous ex-
ample), operator nodes are also annotated with placement
information where pi, pj with i 6= j denote distinct compute
nodes and p∗ denotes an arbitrary number of nodes.

4.2 Failover Handling
With these rewriting rules, internal data management

nodes and different operator implementations can be trans-
parently injected into the query plan without impacting the
application. This allows to re-schedule a query task to an-
other node in case of a failure (pattern 1), use an operator
implementation that automatically integrates snapshotting
(pattern 2), or replicate a task to implement hot standby.

The actual flow of data through query channels during
runtime is controlled by special operator parameters – e.g.,
target IP addresses and ports – that can be adjusted through
a concept we call meta queries (cf. Sect. 4.5). To detect and
react on failures, query tasks are instrumented with moni-
toring interfaces that inform the query scheduler about the
nodes’ health and performance measures as tuple processing
rates. The scheduler then triggers a graph rewriting.

When a rewritten graph needs to be deployed, it has to be
guaranteed that no information of the tuple stream is lost.
To analyze the necessary steps, we reduce a query task to a
finite state machine model (cf. Fig. 6) which is common for
implementing CEP operators [6] but can also be applied for
general dataflow transformations. The query task receives a
stream of input tuples ~I(t), applies its logical operation(s)
λ – e.g., a filter or a join – to generate an output stream
~O(t). (We use vectorial representations here to combine all
channels into a single quantity.) The output might depend

on the task’s state ~S(t), i.e., the state of all internal oper-
ators which can basically include anything that is required
for implementing the operators (e.g., hash tables, or sliding

windows) and are updated with each incoming tuple through
a state transition function τi

2. The meta query extension is
represented by special input channels ~P (t) that modify the
operator state through τp.

To guarantee that a node failure does not lead to an in-
formation loss it is necessary that all results which have not
been consumed by the following target can be reproduced
from the possibly infinite input stream. Therefore, the op-
erator state needs to be snapshotted after each input tuple,
or – if this is too expensive – the input tuples need to be
persisted in order to reproduce this state with just ’replay-
ing’ the input. Which tuples are still required for a possible
replay can be controlled by special tuple messages that are
exchanged between tuple producers and consumers as in the
Borealis system [1]. Note when frameworks as ZeroMQ are
used to implement query channels, reliable message delivery
can be guaranteed without the need to modify operators.

In order to implement fault tolerance with transferring
stateful query tasks to other computing nodes, a simple pro-
tocol as presented in [10] is sufficient:
(1) quiesce all input streams,
(2) replicate the task state to the target node,
(3) redirect the input streams to the target node,
(4) unquiesce all input streams.

4.3 Elasticity Handling
The same algorithm can be used to replace query tasks

with their rewritten versions that compute the same logical
transformation but use different operator implementations
and/or partitioning schemes of the query graph into tasks
for implementing the elasticity patterns 4 and 5.

Rewriting Cost Model: Usually, there are several possi-
bilities for rewriting dataflow graphs. In order to make right
decisions which tasks shall be replaced and how many nodes
should be allocated, a cost model is required taking possi-
ble rewriting benefits into account as well as costs for the
restructuring, e.g., for transferring states or costs for addi-
tional resources from the cluster infrastructure. Discussing
elaborate decision models is not in the focus of this paper
and is left for future work. We outline a rate-based model
that is suitable to find hot spots in dataflows and is used in
related literature [13].

Rewritings should be done when a query task is detected
that cannot process its incoming tuples with a rate higher
than the arrival rate, e.g., when the computational complex-
ity or the memory consumption is too high and therefore the
task accumulates an increasing backlog. Such a task repre-
sents the critical path in the dataflow, limiting the overall
throughput. For finding these paths, a rate-based optimiza-
tion approach is suitable that scans the dataflows starting
at source nodes and detects such bottlenecks based on moni-
toring information gathered during the execution [13]. After
hot spots have been identified, one or multiple of the follow-
ing methods can be applied for alleviating these bottlenecks.

2Usually, the separation of λ and τ is only conceptual and
both functions are combined.

4

Towards Elastic Stream Processing: Patterns and Infrastructure

52

time

value

t1 t2t3 t4 t5 t7t6

t1|{z}
A

t2t3t4t5| {z }
B

t6|{z}
C

t7|{z}
D

t4|{z}
A

t5|{z}
B

t6|{z}
C

t7|{z}
D

t1|{z}
A

t2|{z}
B

t3|{z}
C

(t4t5t6) t7|{z}
D

'ticks''tick'-pattern

A

C
B+

D+

Figure 7: ’tick’-shaped pattern

Task sharing (Pattern 5): When multiple queries share
the same (sub)graph to increase data locality [3] and the
shared graph is on the critical path, this path can be repli-
cated, sharing groups can be repartitioned, and tuples dis-
tributed to all replicas. This is the easiest way to remove
burden from the critical path since inputs of sharing groups
are independent from each other and no special dataflow
transformations need to be performed.

Inter-operator parallelism (Pattern 4): Usually, it is
better to keep dataflow operations on few nodes in order
to avoid costly transfer operations. Hence, initially com-
piled queries will comprise few tasks consisting of large
flow (sub)graphs. However, when the computational com-
plexity exceeds a certain threshold or memory limits for
keeping state information are exceeded, a distributed pro-
cessing pipeline will yield better performance. Large graphs
are partitioned, recompiled, and distributed on additional
nodes in the cluster. Moreover, splitting large costly tasks
into smaller distributed ones increases fault-tolerance since
it will become cheaper to recover from node failures [11].

Intra-operator parallelism (Pattern 4+5): When the
previous patterns not applicable, e.g., when operators are
not shared or the graph has already been split into base
operators, the last possibility to increase parallelism is par-
titioning input streams and processing each partition inde-
pendent from each other with multiple operator instances.
Unfortunately, this pattern is the most difficult to implement
since its applicability depends on the actual operator type.
Partitions in input streams need to be found, distributed to
the operator instances, and their (partial) results have to be
merged afterwards. Further, this pattern is prone to data
skews and, therefore, some sort of load balancing has to be
implemented, e.g., by monitoring the load of each partition
and dynamically re-schedule partitions as proposed in [10].
This concept seamlessly integrates with the graph rewriting
patterns described in this paper but again involves addi-
tional costs for transferring partitions among cluster nodes.

The most challenging problem in this context is finding
suitable partitioning schemes for the operators that shall
be deployed in the framework, especially when they are
not stateless. In the following, we will present a paralleliza-
tion scheme in the complex event processing (CEP) context
which is prominent in stream processing.

The task of CEP is finding complex patterns in a stream
of base patterns. These patterns are defined through cer-
tain properties of incoming tuples, usually described through
predicates and additional correlations of their arrival time.
Mostly, sequences and repetitions are used which can be ex-
pressed with regular expressions [15]. We demonstrate the
parallelization on the ’tick-shaped’ pattern example from [5]
which is illustrated in Fig. 7. In the original publication, the
task for detecting such patterns is originated in stock ex-
change trading, but it could also be applied for burst detec-
tion. A ’tick-shape’ can be expressed by AB+CD+ where:

P +

......

p1p2
p1p3
p2p3p3

p2
p1

P +

...
p4p5
p3p4 p1p2p3

...
p2p3p4

P+

P +

...

p1p2p3
...
...

p1p2
p1p3
p2p3p3

p2
p1

partition

pipeline2

1

P +P °P
p1p2p3

...

...
p1p2

...
p1p3p2

...

p1

Figure 8: rewriting repetition operator

A matches any incoming tuple

B+ matches all following tuples with decreasing value

C matches the first tuple with increasing value after B
but with a value less than the previous one of A

D+ matches following tuples with increasing values > A

For parallelization, we focus on the +-operator since it
is challenging for three reasons: First, like a join, it can
produce multiple output tuples per input tuple. Second, it
needs to store state information for extending existing pat-
terns to longer ones. Since each tuple is possibly multiplying
the number of results it is likely that – due to memory con-
straints – such operators will become critical in the dataflow
graph. Third, in most cases the behavior of the stream is not
predictable, rendering static allocations infeasible.

Fig. 8 illustrates how the operator can be distributed dy-
namically to multiple nodes with simply applying graph pat-
terns 4 and 5. The P+-operator comprises two parts: a pat-
tern matcher P , and a +-operator which maintains all previ-
ously matched patterns as state and concatenates them with
subsequent matches. The output of + is the output for the
entire operator and serves as input for + again to construct
longer matches. On memory overflow, the operator state can
be partitioned and distributed to multiple instances where
all instances receive the original input stream. Two different
behaviors of the operator are required to avoid duplicates.
The first instance processes the input directly, i.e., all match-
ing tuples serve as new patterns of length 1. Those matches
must not be reproduced by other instances that simply serve
as targets for overflowing patterns that do not fit into the
local state but are independent from each other and hence
can be processed on separate nodes. When the complexity
of the matching algorithm P is critical, elasticity can also be
achieved with implementing a pipeline. It exploits the fact
that P+ can be expressed through P∨(PP+), i.e., a pipeline
of arbitrary length is constructed for matching incoming tu-
ples in parallel, emitting them as output, and forwarding
them to the next stage for extension.

Since such parallelization schemes depend on operator se-
mantics, the framework provides them to automatically scale
up and down required resources for built-in operators. For
all user defined functions which are treated as black boxes
by AnduINv2, the parallelization needs to be implemented
by the user as in [11] or are provided through libraries that
are linked as plugin to the execution environment.

4.4 Mesos Integration
Mesos [7] is a cluster management software for resource

isolation and sharing. In Mesos, a master daemon (possi-
bly supported by additional standby masters) manages a
set of slaves nodes. An application (called framework) runs

5

Towards Elastic Stream Processing: Patterns and Infrastructure

53

tasks on these slaves which is initiated by so-called execu-
tors. Scheduling and resource assignments are managed by
an application-specific scheduler. In order to support stream
queries we implemented our own framework (cf. Fig. 6),
providing an executor for running query executables (query
tasks) on slave nodes and a query scheduler which gets re-
source offers from the Mesos master (available cores, mem-
ory, and network ports) and requests for executing AnduIN
queries. Each query deployment request is described by a
unique ID, the executable, and a specification of resource
requirements, i.e., CPU cores, memory, and a list of query
channels which have to be mapped to network ports. This
specification is used by the scheduler to choose a slave node
providing the requested resources for execution. Currently,
only a simple strategy is implemented selecting the first offer
providing the requested resources – more advanced strate-
gies are subject of future work. If the scheduler has chosen
an appropriate node, the request is forwarded to the corre-
sponding executor. The scheduler assigns physical network
ports to query channels and tracks these assignments to be
able to connect subsequent queries referring to the same
logical channel. In this way, a query implemented by one or
more tasks can be deployed to one or more cluster nodes.

4.5 Meta Queries
Though, Mesos provides mechanisms to deploy processes,

it does not support elastic operation for stream queries. In
Hadoop, it is the task of the job tracker to partition the work
across a set of map and reduce tasks. In case of data streams
the situation is a bit different, because we cannot simply
stop and continue/restart queries without loosing data. The
only way to achieve elasticity is to change query behavior at
runtime. Therefore, we introduce the idea of meta queries: in
each (adjustable) query task an additional query is running
on a control stream consisting of tuples of the form:

〈query id, operator id, parameter, value〉

The control stream is produced by the query scheduler
which monitors resource utilization and implements strate-
gies for dynamic reallocation. Meta queries are particular
useful for implementing the patterns described in Sect. 3.
For instance, for failover without publish-subscribe (pattern
1 and 2), the network writer has to be informed about the
network address of the newly activated standby node S. For
this purpose, the network writer provides a parameter target-
addr for the target address. A control stream tuple like

〈query#42,writer#2, target-addr, ”tcp://node2:6666”〉
received by the query task triggers sending the tuple stream
to the standby node node2. Similarly, for implementing pat-
tern 3, the stream selector node can be informed about
switching to the stream produced by query node S.

For partitioning patterns like pattern 4 it is either required
to modify the tuple distribution strategy of multicast writers
or to adjust partitioning predicates Pi in Fig. 3. Both can be
easily implemented by sending appropriate control tuples.

5. CONCLUSION AND FUTURE WORK
We presented basic concepts how fault-tolerance and elas-

ticity can be achieved in the context of continuous query
processing by combining techniques that have proven appli-
cability in other scenarios. These approaches are currently

being integrated into AnduINv2, but can be applied in other
platforms, too. Our main questions we would like to answer
with future experiments are:

1) Which cost models are valid for online graph rewriting?
2) How can resource requirements for a query be estimated

before actually executing it?
3) How can certain QoS guarantees be given to applications?
4) Can elastic stream processing benefit from heterogeneous

clusters nodes?

While the first questions intent to pave the way for a
streaming-as-a-service infrastructure, answering the last one
is needed to keep up with current hardware development
trends. We believe that parallel and specialized processors
as many-core CPUs, GPUs, or FPGAs will find their way
into future computing centers to provide the most efficient
computing platforms for dedicated tasks – an important as-
pect to tackle the big data challenge.

6. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, et al. The Design of

the Borealis Stream Processing Engine. In CIDR ’05, 2005.
[2] A. Arasu, S. Babu, and J. Widom. CQL: A language for

continuous queries over streams and relations. In Database
Programming Languages. Springer, 2004.

[3] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ:
a scalable continuous query system for Internet databases.
SIGMOD Rec., 29:379–390, 2000.

[4] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce online. In NSDI,
pages 21–21, 2010.

[5] N. Dindar, P. M. Fischer, M. Soner, and N. Tatbul.
Efficiently correlating complex events over live and archived
data streams. In DEBS ’11. ACM, 2011.

[6] M. Eckert, F. Bry, S. Brodt, O. Poppe, and S. Hausmann.
A CEP Babelfish: Languages for Complex Event Processing
and Querying Surveyed. In Reasoning in Event-Based
Distributed Systems. Springer, 2011.

[7] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A
platform for fine-grained resource sharing in the data
center. In NSDI, pages 22–22, 2011.

[8] S. Hirte, E. Schubert, A. Seifert, S. Baumann, D. Klan, and
K. Sattler. Data3 - A Kinect Interface for OLAP using
Complex Event Processing. In ICDE, 2012.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequential
building blocks. SIGOPS, 41:59–72, 2007.

[10] M. S. Joseph, J. M. Hellerstein, S. Ch, and M. J. Franklin.
Flux: An Adaptive Partitioning Operator for Continuous
Query Systems. In ICDE, 2002.

[11] Q. Ke, M. Isard, and Y. Yu. Optimus: a dynamic rewriting
framework for data-parallel execution plans. In EuroSys,
pages 15–28, 2013.

[12] D. Klan, M. Karnstedt, K. Hose, L. Ribe-Baumann, and
K. Sattler. Stream engines meet wireless sensor networks:
cost-based planning and processing of complex queries in
AnduIN. Distrib. and Parallel Databases, 29:151–183, 2011.

[13] S. D. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
SIGMOD ’02. ACM, 2002.

[14] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized streams: an efficient and fault-tolerant model
for stream processing on large clusters. In HotCloud ’12.
USENIX Association, 2012.

[15] F. Zemke, A. Witkowski, M. Cherniak, and L. Colby.
Pattern matching in sequences of rows. Technical report,
ANSI Standard Proposal, 2007.

6

Towards Elastic Stream Processing: Patterns and Infrastructure

54

1

Task Graphs of Stream Mining Algorithms
 Sayaka Akioka

Meiji University
4-21-1 Nakano, Nakano-ku

Tokyo, 164-8525, Japan
+81-3-5343-8305

akioka@meiji.ac.jp

ABSTRACT
Acceleration of huge data analysis, especially an analysis of huge,
and fast streaming data is one of the major issues in recent
computer science. Proper modeling, and understanding of
streaming data analysis are indispensable for speed-up, scale out,
and faster response time of streaming data analysis. Especially for
the research on scheduling, or load balancing algorithms, a model
of the target application truly impacts on the performance of the
scheduling, or load balancing algorithms, however, there is no
study on the realistic models, or the actual behaviors of streaming
data analysis yet. This paper proposes a task graph for stream
mining algorithms with some examples of actual applications. A
task graph represents a workload of the target application with
data dependencies, and control flows. This is the first proposal of
task graphs for stream mining algorithms, and the task graphs play
an important role as a benchmarking tool for the development of
scheduling, or load balancing algorithms targeting on stream
mining algorithms.

1. INTRODUCTION
Applications to process a massive amount of data, so-called “big
data”, is one of the recent hot research topics. Big data
applications are sometimes considered to be quite similar with
data intensive applications in high performance computing (HPC),
however, the behaviors of applications in these two domains are
quite different [9].

Big data applications utilize often stream mining algorithms,
while data intensive applications process huge data in a batch.
That is, big data application often tries to analyze data stream,
which is a sequence of data arriving in chronological order, on the
fly. As the data stream flows very fast, stream mining algorithms
are developed with the purpose of the perfect analysis over such
fast data flows. Once the delay of the analysis arises, and the
analysis fails to keep up with the data arrival, the whole process
will be forced to drop some of the arriving data. As many of the
streaming analysis processes place emphasis on the real-time
analysis in chronological order, a drop of the arrival data is highly
critical.

As big data applications scale up with such a severe requirement
for extremely low latency, big data applications become to run on
the parallel and distributed computing environment such as the
computing cloud. In order to exploit parallelism, and speed up the
applications, scheduling is indispensable. Scheduling algorithms
in parallel and distributed computing environment have been
studied intensively for a long time especially in HPC, and these
researches often validate, and compare the scheduling algorithms
with task graphs. A task graph represents a workload of a target

application, which is often synthetic workload generated
randomly. As the quality of task graphs heavily impacts on
validation of scheduling algorithms, the methodology to generate
task graphs have been studied as well with a strong focus on data
intensive applications in HPC.

This paper proposes task graphs generated from the actual
implementations of stream mining algorithms in order to
contribute to a development of effective, and practical scheduling
algorithms for stream mining algorithms. The contributions of this
paper are 1) the first proposal of task graphs for stream mining
algorithms, 2) the practical and realistic workloads extracted from
the existing implementations, 3) task graphs as representations of
the behaviors of stream mining algorithms to open up unexplored
problems for conventional scheduling algorithms, and 4) task
graphs as a benchmarking tool to accelerate the development of
scheduling algorithms for stream mining algorithms.

The rest of this paper is organized as follows. Section 2 gives a
generic model of stream mining algorithms in order to clarify data
dependencies of the process. Section 3 describes the procedure of
task graph generation, and proposes a format of task graphs for
stream mining algorithms. Section 4 overviews actual stream
mining algorithms analyzed in this paper, and represents
corresponding task graphs. Section 5 briefly introduces the related
work, and Section 6 concludes this paper.

2. STREAM MINING ALGORITHMS
A stream mining algorithm is an algorithm specialized for a data
analysis over data streams on the fly. There are many variations of
stream mining algorithms, however, general stream mining
algorithms share a fundamental structure, and a data access
pattern as shown in Figure 1 [1].

A stream mining algorithm consists of two parts; a stream
processing part, and a query processing part. First, the stream
processing module picks the target data unit, which is a chunk of
data arrived in a limited time frame, and executes a quick analysis
over the data unit. The quick analysis here can be a
preconditioning process such as a morphological analysis, or a
word counting. Second, the stream processing module updates the
data cached in one or more sketches with the latest results through
the quick analysis. That is, the sketches keep the intermediate
analysis, and the stream processing module updates the analysis
incrementally as more data units are processed. Third, the analysis
module reads the intermediate analysis from the sketches, and
extracts the essence of the data in order to complete the quick
analysis in the stream processing part. Finally, the query

55

2

processing part receives this essence for the further analysis, and
the whole process for the target data unit is closed.

Based on the modeling above, we can conclude that the major
responsibility of the stream processing part is to process each data
unit for the further analysis, and that the stream processing part
has the huge impact over the latency of the whole process. The
stream processing part needs to finish the preconditioning of the
current data unit before the next data unit arrives, otherwise, the
next data unit will be lost as there is no storage for buffering the
incoming data in a stream mining algorithm. On the other hand,
the query processing part takes care of the detailed analysis such
as a frequent pattern analysis, or a hot topic extraction based on
the intermediate data passed by the stream processing part. The
output by the query processing part is usually pushed into a
database system, and there is no such an urgent demand for an
instantaneous response. Therefore, only the stream processing part
needs to run on a real-time basis, and the successful analysis over
all the incoming data simply relies on the speed of the stream
processing part.

The model of a stream mining algorithm shown in Figure 1 also
indicates that the data access pattern of the stream mining
algorithms is totally different from the data access pattern of so-
called data intensive applications, which is intensively
investigated in HPC. The data access pattern in the data intensive
applications is a write-once-read-many [9]. That is, the application
refers to the necessary data many times during the computation;
therefore, the key for the speedup of the application is to place he
necessary data close to the computational nodes for the faster data

accesses. On the other hand, in a stream mining algorithm, a
process refers to its data unit only once, which is a read-once-
write-once style. Therefore, a scheduling algorithm for the data
intensive applications is not simply applicable or the purpose of
the speedup of a stream mining algorithm.

Figure 2 illustrates data dependencies between two processes
analyzing data units in line, and data dependencies inside ne
process. The left top flow represents the stream processing part of
the preceding process, and the right bottom flow represents the
stream processing part of the successive process. Each flow
consists of the six stages; read from sketches, read from input,
stream processing, update sketches, read from sketches, and
analysis. An arrow represents a control flow, and a dashed arrow
represents a data dependency.

In Figure 2, there are three data dependencies in total as follows,
and all of these three dependencies are essential to keep the
analysis results consistent, and correct.

1. The processing module in the preceding process should
finish updating the sketches before the processing module in
the successive process starts reading the sketches (Dep.1 in
Figure 2).

2. The processing module should finish updating the sketches
before the analysis module in the same process starts
reading the sketches (Dep.2 in Figure 2).

3. The analysis module should finish reading the sketches
before the processing module in the successive process
starts updating the sketches (Dep.3 in Figure 2).

3. TASK GRAPH DEFINITIONS
As discussed in Section 2, a model of a stream mining algorithm
has data dependencies both across the processes, and inside one
process. Therefore, a task graph or a stream mining algorithm
should consist of a data dependency graph, and a control flow
graph. We already modeled both the data dependencies, and the
control flows for stream mining algorithms in Section 2, however,
a task graph is a finer grained model for a specific algorithm and
implementation.
A data dependency graph is drawn via an analysis of the actual
implementation of the target algorithm. Figure 3(a) is an example
of a data dependency graph of the training stage of Naïve Bayes
classifier[2] implemented by MOA project [8]. Figure 4
represents a pseudo code for the data dependency graph in Figure
3(a). A data dependency graph is a directed acyclic graph (DAG).
In a data dependency graph, each node represents a basic block, or

Figure 1. A model of stream mining algorithms.
.

Figure 2. Data dependencies of the stream processing parts in two processes in line.
.

Task Graphs of Stream Mining Algorithms

56

3

an equivalent chunk of codes in the actual implementation, and
each array indicates a data dependency. If an arrow comes up
from node A to node B, the arrow indicates that there is a data
dependency between node A, and node B, and that the process
represented by node B relies on the data generated by the process
represented by node A for consistency of the analysis.

A data dependency graph in Figure 3(a) actually consists of two
DAGs; a DAG with nodes in white, and a DAG with nodes in
gray. Each DAG represents each process in Figure 2. That is, the
DAG with white nodes in Figure 3(a) indicates the preceding
process in Figure 2, and the DAG with gray nodes in Figure 3(b)
indicates the successive process in Figure 2. The arrows between
the two DAGs represent data dependencies between the two
processes. In the case of stream mining applications, which is the
most different point from conventional applications, the
application continues running as long as a new data unit arrives. A
DAG with nodes in a same color represents one process for one
data unit, therefore, DAGs should lie in a line as many as the
number of data the corresponding application processes. In this
case, two DAGs are sufficient for the representation of the
minimum unit of the repeated pattern in the application, and the
data dependency graph does not contain any more redundant
DAGs for simple but sufficient representation.

In a data dependency graph, each node has a number, and the
number indicates that the particular node represents which basic
block in the pseudo code, such as shown in Figure 4. In this
example, node 1 represents the line starting with “(1)” in the
pseudo code in Figure 4, and node 2 represents the lines starting

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="NodeType">
 <xs:attribute name="id" type="xs:string" use="required" />
 <xs:attribute name="cost" type="xs:int" use="required" />
 <xs:attribute name="parallelism" type="xs:int" />
 </xs:complexType>

 <xs:complexType name="ArrowType">
 <xs:attribute name="id" type="xs:string" use="required" />
 <xs:attribute name="src" type="xs:string" use="required" />
 <xs:attribute name="dest" type="xs:string" use="required" />
 </xs:complexType>

 <xs:complexType name="DummyNodeType">
 <xs:attribute name="id" type="xs:string" use="required" />
 <xs:attribute name="cost" type="xs:int" fixed="-1" />
 </xs:complexType>

 <xs:complexType name="DDType">
 <xs:sequence maxOccurs="unbounded" minOccurs="2">
 <xs:element ref="arrow" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="CFType">
 <xs:sequence maxOccurs="unbounded" minOccurs="2">
 <xs:element ref="arrow" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="NodeListType">
 <xs:sequence>
 <xs:element ref="startNode" />
 <xs:sequence maxOccurs="unbounded" minOccurs="1">
 <xs:element ref="node" />
 </xs:sequence>
 <xs:element ref="endNode" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="TaskGraph">
 <xs:sequence>
 <xs:element ref="nodeList" />
 <xs:element ref="cf" />
 <xs:element ref="dd" />
 </xs:sequence>
 </xs:complexType>

 <xs:element name="node" type="NodeType" />
 <xs:element name="startNode" type="DummyNodeType" />
 <xs:element name="endNode" type="DummyNodeType" />
 <xs:element name="arrow" type="ArrowType" />
 <xs:element name="dd" type="DDType" />
 <xs:element name="cf" type="CFType" />
 <xs:element name="nodeList" type="NodeListType" />
 <xs:element name="taskgraph" type="TaskGraph" />
</xs:schema>

Figure 5. XML scheme for a task graph.

Figure 4. The training stage of Naïve Bayes algorithm.

for all training data do
(1) Fetch one training data v
for all attributes for v do

(2-1) Update the weight sum of this attribute.
(2-2) Update the mean value of this attribute.

 end for
end for

Figure 3. The data dependency graph (a), and the
control flow graph (b) for Naïve Bayes implementation

of MoA.

1

2 22

1

2 22

...

...

(a) (b)

1

2 22

1

2 22

...

...

285

285

360360360

360 360 360

Task Graphs of Stream Mining Algorithms

57

4

with “(2-1)”, and “(2-2)” in the pseudo code in Figure 4. Here, as
determined from the pseudo code in Figure 4, the basic block
indicated by node 2 is data parallel. Therefore, in the data
dependency graph, several node 2s are located in the same level of
the DAG. Logically, there is no limit of the number of node 2s in
this case, therefore, an user can put node 2s as many as desired.

A control flow graph is also drawn via an analysis of the actual
implementation of the target algorithm again, and the basic
definitions are almost the same to the case of a data dependency
graph. Figure 3(b) is a control flow graph for Naïve Bayes
classifier, and the corresponding pseudo code is shown in Figure 4.
Each node represents basic block again, however, each arrow in a
control flow graph represents the order of the process of basic
blocks. That is, in Figure 3(b), node 2 always has to be processed
just after node 1 is completed. On the other hand, nodes without
arrays in between do not have any ordering restriction. Therefore,
these nodes can be executed in a shuffled order, or on the same
stage. As the same to the data dependency graph, a control flow
graph consists of the minimum but sufficient DAGs for the
simplicity.

A control flow graph has a computational cost for each node. A
computational cost shown in a control flow graph is the average
of the actual computational costs measured in the actual
computations, however, this version of the control flow graphs do
not contain communication costs. As the control flow graphs here
are fine-grained, it is not beneficial to scatter one control flow
graph over the distributed computing environment. That is,
pipelining control flow graphs according to the speed of the input
data is a more realistic, and practical solution. Communication
costs for pipelining in the distributed computing environment
contains further discussions, and we reserve this topic for the
future work.

Figure 5 is the XML schema for a task graph, and Figure 6 is an
example representation of XML for Figure 3. Task graphs should

be represented also in XML according to this schema, and a
designer of scheduling simulators can easily employ the task
graph as a benchmark by reading this XML.

4. ACTUAL TASK GRAPHS
This section introduces task graphs extracted from the actual
popular methodologies. One is top-k implemented as a Java 1.7
application. The other is Hoeffding tree algorithm[6], which is
one of decision tree algorithms, and implemented as MOA
module[8].

We implemented top-k based on min summary algorithm
proposed by Lam et al.[7], and the base proposal by Calders et al.
[3]. Figure 7 is the pseudo-code of the corresponding algorithm.
Figure 8 (a) represents the extracted data dependency graph, and
Figure 8(b) represents the extracted control flow graph.
As we already saw through the generic model of the stream
mining algorithms in Section 2, each node processing one data
unit basically depends on the results of the previous node. That is,
each node is a consumer of the previous node. The exception is
node 1 (data fetching), and node 6 (update of the pruning
threshold). Especially, node 6 updates the pruning threshold based
on the length of the summary, and node 6 has to wait for the
elimination of the obsolete border points, which is node 5. On the
other hand, the process represented from node 2 to node 5 is
independent across the distinct items appeared during the
observation, and this part is capable of parallel execution.
When we focus on the dependency between the preceding process,
and the successive process, node 2 in the successive process
depends on node 5 in the preceding process. Node 5 in the
preceding process deletes the obsolete border points, while node 2
adds a new border point, or increment the counter of the existing
border point according to the input. There is no dependency when
node 2 adds a new border point, however, node 2 needs to decide
which border point should be updated when node 2 increments the
count of the existing border point. This is the reason why node 2
in the successive process behaves as a consumer of node 5 in the
preceding process.
One more thing we would note here is that the computational cost
of node 6 is relatively huge compared to the computational costs
of the other nodes. The major reason of the heavy load of node 6
is that node 6 needs to calculate the maximum relative frequency
of the least appeared item during the observation. Because of this
process, node 6 is a consumer of node 5, needs to sweep all the
data in the summary, and consumes more time for completion.

<?xml version="1.0" encoding="utf-8" ?>
<taskgraph>
 <nodeList>
 <startNode id="0" />
 <node id="1" cost="285" parallelism="1" />
 <node id="2" cost="360" parallelism="-1" />
 <endNode id="3" />
 </nodeList>

 <cf>
 <arrow id="cfa01" src="0" dest="1" />
 <arrow id="cfa12" src="1" dest="2" />
 <arrow id="cfa22" src="2" dest="2" />
 <arrow id="cfa23" src="2" dest="3" />
 </cf>

 <dd>
 <arrow id="dda10" src="1" dest="0" />
 <arrow id="dda21" src="2" dest="1" />
 <arrow id="dda22" src="2" dest="2" />
 <arrow id="dda32" src="3" dest="2" />
 </dd>
</taskgraph>
 Figure 6. XML representation for the task graph in Figure 3.

for all input data items do
 (1) fetch one input data v
 for all distinct items appeared do
 (2) create or update a border point for v
 (3) update summary
 (4) update frequency
 (5) delete obsolete border points
 end for
 (6) update pruning threshold
end for

Figure 7. A pseudo-code of top-k (min summary).

Task Graphs of Stream Mining Algorithms

58

5

This tendency of the computational cost implies that the execution
in a pipeline is really effective for min summary algorithm. In fact,
the computational cost of node 6 is almost equivarent to the total
cost of the single path of nodes 1-5, and node 6 is independent
from these nodes. Therefore, node 1-5, and node 6 are capable of
running in a pipeline, and consumes almost the same
computational time. That is, there is a chance to hide almost half
of the execution time of the process time of one data unit, and
improve the throughput by pipelining.

We also extracted a task graph of Hoeffding tree algorithm from
MOA implementation. Figure 9 is the pseudo-code of the
algorithm, and Figure 10 represents the extracted data dependency
graph. The control graph is omitted for the page limitation. We
skip the detailed discussion for the page limitation again, however,
we can observe similar tendency of the application as we saw in
the generic model in Section 2, Naïve Bayes in Section 3, and min
summary algorithm in this section. One major difference from the
previous cases is that node 1 depends on node 9, therefore, the
effect of the pipelining is not huge compared to the other cases.

Here, we need to discuss computational costs in the control flow
graph. This version of the task graph represents a computational
cost as the average of actual executions. This is in a sort of the
simplified model as the computational cost of stream mining
algorithms easily varies depending on the input data. We need to

develop the better methodology for the computational model,
however, we reserve this issue as a future work.

Figure 8. The data dependency graph (a), and the control
flow graph for top-k (min summary).

1

22 2

3 3 3

4 4 4

5 5 5

6

...

...

...

...

1

22 2

3 3 3

4 4 4

5 5 5

6

...

...

...

...

424

424

1355

2322

1143

694

6376

6376

694 694

694 694 694

1355 1355

1355 1355 1355

2322 2322

2322

1143 1143

1143

2322 2322

1143 1143

1

22 2

3 3 3

4 4 4

5 5 5

6

...

...

...

...

1

22 2

3 3 3

4 4 4

5 5 5

6

...

...

...

...

(a) (b)

Let HT be a tree with a single leaf (the root)
for all training data do

(1) Fetch one training data v, and sort v into leaf l
using HT

 for all attributes for v do
 (2) Update sufficient statistics in l
 end for
 (3) Increment nl, the number of examples seen at l
 if n1 mod nmin = 0 and data seen at l not all of same
 class then
 (4) Compute Gl(Xi) for each attribute
 (5) Let Xa be attribute with highest Gl
 (6) Let Xb be attribute with second-highest Gl
 (7) Compute Hoeffding bound
 if Xa != Xb and (Gl(Xa) − Gl(Xb) > ε or ε < τ)	

 then
 (8) Replace l with an internal node that splits on Xa
 for all branches of the split do
 (9) Add a new leaf with initialized sufficient
 statistics
 end for
 end if
 end if
end for

Figure 9. A pseudo-code of a training tree of Hoeffding
tree algorithm.

1

22 2

3

4 4 4

5

6

...

...

7

8

9 9 9...

1

22 2

3

4 4 4

5

6

...

...

7

8

9 9 9...

Figure 10. A data dependency graph for Hoeffding tree
algorithm.

Task Graphs of Stream Mining Algorithms

59

6

5. RELATED WORK
There are several studies on task graph generation, mainly
focusing on random task generation. A few projects reported task
graphs generated based on the actual well-known applications,
however, those applications are from numerical applications such
as Fast Fourier Transformation, or applications familiar to HPC
community for a long time.

Task Graphs for Free (TGFF) provides pseudo-random task
graphs [5,11]. TGFF allows users to control several parameters,
however, generates only directed acyclic graphs (DAGs) with one
or multiple start nodes, and one or multiple sink nodes. Each task
graph is assigned a period, and a deadline based on the length of
the maximum path in the graph, and the user specified parameter.

GGen is another random task graph generator proposed by
Cordeiro et al [4]. GGen generates random task graphs according
to the well-known random task generation algorithms. In addition
to the graph generator, GGen provides a graph analyzer, which
characterizes randomly generated task graphs based on the longest
path, the distribution of the out-degree, and the number of edges.

Task graph generator provides both random task graphs, such as
Fast Fourier Transformation, Gaussian Elimination, and LU
Decomposition [12]. The random task graph generator supports
variety of network topologies, including star, and ring. Task graph
generator also provides scheduling algorithms as well.

Tobita et al. proposed Standard Task Graph Set (STG), evaluated
several scheduling algorithms, and published the optimal
schedules for STG [10,13]. STG is a set of random task graphs,
which are ready to download. Tobita et al. also provides task
graphs from numerical applications such as a robot control
programs, a sparse matrix solver, and SPEC fpppp.
Besides the studies on task graph generation, Cordeiro et al.
pointed out that randomly generated task graphs can create biased
results, and that the biased results can mislead the analysis of
scheduling algorithms[4]. According to the experiments by
Cordeiro et al., a same scheduling algorithm man obtain a speedup
of 3.5 times only by changing the graph generation algorithm for
the performance evaluation.

Random task graphs contributes positively for evaluation of
scheduling algorithms, however, do not perfectly cover all the
domains of parallel and distributed applications as Cordeiro et al.
figured out in their work. Especially for stream mining
applications, which focus on in this paper, the characteristic of the
application behaviors are quite different from the characteristic of
the applications familiar to the conventional HPC community as
we discussed in Section 2. Task graphs generated from the actual
stream mining applications have profound significance in the
better optimization of the applications in parallel computing
environment for wider area of applications.

6. CONCLUSION
This paper proposed task graphs for stream mining algorithms.
This is the first clear proposal of task graphs modeling stream
mining algorithms, and the task graphs are extracted from the
actual implementations of the popular existing methodologies.
Task graphs proposed in this paper play an important role as the
benchmarking tool to evaluate scheduling algorithms, or load
balancing algorithm, which is indispensable for the research of
scheduling, or load balancing algorithms truly effective for stream
mining algorithms. In fact, in this paper, the proposed task graphs
represent apparently different characteristics, and dependencies

compared to the data intensive applications in HPC, and this fact
points out we need to consider scheduling methodologies focusing
on stream mining algorithms. For the better set of task graphs, we
are working on more stream mining algorithms.

7. REFERENCES
[1] Akioka, S., Muraoka, Y., Yamana, H., Data access pattern

analysis on stream mining algorithms for cloud computation.
In Proceedings of the 2011 International Conference on
Parallel and Distributed Processing (PDPTA2011) (Las
Vegas, USA, July 18-21, 2011), 2011, 36-42.

[2] Bifet, A., Holmes, G., Pfahringer, B., Karen, P., Kremer, H.,
Jansen, T., Seidl, T., MOA: Massive online analysis, a
framework for stream classification and clustering. Journal
of Machine Learning Research (JMLR), Workshop and
Conference Proceedings Vol. 11: Workshop on Application
of Pattern Analysis, 2010.

[3] Calders, T., Dexters, N., Goethals, B., Mining Frequent
Itemsets in a Stream. In Proceedings of 2007 IEEE
International Conference on Data Mining (ICDM2007)
(Omaha, USA, October 28-31, 2007), 2007.

[4] Corderiro, D., Mounie, G., Perarnau S., Trystram, D.,
Vincent, J. M., Wagner, F., Random graph generation for
scheduling simulations. In Proceedings of the 3rd
International ICST Conference on Simulation Tools and
Techniques (SIMUTools’10) (Torremolinos, Spain, March
15-19, 2010), 2010.

[5] Dick, R. P., Rhodes D. L., Wolf, W., TGFF: Task graphs for
free. In Proceedings of International Workshop on
Hardware/Software Codesign (Seattle, USA, March 15-18,
1998), 1998, 97-101.

[6] Domingos, P., Hulten, G., Mining High-Speed Data Streams.
In Proceedings of The 6th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD’00) (Boston,
USA, August 20-23, 2000), 2000, 71-80.

[7] Lam, H. G., Calders, T., Mining top-k frequent items in a
data stream with flexible sliding window. In Proceedings of
The 16th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD’10) (Washington DC,
USA, July 25-28, 2010), 2010.

[8] McCallum A., Nigram, K., A comparison of event models
for Naïve Bayes text classification. In Proceedings of AAAI-
98 Workshop on ‘Learning for Text Categorization’
(Madison, USA, July 26-27, 1998), 1998.

[9] Raicu, I., Foster, I. T., Zhao, Y., Little, P., Moretti, C. M.,
Chaudhary, A., Thain, D. The quest for scalable support of
data intensive workloads in distributed systems. In
Proceedings of the 18th ACM International Symposium on
High Performance Distributed Computing (HPDC2009)
(Munich, Germany, June 11-13, 2009), 2009, 207-216.

[10] STG, Standard task graph set.
http://www.kasahara.elec.waseda.ac.jp/schedule/index.html.

[11] TGFF. http://ziyang.eecs.umich.edu/~dickrp/tgff/.

[12] TGG, Task graph generator.
http://taskgraphgen.sourceforge.net/.

[13] Tobita T., Kasahara, H., A standard task graph set for fair
evaluation of multiprocessor scheduling algorithms. Journal
of Scheduling, Volume 5, Issue 5, 2002, 379-394.

Task Graphs of Stream Mining Algorithms

60

Large-scale Online Mobility Monitoring with Exponential
Histograms

Christine Kopp
Fraunhofer IAIS

St. Augustin, Germany

christine.kopp
@iais.fraunhofer.de

Michael Mock
Fraunhofer IAIS

St. Augustin, Germany

michael.mock
@iais.fraunhofer.de

Odysseas Papapetrou
Technical University of Crete

Chania, Greece
papapetrou@softnet.tuc.gr

Michael May
Fraunhofer IAIS

St. Augustin, Germany

michael.may@iais.fraunhofer.de

ABSTRACT
The spread of digital signage and its instantaneous adapt-
ability of content challenges out-of-home advertising to con-
duct performance evaluations in an online fashion. This im-
plies a tremendous increase in the granularity of evaluations
as well as a complete new way of data collection, storage and
analysis. In this paper we propose a distributed system for
the large-scale online monitoring of poster performance in-
dicators based on the evaluation of mobility data collected
by smartphones. In order to enable scalability in the or-
der of millions of users and locations, we use a local data
processing paradigm and apply exponential histograms for
an efficient storage of visit statistics over sliding windows.
In addition to an immediate event centralization we also
explore a hierarchical architecture based on a merging tech-
nique for exponential histograms. We provide an evaluation
on the basis of a real-world data set containing more than
300 million GPS points corresponding to the movement ac-
tivity of nearly 3,000 persons. The experiments show the
accuracy and efficiency of our system.

1. INTRODUCTION
Advertising media are under the obligation to provide re-

liable performance indicators for the pricing of advertising
campaigns. For the German out-of-home (OOH) advertis-
ing industry, generating yearly net sales of about 760 million
Euro [2], this has meant to establish a system of geograph-
ically differentiating performance indicators over the past
years1. However, with the spread of digital signage also a

1http://www.agma-mmc.de/media-analyse/plakat.html

fine-grained temporal differentiation will be required in fu-
ture. While current performance indicators inform about
the poster contacts of seven or ten average days (the two
standard durations of poster campaigns in Germany), digi-
tal out-of-home (DOOH) advertising spots have a duration
of only a few seconds. Assuming an evaluation period of
10 seconds, the granularity of the performance indicators
(and consequently of the required input data) increases by
four orders of magnitude. DOOH therefore has to face the
challenge of collecting and analyzing big data. In addition,
digital content has the advantage that it can be instantly
adapted to a changing audience. This adaptation, however,
requires online performance information, which forms the
second challenge of DOOH performance evaluation.

In this paper we propose a distributed system for the
large-scale online monitoring of poster performance indica-
tors based on the evaluation of mobility data collected by
smartphones. We hereby consider two use cases which the
system shall cover. First, we want to be able to perform
online queries which obtain performance measures for the
recent past in a sliding window style. Second, we want to
analyze historic data for various time intervals. The first
type of query allows the online monitoring of poster per-
formance and thus the targeted placement of advertisement
spots. The second type of query can be used for billing pur-
poses or to analyze previously collected data sets (e.g. to
find interesting visit patterns that can then be monitored in
the online system). Although our use cases differ with re-
spect to their system requirements (distributed online pro-
cessing vs. analysis of massive amounts of centralized data),
we want to keep the maintenance effort of the system as low
as possible. Our goal is therefore to set up a scalable system
architecture that allows an efficient re-use of code from the
online scenario for historic data analysis.

The key component of our approach to handle massive
streams of data is to use exponential histograms for data
compression. This data structure has the advantage that
it offers sliding window query capabilities with a guaran-
teed maximum relative error. In addition, exponential his-
tograms can be applied in a distributed setting [12] thus
allowing for scalability when the number of users increases.

Our online system relies on an Android implementation

161

that we have used in previous work [3] to detect visit pat-
terns on mobile phones. For the analysis of historic data we
have set up a Storm environment. In combination with the
Kafka messaging system we are able to perform historic data
analysis in a distributed streaming fashion. In this way we
can apply the same system architecture for online and his-
toric data analysis. We use the Storm/Kafka environment
to perform the experiments in this paper.

We analyze the performance of our system using a real-
world GPS data set containing trajectories of 2,967 persons
containing more than 300 million GPS points over a pe-
riod of one week. We extract visit events from this data
set using 400,988 points of interest (POI) in Germany from
OpenStreetMap (OSM). Our experiments show that the us-
age of exponential histograms results in an average error of
less than 1/10 of the maximum acceptable error while re-
ducing the storage space to an amount as small as 9.7% of
the baseline storage space.

The remainder of our paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 shows our system
architecture and Section 4 provides the experiments. We
conclude our paper in Section 5.

2. RELATED WORK

2.1 Exponential Histograms
Exponential histograms [1] are a deterministic structure,

proposed to address the basic counting problem, i.e., for
counting the number of true bits in the last N stream ar-
rivals. They belong to a family of methods that break the
sliding window range into smaller windows, called buckets or
basic windows, to enable efficient maintenance of the statis-
tics. Each bucket contains the aggregate statistics, i.e., the
number of arrivals and bucket bounds, for the correspond-
ing sub-range. Buckets that no longer overlap with the slid-
ing window are expired and discarded from the structure.
To compute an aggregate over the whole (or a part of the)
sliding window, the statistics from all buckets overlapping
with the query range are aggregated. For example, for basic
counting, aggregation is a summation of the number of true
bits in the buckets. A possible estimation error can be intro-
duced due to the oldest bucket inside the query range, which
usually has only a partial overlap with the query. Therefore,
the maximum possible estimation error is bounded by the
size of the last bucket.

To reduce the space requirements, exponential histograms
maintain buckets of exponentially increasing sizes. Bucket
boundaries are chosen such that the ratio of the size of each
bucket b with the sum of the sizes of all buckets more recent
than b is upper bounded. In particular, the following invari-
ant is maintained for all buckets j: Cj/(2(1+

∑j−1
i=1 Ci)) ≤ ε

where ε denotes the maximum acceptable relative error and
Cj denotes the size of bucket j (number of true bits ar-
rived in the bucket range), with bucket 1 being the most
recent bucket. Queries are answered by summing the sizes
of all buckets that fully overlap the query range, and half
of the size of the oldest bucket, if it partially overlaps the
query. The estimation error is solely contained in the oldest
bucket, and is therefore bounded by this invariant, resulting
in a maximum relative error of ε.

Recently, Papapetrou et al. [12] showed how an arbitrary
number of exponential histograms EH1, EH2, ..., EHn (each

one corresponding to an individual stream) can be aggre-
gated/merged, in order to produce a single exponential his-
togram EH⊕ that corresponds to the order-preserving union
of the streams. More precisely, let ε denote the maximum er-
ror parameter of the original exponential histograms, and ε′

the parameter of the merging algorithm. The algorithm sup-
ports the creation of an aggregated exponential histogram
with a maximum relative error of (ε + ε′ + ε · ε′). In this
work we use this merging algorithm to reduce the memory
required for storing the exponential histograms of the visit
events coming from various input sources.

2.2 Distributed Evaluation of Visit Events
In previous work we have provided a set of visit quantities

that can be used to define performance measures in OOH
advertisement [8]. In this paper we concentrate on the eval-
uation of gross visits which state the number of total visits
to a certain location and which can be used to estimate the
total contacts to a poster site. In addition, we have pro-
vided a methodology for the privacy-preserving, distributed
collection of visit quantities in previous work [7].

The basic idea of the approach is to decentralize the data
collection and evaluation process of movement data. Instead
of constantly submitting location information of a user to
some central server, the evaluation of visits (or visit pat-
terns) is performed locally on a mobile device (e.g. smart-
phone). The device submits only aggregated and anony-
mized statistics to a central coordinator. In addition, web
anonymization techniques such as onion routing [4] can be
used to prevent that the coordinator reconstructs visit his-
tories from several messages of a person based on the com-
munication protocol. A similar, however analytically less
powerful framework has previously been proposed by Hoh
et al. [6] for the distributed, privacy-preserving monitor-
ing of traffic. However, both papers do not consider the
practical aspect of scaling the proposed method to thou-
sands and potentially millions of users. In fact, considering
movement statistics from our GPS data set, every person
traverses more than 200 street segments per day. If we as-
sume further that each person visits 10 different locations
(e.g. work location, shops, bus stops) per day and 20 mil-
lion persons participate in data collection, about 4.2 billion
events occur every day. In order to cope with this number of
events, sophisticated analysis and storage algorithms as well
as a sophisticated system architecture have to be devised.
The design and performance analysis of such a system is the
scope of our paper.

3. SYSTEM ARCHITECTURE
Our architecture consists of two or alternatively three lay-

ers (see Figure 1). The lowest layer holds the user nodes,
which collect the users’ GPS data and extract visit events.
The visit events are forwarded either directly to the central
coordinator (flat setting) or to a layer of intermediate nodes
(hierarchical setting). In the flat setting, the coordinator
aggregates the visit information of each POI in an exponen-
tial histogram. I.e., for each POI an exponential histogram
is maintained that records the visit events for this POI. As
the exponential histogram stores a time aggregate with the
event, queries over time windows can be answered. In the hi-
erarchical setting, the exponential histograms reside already
at the intermediate nodes. In regular time intervals the in-
termediate nodes submit the exponential histograms to the
coordinator, which merges them and answers user queries.

2

Large-scale Online Mobility Monitoring with Exponential Histograms

62

Figure 1: System architecture; left: flat setting; right: hierarchical setting

The exponential histograms cannot be applied at the user
level because the number of visit events per user is too small
to make the data structure efficient. The layer of interme-
diate nodes was introduced for horizontal scalability and to
avoid an overload of the coordinator. However, it also serves
a privacy purpose given that the intermediate nodes do not
collude (see [7]). As a user can freely select an intermediate
node when submitting a visit event, no intermediate node
will obtain the whole event history of a single user. The
intermediate nodes submit their data structure in regular
time intervals to the coordinator, which finally merges the
data structures and answers user queries.

As motivated by our use case, our system shall be able
to perform analyses online as well as on historic data. The
above architecture describes the online use case. For his-
toric data analysis we have to substitute the layer of local
nodes. This substitution should still allow to process data in
parallel in order to scale to large amounts of data. In addi-
tion, a streaming environment would be preferable in order
to re-use existing code. Both aspects can be met by using
a distributed streaming processing system as, for example,
Storm2 or S4 [11]. We have ported the Android code of event
detection to run as Storm bolts. The input is streamed into
the system via the Kafka messaging system [9], which allows
to handle each GPS point of the recorded trajectories as in-
dividual message. Thus, with this mechanisms we can scale
the parallel simulation of event detection horizontally in the
cluster. In our experiments described in the next section we
used this technique to emulate the event detection on GPS
traces of 2,967 test persons in an experimental cluster. De-
tected events are sent to the intermediate nodes similar to
the online setting.

4. EXPERIMENTS

4.1 Data Set
For our experiments we use a subset of a large-scale GPS

survey [10] commissioned by the Arbeitsgemeinschaft Media-
Analyse e.V.3, a joint industry committee of German ad-
vertising vendors and customers. The GPS data has been
collected in the year 2011 and contains 2,967 persons with
valid GPS data. The persons are recruited from 31 major

2http://storm-project.net
3http://www.agma-mmc.de

cities in Germany and are asked to carry the GPS devices
for one week.

After clean-up the data set contains 304 million GPS points.
In addition, we extracted 400,988 points of interest (POI)
from OpenStreetMap4 (OSM) [5] marked with the keys shop,
amenity, leisure, tourism, historic, sport, public transport,
railway. We grouped the POI into the following categories:
shop, restaurant, leisure, education, parking and public trans-
port stops. We limited our experiments to those POI be-
cause digital posters are still very expensive and therefore
placed mostly at attractive places as train stations or shop-
ping locations. For each POI category we defined a mini-
mum stay time and a 50x50 meter spatial buffer in order to
extract visit events. Table 1 shows the number of POI ag-
gregated to the six types along with the assumed minimum
stay times. Figure 2 left shows a one-day trajectory of one
test person along with the extracted POI in its surrounding.

POI type # POI min. stay time
shop 89,789 10 min.
restaurant 105,665 15 min.
leisure 69,318 15 min.
education 24,151 15 min.
parking 63,602 5 min.
public transport stop 48,463 5 min.
total 400,988 –

Table 1: Number of POI extracted from OSM and
minimum defined stay time per category

The extraction of visit events is performed by the local
nodes (see Section 3). A visit results from the spatial inter-
section of a trajectory and a geographic location and has to
last a given minimum period of time. For a formal defini-
tion of a visit see [8]. Figure 2 right shows exemplary the
extraction of visit events. The POI are colored according
to their minimum required stay time (green = 5 minutes,
orange = 10 minutes, red = 15 minutes). In the top right
picture one visit occurs in the orange colored POI (where
a dense cluster of GPS points exists). In the bottom right
picture the user passes the POI merely on his way. As the
duration of spatial intersection lies below the minimum stay
time, no visit events are generated. For the extraction of
visits we apply an algorithm from previous work [3], which

4http://www.openstreetmap.org

3

Large-scale Online Mobility Monitoring with Exponential Histograms

63

(a) one-day trajectory of a test person (b) trajectory excerpts showing one POI
visit on top (dense cluster of points) and
two POI passages on bottom

Figure 2: left: one-day trajectory of a test person along with OSM points of interest colored according to
minimum stay time (green/orange/red = 5/10/15 minutes); top right: visit in POI with 10 minute stay time;
bottom right: passages of POI without visiting

visits per POI # POI
1 7,590
2 2,176
3 824
4 458
5 223
6 136
7 101
8 53
9 56

≥ 10 192

Table 2: Frequency of visits per POI

was designed to extract visit patterns from a stream of GPS
positions online on mobile phones.

In total we extracted 23,508 visit events to 11,809 differ-
ent POI for all test persons. This number has been consid-
erably below our expectations. Most likely it results from
two reasons. First, the number of OSM POI are incomplete.
From the online source http://www.haltestellen-suche.de we
know to expect at least 217,000 stations of public transport
in Germany, and also the number of shops in Germany is
considerably above the extracted number of POI. Second,
GPS signals are typically blocked inside of buildings. As we
applied a light-weight event extraction algorithm (that can
run on a mobile device), we may have lost a number of visit
events.

Table 2 shows an overview of the number of visit events
per POI. Most often, only a single visit occurred. This num-
ber is quite reasonable given our low number of visits and
the independent movement behavior of the test persons.

In order to perform experiments also on a large-scale data
set resembling more closely the real-world situation, we repli-
cated the original visit data by a factor of 1,000. We set the

time of each such visit by adding Gaussian noise to the cur-
rent time with µ = 0 and σ = 10,000 seconds.

4.2 Experimental Set-Up
In our experiments we conducted point queries in a slid-

ing window fashion. I.e., we queried the number of events
per POI in the past ∆t seconds. The selected query win-
dows were of length 30, 600, 1800, 3600 or 86400 seconds.
We performed those queries every 10 minutes (in the hier-
archical setting this coincides with the time interval of the
force action). For our observation period of one week this
resulted in nt = 1,008 queries per query window for each of
the np = 11,809 visited POI. In accordance with our max-
imum query interval, we set the sliding window parameter
of the exponential histogram to 86,400 seconds in all experi-
ments. Further, we varied the maximum acceptable relative
error ε to take the values 0.01, 0.02, 0.04, 0.08 and 0.16.
In the hierarchical setting we used 10 intermediate nodes
which submitted their data structures every 600 seconds to
the coordinator.

We measured the error for each experiment using the
mean absolute percentage error (MAPE), which is defined
as follows:

MAPE =

∑np

i=1

∑nt
j

∣∣∣xij−x̂ij

xij

∣∣∣
np · nt

where xij denotes the true number of visit events at POI
i in query window j and x̂ij denotes the number of events
returned from the exponential histogram. In the case of
xij = 0 we added a relative error of zero if our estimate
was correct (x̂ij = 0) and a relative error of ∞ if x̂ij 6= 0.
This latter case, however, did not occur. We performed all
experiments for the flat and hierarchical setting as well as
for the original and multiplied data set.

4

Large-scale Online Mobility Monitoring with Exponential Histograms

64

4.3 Results
Figure 3 shows the results for the flat and hierarchical

setting of the multiplied data set. The respective numbers
are provided in Tables 3 and 4. Note that we display only
the results for the multiplied data set because due to the
few visit events in the original data set the error was nearly
always zero there.

In general, the MAPE is very low, lying with one excep-
tion below 1%. For both the flat and hierarchical setting
two trends can be observed. First, the MAPE decreases
with smaller ε. Second, the MAPE decreases with decreas-
ing size of the query window. The first effect is nearly linear
for all query windows and can be expected from the char-
acteristics of exponential histograms. The second is also
expected because the error guarantees are given on the size
of the sliding window, which was fixed to 86,400 seconds.
Accordingly, the error for smaller time intervals has to be
lower. However, the effect is linear to the logarithm of the
query window sizes, i.e. when increasing the query window,
the MAPE increases sublinearly.

When comparing the error between the flat and hierar-
chical setting, the merge operations result in only a small
increase in error.

query
wind.

ε=0.01 ε=0.02 ε=0.04 ε=0.08 ε=0.16

30 s 7E-6% 2E-5% 5E-5% 2E-4% 3E-3%
600 s 2E-4% 3E-3% 0.03% 0.18% 0.44%

1800 s 3E-3% 0.04% 0.12% 0.28% 0.54%
3600 s 0.02% 0.06% 0.15% 0.32% 0.59%

86400 s 0.06% 0.14% 0.28% 0.44% 0.79%

mem. 14.5 MB 8.8 MB 5.5 MB 3.4 MB 2.5 MB

Table 3: Mean absolute percentage error and mem-
ory usage for flat setting

query
wind.

ε=0.01 ε=0.02 ε=0.04 ε=0.08 ε=0.16

30 s 8E-6% 2E-5% 6E-5% 2E-4% 3E-3%
600 s 2E-3% 3E-3% 0.03% 0.18% 0.45%

1800 s 3E-3% 0.04% 0.12% 0.28% 0.64%
3600 s 0.02% 0.06% 0.15% 0.36% 0.75%

86400 s 0.07% 0.16% 0.32% 0.53% 1.03%

mem. 14.5 MB 8.8 MB 5.5 MB 3.4 MB 2.5 MB

Table 4: Mean absolute percentage error and mem-
ory usage for hierarchical setting

In order to set the MAPE in perspective to the number
of visit events, Table 5 shows the average and maximum
number of visits per POI and query interval. The average is
hereby calculated once for all POI and time slots and once
only for those containing at least one event.

The memory usage of the exponential histogram at the
end of the observation period is depicted in the last line in
Tables 3 and 4. Assuming fixed 32-bit counters, it depends
only on ε and the maximum possible count N in the sliding
window of each POI, requiring O(1

ε
logN) space [1]. As

we maintain an exponential histogram for each POI, the
required memory depends also linearly on the number of
(distinct) visited POI which is, however, constant in our
experiments.

query avg. events avg. events max. events
wind. > 0

30 s 0.1 1.6 1,916
600 s 2.0 12.1 2,029

1,800 s 5.9 32.0 2,260
3,600 s 11.8 60.0 3,118

86,400 s 270.3 709.8 36,037

Table 5: Number of average and maximum events
per POI and query window in ground truth

4.4 Discussion
Our experiments show that the resultant error is very low.

For all settings of ε the mean error (MAPE) is less than
1/10 of the maximum acceptable error. This is a very good
result. Especially we can be sure for small total number of
visits that the query results are always correct. For example,
setting ε = 0.01 will result in no errors if less than 100 events
occur per POI. This is an important characteristic because
the visit frequency of POI is right-tailed, containing only
few POI with very high frequencies.

Further the experiments show that our setting scales hor-
izontally. By introducing a layer of 10 intermediate nodes,
the MAPE was on average 7.5% higher and at most 23%
higher than in the flat setting. Both numbers are consid-
erably below the maximum acceptable error as well as the
maximum relative error guaranteed for the join of exponen-
tial histograms.

Finally, to evaluate the memory usage, we can compare
the numbers to the following baseline scenario. Whenever
a visit event occurs, the POI identifier and timestamp are
stored at the coordinator using two 4 Byte integers. As our
sliding window covers only one day, we will assume that we
have to store 1/7 of the total visit events. For the origi-
nal 23,509 events this results in 0.026 MB. For the multi-
plied data set it results in 25.6 MB. The storage amount
for the original events using exponential histograms varied
between 0.54-4.7 MB. In this case we did not save on mem-
ory. However, using the more realistic multiplied data set
with exponential histogram sizes between 2.5-14.5 MB, our
experiments require only 9.7-56.6% of the baseline storage
space depending on the selected ε.

When extrapolating to the envisioned setting of monitor-
ing 20 million persons generating each 210 events per day
on about 6,500,000 distinct POIs in Germany (including
the 6,000,000 distinct street segments), just storing the raw
event data would result in 31.3 GB memory consumption.
This is considerably above the 1.3-7.8 GB required by the
exponential histograms (by just taking into account that our
memory consumption increases linearly with the number of
distinct POIs).

Considering our entire approach including exponential his-
tograms and local evaluation, the storage reduction is even
much higher compared to a naive centralized setting where
the users submit a GPS position every second to some cen-
tral coordinator.

Also note that inserting into and querying an exponential
histogram almost takes constant time far below a microsec-
ond, which is much faster than searching an event database
of raw events.

5

Large-scale Online Mobility Monitoring with Exponential Histograms

65

Figure 3: Mean average percentage error and memory usage for different maximum relative errors (ε) and
query window sizes; left: without intermediate nodes; right: hierarchy with 10 intermediate nodes

5. CONCLUSIONS
In this paper we propose a distributed system for the

large-scale online monitoring of poster performance indica-
tors based on the evaluation of mobility data. Our system
relies on the collection and local processing of mobility data
via smartphones and uses exponential histograms for the
efficient storage and querying of visit statistics in a sliding
window fashion. Our experiments on a multiplied real-world
data set with nearly 3,000 persons show that the usage of ex-
ponential histograms results in an average error of less than
1/10 of the maximum acceptable error while reducing the
storage space to an amount as small as 9.7% of the baseline
storage space.

6. ACKNOWLEDGMENTS
We thank our colleague Sebastian Bothe for supporting

us to run the cluster-based version of the experiments and
the Arbeitsgemeinschaft Media-Analyse e.V. for granting
the use of the GPS data set. The research leading to these
results has received funding from the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) under grant
agreement no. 255951 (LIFT).

7. REFERENCES
[1] M. Datar, A. Gionis, P. Indyk, and R. Motwani.

Maintaining stream statistics over sliding windows.
SIAM J. Comput., 31(6):1794–1813, 2002.

[2] Fachverband Außenwerbung e.V.
Netto-Werbeeinnahmen erfassbarer Werbeträger in
Deutschland, 2002-2010 (Net turnover of confirmable
advertising media in Gemany, 2000-2010), 2011.
http://www.faw-ev.de/media/download/
marktdaten/4_Nettoumsaetze_aller_
Werbemedien_ab_2002.pdf.

[3] S. Florescu, C. Körner, M. Mock, and M. May.
Efficient mobility pattern stream matching on mobile
devices. In Proc. of the Ubiquitous Data Mining
Workshop (UDM 2012), pages 23–27, 2012.

[4] D. Goldschlag, M. Reed, and P. Syverson. Onion
routing for anonymous and private internet
connections. Comm. of the ACM, 42:39–41, 1999.

[5] M. M. Haklay and P. Weber. OpenStreetMap:
User-Generated Street Maps. IEEE Pervasive
Computing, 7(4):12–18, 2008.

[6] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work,
J.-C. Herrera, A. M. Bayen, M. Annavaram, and
Q. Jacobson. Virtual trip lines for distributed
privacy-preserving traffic monitoring. In Proc. of the
6th Int. Conf. on Mobile Systems, Applications, and
Services (MobiSys’08), pages 15–28. ACM, 2008.

[7] C. Kopp, M. Mock, and M. May. Privacy-preserving
distributed monitoring of visit quantities. In
SIGSPATIAL 2012 Int. Conf. on Advances in
Geographic Information Systems(SIGSPATIAL/GIS),
pages 438–441, 2012.

[8] C. Körner. Modeling Visit Potential of Geographic
Locations Based on Mobility Data. PhD thesis,
University of Bonn, 2012.

[9] J. Kreps, N. Narkhede, and J. Rao. Kafka: A
distributed messaging system for log processing. In
Proceedings of 6th International Workshop on
Networking Meets Databases (NetDB), Greece, 2011.

[10] Media-Micro-Census GmbH. ma 2012 Plakat -
Methoden-Steckbrief zur Berichterstattung, 2012.
http://www.agma-mmc.de/publikationen/
methodische-berichte/methoden-steckbriefe.
html?eID=dam_frontend_push\&docID=179Z.

[11] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In
Proceedings of the 2010 IEEE Int. Conf. on Data
Mining Workshops, ICDMW ’10, pages 170–177,
Washington, DC, USA, 2010. IEEE Computer Society.

[12] O. Papapetrou, M. N. Garofalakis, and
A. Deligiannakis. Sketch-based querying of distributed
sliding-window data streams. PVLDB,
5(10):992–1003, 2012.

6

Large-scale Online Mobility Monitoring with Exponential Histograms

66

Multi-Stage Malicious Click Detection on
Large Scale Web Advertising Data

Leyi Song, Xueqing Gong⇤, Xiaofeng He, Rong Zhang, Aoying Zhou
Center for Cloud Computing and Big Data

East China Normal University
3663 North Zhongshan Road, Shanghai, China

songleyi@ecnu.cn, {xqgong,xfhe,rzhang,ayzhou}@sei.ecnu.cn

ABSTRACT
The healthy development of the Internet largely depends on
the online advertisement which provides the financial sup-
port to the Internet. Click fraud, however, poses serious
threat to the Internet ecosystem. It not only brings harm
to the advertisers, but also damages the mutual trust be-
tween advertiser and ad agency. Click fraud prediction is
a typical big data application in that we normally need to
identify the malicious clicks from massive click logs, there-
fore e�cient detection methods in big data framework are
much desired to combat this fraudulent behavior. In this
paper, we propose a three-stage filtering system to attack
click fraud. The serialized filters e↵ectively detect the mali-
cious clicks with decreasing confidence that can satisfy both
advertisers and content providers.

1. INTRODUCTION
The fast development of the Internet depends not only on

the increase of rich content, but also on online advertise-
ment which provides the financial support to the Internet
ecosystem. Online advertising tends to benefit all involved
parties including content provider, advertiser, ad agency and
ad network. It requires the mutual trust among all parties.
This trust was at risk, however, by fraudulent clicks. Click
fraud (also called click spam, malicious click) is an action of
intentional clicking with the purpose of making undue profit,
or doing harm to competitors. Click fraud is becoming a se-
rious problem to the World Wide Web [5]. Failing to deter
such behaviors will discourage advertisers from actively en-
gaging in more online advertising activities, resulting in less
revenue for content providers or ad agencies, and ultimately
endangering the Internet ecosystem as a whole. Therefore
it is of high importance to detect the malicious clicks.

Ad agencies or networks often deploy di↵erent filters to
identify malicious clicks [10]. By setting a proper thresh-
old or training a classifier, these methods can handle cer-

* Corresponding Author

tain types of anomaly click behaviors generated by human
or bots [7, 12, 13]. Despite such e↵orts, there still remains
great challenge to address the problem of malicious clicks. In
this paper, we focus on detecting malicious clicks from large
scale web advertising data on ad agency side. Ad agency
plays an intermediate role between advertisers and publish-
ers in the online advertising system. In order to identify
malicious clicks of di↵erent categories, for instance, suspi-
cious users, stealthy click-bots and cheating publishers, we
build a series of filters at di↵erent stages in big data compu-
tation framework. The filters are ordered by the decreasing
confidence of predicting the malicious clicks. At first stage,
a rule based filter identifies the malicious clicks with high
confidence since these rules catch strong signals for abnor-
mal clicks. At second stage, a supervised classification ap-
proach is used to detect malicious clicks, whose prediction
results are of lower confidence than rule based ones. Fi-
nally we cluster the clicks into group at stage 3 with the
hope that fraudulent clicks generated from one publisher
will be grouped together. The clustering method is an unsu-
pervised learning process, hence results in lowest prediction
confidence. Sequentially organizing the filters in decreasing
confidence order provides us with flexibility and scalability
to add extra filters. For instance, we can replace one classi-
fier with another classifier at stage 2, or add more classifiers
to stage 2 to form an ensemble. Users have the freedom to
use the result corresponding to di↵erent confidence.

We use the precision as the measure of confidence in this
paper. The reason to use precision, instead of other metrics
such as recall or F-measure is because 1) precision focuses
on singling out bad clicks while trying to minimize the pos-
sibility of predicting valid clicks as fraudulent ones; 2) it is
well-known that the judgement of whether or not a click is
a fraudulent one is very subjective in many cases. Too large
recall can potentially classify large number of valid clicks as
bad ones unless we have high quality classifiers which is hard
to obtain, especially when human judgement is di�cult.

In this paper, we propose a click fraud detecting architec-
ture which organizes filters sequentially by decreasing con-
fidence order. This architecture was applied to large scale
advertising log obtained from an ad agency. Specifically,

• we address the malicious click problem on the ad agency
side. In addition to rule-based and supervised meth-
ods, we propose a clustering-based method to analyse
the tra�c quality;

• we design a click detecting mechanism in big data com-
putation framework, i.e., Hadoop, to detect malicious

167

clicks e�ciently by sequentially organizing three types
of filters of di↵erent confidence level;

• we carefully design and analyse important features,
and verify our approach by evaluating the dissimilarity
between predicted fraudulent clicks vs. valid clicks.

The rest of the paper is organized as follows. In Section 2,
we introduce previous work related to click fraud detection.
We present our detection architecture in Section 3. In Sec-
tion 4, we comprehensively analyze the results of our ap-
proach by applying it to over one month real click log data
from an ad agency, and conclude our paper in Section 5.

2. RELATED WORK
There are many participants play in online advertising

ecosystem. Ad agency usually plays an match maker role
between publishers and advertisers. Publishers own the web-
site pages containing ad slots. Advertisers purpose their ad
creativity to attract users to buy their products or to make
other kinds of profit. Ad agency buys inventory from pub-
lishers and sells advertising tra�c to advertisers. Thus, for a
reputed ad agency, it is responsible to filter these malicious
clicks before charging.

Undoubtedly there are great e↵orts in the area of fraud
detection, including the click fraud problem, but most solu-
tions are not easily available. The report by Tuzhilin [10]
introduced some of the approaches that Google adapted to
fight click fraud, in which both rule-based and anomaly-
based filters were incorporated into search engine. Since
search advertising is one of the major forms of online adver-
tisement, this work inspired us to take similar approach in
fraud detection system.

Another type of malicious click detection methods was
based on click stream analysis techniques which identified
patterns of fraudulent tra�c. Metwally et al. proposed
fraud detection solutions for data stream by combining asso-
ciation rules and duplicate detection methods [8]. E↵ective
data structure such as modified Bloom Filter was used in
this situation [13]. However, it is often di�cult for most
data mining-based detection methods to be implemented
into stream analysis, hence limits the adaptation of such
techniques to click fraud detection.

Supervised learning approach detects the malicious clicks
by training a classifier. Data collection is one of the most
important steps in this approach. Haddadi [3] proposed
the idea of blu↵ ads, which is unrelated to the user search,
user profile and recently activity. If a high ratio of such
ads was clicked, the user could be flagged as suspicious. In
some other work, CAPTCHA was used for training data
generation and useful data collection [6]. For ad agencies,
they have various advertiser and publisher sources, hence
CAPTCHA approach is hardly applicable. The next key
step is to extract features. The work [1] investigated query
attributes between human and robot tra�c. Di↵erent type
of features could be extracted from the click attributes and
user attributes, such as click count or geographic origin [1,
4].

Bot-generated click tra�c is a big part of malicious clicks.
The state-of-the-art bot detection work mostly aimed at
clicks in search engine logs [6, 12]. Yu et al. proposed SBot-
Miner, a system which automatically identified bot gener-
ated search tra�c from query log, using history-based as
well as matrix-based unsupervised methods [12].

�
����
�	��
��������
������

����

trust users

malicious
clicks

Stage 1:
Rule-
based

Filtering

Stage 2:
Classification-

based
Filtering

Heavy Hitter

Frequent
Click

Blacklist

Feature
Extraction

Result
Validation

Result
Analysis &
Ensemble

Stage 4:
Validation and

 Analysis

Stage 3:
Clustering-

based
Filtering

Malicious
Publishers
Detection

Malicious User
Prediction

Model

C
onfidence

Figure 1: Architecture Overview.

Previous approaches to identify and understand malicious
clicks focused on one specific method, or one specific prob-
lem. Researchers adopted click-through rate related meth-
ods for web spam in search engine [11]. However, it is
di�cult for an ad agency to access the click-though rate,
therefore some fraudulent patterns can not be easily iden-
tified by traditional methods. In our framework, we design
a more general way of data collection and filtering strategy
for malicious click detection, implemented in a stage-wise
architecture.

3. STAGE-WISE CLICK FRAUD FILTER-
ING ARCHITECTURE

3.1 Architecture Overview
In order to accommodate di↵erent filtering methods with

di↵erent confidence in predicting the fraudulent clicks, we
argue that it is advantageous to take the approach of stage-
wise filtering architecture. The filters are sequentially con-
nected such that the filter generating results with higher
predicting confidence is put in the chain before the one with
lower confidence. The intuition is that we need to identify
most confident malicious clicks, and reduce the data size
which need further processing, hence reduce the complex-
ity of the problem. Furthermore, stage-wise structure o↵ers
prediction results of di↵erent confidence, which enables the
users to utilize the result with more flexibility.

The stage-wise filtering system architecture is illustrated
in Figure 1. The major components are following 3 stages.
1) Rule-based filters at stage 1 to detect obvious invalid
clicks with high confidence. They can identify two types
of malicious clicks: heavy hitter and frequent clicker. 2)
Classification-based filters at stage 2 to determine more com-
plicated clicks with human judged training set. 3) The
clustering-based filter at stage 3 to identify cheating groups
from similar publisher websites. We use intra-cluster dis-
tance and query diversity to separate malicious groups.

2

Multi-Stage Malicious Click Detection on Large Scale Web Advertising Data

68

0 1 2 3 4 5 6 7 8 9 10

0
50
00
0

10
00
00

0 2 4 6 8 10

0
40
00
0

80
00
0

N
um

be
r o

f U
se

rs

Clicks in One Interval

 3 hours as interval
 6 hours as intervel
 12 hours as interval
 24 hours as interval

N
um

be
r o

f U
se

rs

Number of Periods

 10 min as period
 30 min as period
 60 min as period
 180 min as period

(a) Click density (b) Click frequency

Figure 2: Click statistics of a trusted user click log
dataset in one month

3.2 Rule-based Filtering
To fight click fraud, generating blacklist in the filtering

system is the most reliable method. It is easy to compile
the blacklist for violating entities such as user agent(UA)
or IP address, but the coverage of a blacklist is limited.
Setting certain rules is e�cient to exclude more malicious
clicks from entering accounting system. In this paper we
focus on setting rules for the heavy hitter and frequent click
problems [8, 13, 7].

Heavy hitter in click logs means, at a specific time in-
terval, the click rate of a user is relatively higher than a
threshold �1, while frequent click problem refers to the sit-
uation that user’s click appears in relatively more periods1

than a predefined threshold �2.
To obtain a reasonable filtering threshold, we note from

Figure 2 that the number of clicks and periods follows the
Zipfian distribution. We set the maximum number for nor-
mal user behavior as the lower value of the two: number of
clicks in one interval and number of periods the user clicks.
For better accuracy, we can also determine the threshold
based on the p-quantile value on the entire log dataset.

3.3 Classification-based Filtering
Classification-based methods are widely used in fraud de-

tection or spam detection field [9]. Classification is an ef-
fective way for addressing malicious clicks, especially for
stealthy clicks that are hard to be captured by rule-based
approach. The classification has been applied to real data
with success [4, 10]. One of the biggest advantages with
classification approach is that once a model has been built,
the prediction of new instance is usually quite fast. There is
also research on the attributes which can distinguish human
and bot tra�c [1]. In our work, we use the traditional fea-
tures used in previous work, and also engineer new features
useful for training classifiers. We will discuss the features
in more details later. The result of this stage is a set of
malicious users from the click log.

3.4 Clustering-based Filtering
It is obvious that results of supervised methods highly de-

pend on the accuracy, coverage and labeling scheme of the
labeled corpus. The classified malicious clicks are limited by
the fraudulent types in training set. Hence, we develop our
clustering-based method, which is based on our observation

1We use period to represent the window for counting in fre-
quent clicks problem, in order to distinguish the interval
of heavy hitter. Clicks of each user occur within the same
period will be ignored.

that, for agency’s customers(advertisers), some of the suspi-
cious ad tra�c from the same website shows high similarity.
We try to group similar tra�c and analyze them as a group
in order to detect abusive clicks from the publisher-side.
This approach can also be applied to search engine tra�c,
since the query diversity can be used to separate the suspi-
cious groups from the search ad log. Considering the result
confidence and filtering cost, this stage can be an optional
choice for each advertiser. For valuable customers, this is
an attractive feature, which di↵ers from previous work.

For clustering, We define the dissimilarity between two
log entries x, y as:

D(x, y) =
X

f2Fields

wfdf (x, y) (1)

where each log entry is represented by a vector of click at-
tributes as < user, IP, referrer, UA, area, query >. Fields
is the feature set used in click attributes and df (x, y) is the
distance measure defined on each attribute f , normalized
between [0,1]. wf is the weight of df (x, y).

For attributes like refer URL and user agent, we care
about the longest matching prefix, and the distance mea-
sure is defined as:

durl(x, y) = 1� LCP (x, y)

max(|x|, |y|) (2)

where LCP means the longest common prefix of two strings.
Even though network address translation (NAT) might

allow many users behind a single IP address, the cheating
groups always show strong similarity in IP address. To am-
plify the importance of the tail part in IP address, we take
32 bits IPv4 address as an example to define the distance.
If LCB(longest common bits) � 16, then

dIP (x, y) = 1� LCB(x, y)

total bits
, (3)

otherwise, the distance between two IP addresses is 1.
For other attributes such as area, we simply treat their dis-

similarity as binary value (0 or 1). Furthermore, we can eas-
ily prove that D(x, y) is a metric, since it follows the proper-
ties: (1) D(x, y) = 0iffx = y, (2) D(x, y) � 0, (3) D(x, y) =
D(y, x), and (4) D(x, y)  D(x, z) + D(z, y)(triangle in-
equality). Due to space limit, we skip the proof here.

After obtaining the dissimilarity matrix of a log set, we
use k-medoids algorithm to produce the clustering in this
stage. K-medoids is an adaptation of k-means algorithm.
Rather than calculating the mean of the items for each clus-
ter, which is not applicable in our situation, a representative
item, or medoid, is chosen for each cluster. Medoids for each
cluster are calculated to finding object i by minimizing

J̃ =
X

j2Ci

D(i, j) (4)

where Ci is the cluster containing object i and D(i, j) is
the dissimilarity function defined in equation 1. Since the
algorithm simply looks up the dissimilarity matrix, it only
needs to be calculated once in the beginning.

The next step is how to distinguish cheating groups from
all clusters. Obviously, if one group agrees on most fields,
it indicates this group of clicks come from a botnet using
similar terminals and browsers or a real interested user with
high probability. From the click statistics we can figure that,

3

Multi-Stage Malicious Click Detection on Large Scale Web Advertising Data

69

Table 1: Examples of Labeled Malicious Clicks
User Advertiser Area IP Referer Query User agent

1 c1 1 x.x.25.177 none none Mozilla/5.0
2 c2 1 x.x.25.178 none none Mozilla/5.0

3 c3 2 y.y.51.137 http://r1.com/s?wd=wvihv wvihv Mozilla/4.0(compatible; MSIE 7.0;)
3 c3 2 y.y.51.142 http://r1.com/s?wd=jmfitxm jmfitxm Mozilla/4.0(compatible; MSIE 7.0;)
4 c3 2 y.y.51.145 http://r2.com/s?wd=qyfsoc qyfsoc Mozilla/4.0(compatible; MSIE 7.0;)

0 4 8 12 16 20 24 28
0.00

0.02

0.04

0.06

0.08

0.10

Fr
ac

tio
n

of
 g

ro
up

s

SC score

Figure 3: Fraction of groups vs. Scatter scores

if the group size is reasonable, it is less possible to be an in-
terested user. In other words, if the intra-cluster similarity
of a group is lower, then the probability of the tra�cs in the
group being malicious is higher. Moreover, the high similar-
ity of the referrer in a suspicious group means the low tra�c
quality of the publisher except search engine. In particular,
we add the query diversity factor for search engine tra�c.
We define the Scatter(SC) score of each group as:

SC = intra distance⇥ query diversity (5)

where query diversity is defined as the ratio of distinct search
phrases to total search phrases. The query diversity is set
to 1 for non-search engine tra�c. By adding query diver-
sity, we want to give more importance to the website tra�c
groups, since it is more di�cult to locate the root cause of
problem in search engine groups. Thus, we use the intra-
cluster distance times query diversity to measure the ads
click Scatter-ness of groups. Finally, the groups with low SC
score will be regarded as suspicious groups. Figure 3 shows
the distribution of Scatter score across our test groups. A
brief description is shown in Algorithm 1.

input : clicks on each advertiser
output: groups of malicious clicks
initialize dissimilarity matrix;
while not at end of advertisers’ tra�c set do

step 1: apply K-medoids using D(x, y) distance to
get tra�c groups with similar features
step 2: select suspicious groups with lower SC score

end

Algorithm 1: Major steps of getting cheating groups

3.5 Feature Extraction
The features extracted from data that work in web page

spam domains may not work in ad log analysis. We inspect
the click data and introduce several features specifically de-
signed for classifiers to predict malicious clicks. Features are
created by studying the labeled users’ activity patterns.

In order to define useful features, we need to analyze
the di↵erence between normal and malicious click behav-
iors. Below, we discuss some of the features we identified to
represent the user.
Number of clicked advertisers. This feature counts the
number of distinct advertisers each user clicked. Malicious
users show extreme patterns, for instance most have empty
cookie and others have dense clicks on one advertiser.
Click ratio on advertisers. This feature takes into ac-
count both the total clicks and the distinct clicked adver-
tisers, defined as total clicks/total clicked advertisers. For
each user, it represents the average clicks per advertiser.
We observe that the trusted users show higher diversity by
comparing their histograms.

We also define features that can be used to characterize
the attribute of a user. For instance, a fraudulent user might
carry out the malicious click behaviors from one device, but
with many dynamically allocated IP addresses. Thus, we
derive features from user agent, IP and cookie. Short cookies
are more suspicious than normal cookies, same goes for user
agent. Some details about these features are shown below.
Click/IP ratio. This feature is defined as the total clicks
for a user/total unique IP addresses the clicks come from.
Variance of IP clicks. After counting the number of clicks
from each IP address, we can calculate the variance of these
clicks. It will be suspicious if one user launches clicks with
consistent frequency from some IP addresses. Besides, we
also use features such as the number of user agents, number
of referrers, length of agent, length of cookie.

There are some other features derived from geographic or
temporal attributes. For click timestamp, we divide a day
into four six-hour periods: night(0:00 to 5:59), morning(6:00
to 11:59), afternoon(12:00 to 17:59) and evening(18:00-23:59).
With the information available, the features below are also
extracted: most frequent area, most frequent period, num-
ber of clicks in each period, mean/std deviation of clicks in
periods and so on. We are not going to list out all the 17
features used in classification considering the space limit.

4. EXPERIMENTS
In this section we present the experimental results of the

stage-wise filtering framework.

4.1 Dataset
The data set used in the experiments is over one month

click log we get from an ad agency company. It contains
about 35 million records of ad clicks. The advertising log
data normally contains attributes as user ID, click times-
tamp, user’s IP, cookie, query phrase (if the ad tra�c is
from a search engine), user agent and referrer (url of the
page where user clicked the ad link).

To protect privacy, users who click the ads are assumed
to be only temporarily identified by cookie. We assume that

4

Multi-Stage Malicious Click Detection on Large Scale Web Advertising Data

70

Table 2: Brief description of training set.
Description # of Clicks/Users
Fraudulent clicks 174,642
Non-fraudulent clicks 779,980
Malicious users 83,061
Benign users 649,204

some user actions such as buying stu↵ or registering are be-
nign. In this way, we extract non-fraudulent clicks from be-
nign users for training. On the other hand, some malicious
clicks were addressed using domain knowledge. Examples
of malicious clicks are shown in Table 1. We notice that
attack may come from similar IP addresses with fake user
agent, fake referrer, or meaningless query phrase. Besides,
the training data includes complete clicks of three advertis-
ers that can be used to evaluate clustering performance. A
brief description of dataset for training is shown in Table 2.

4.2 Experimental Setup
We run our stage-wise method on an 8-node Hadoop clus-

ter using Pig Latin [2]. We split each stage into Map/Reduce
modules in pipeline. Each module can be converted into
one or several rounds of Map/Reduce tasks. For example
the filtering phase in rule-based stage, users are partitioned
through mappers and the counting filter UDFs(User Define
Functions) on each user are performed in reducer. How to
minimize the I/O cost is a major research for analysis on
large scale dataset. Taking this problem into consideration,
briefly, we design our UDFs to get the most results through
one-pass over the data.

In the first stage of our framework, the bound rules for
click density and click frequency are determined using p-
quantile of the entire distribution. From our training data,
we find there contains over 0.5% heavy hitters. There exists
a certain percentage of noisy clicks in the log, 0.995 or similar
(consider the distributions in Figure 1) can be chosen as
value of p in our experiment for rule setting. The large click
logs are filtered by passing through click counting, period
counting, quantile calculating and filtering phases.

Next, the reduced dataset is passed to feature extraction
modules as well as classifiers in the second stage. In our ex-
periment, 17 features which have been discussed above are
created. Then, we use training set in Table 2 to train clas-
sification models and compare the performance of the fol-
lowing classifiers: Näıve Bayes, Decision Table, Bayes Net,
REP Tree and Random Forest(10 trees, 5 random features
each). The comparison results of 5-fold cross validation over
training set are presented in Table 3. Since the labelled ma-
licious are just partial of real malicious clicks, the relatively
recall performance is less important than precision. The
performance could be very good result of the simple label-
ing scheme, thus we need unsupervised methods.

Finally, three advertisers with di↵erent click size(100K,
10K, 1K) are chosen as the evaluation dataset in the clus-
tering stage. We set equal weight for di↵erent features in
experiment. According to Figure 3, we use 2.0 as the lower
bound for the SC score of groups, which means the group
is quite dense. The number of K in applying K-medoids are
determined experimentally.

4.3 Results Analysis and Validation

Table 3: Precision performance for classifiers.
Classifier % Precision Run Time (s)
Random Forest 97.6 322
REP Tree 96.8 98
Bayes Net 96.7 115
Decision Table 96.1 199.5
Näıve Bayes 52.9 27

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

40
00
00

80
00
00

12
00
00
0
16
00
00
0

 total clicks
 malicious filtered by stage 1
 malicious filtered by stage 2
 malicious filtered by stage 3

day

to
ta

l c
lic

ks

0
40
00

80
00

12
00
0

m
al

ic
io

us
 c

lic
ks

Figure 4: Analysis of the click log dataset.

Figure 4 illustrates the result of our implementation of
stage-wise approach applied on click log of one month.

From the daily result, we find that a high percentage of
clicks follows the format http://search-engine.com/s?word
with the same short UA. Further study suggests that these
clicks are coming from bot-net which directly inject noise
into our logs using fake referer, user agent and IP address.
We also find four suspicious publisher groups, which gener-
ate high density clicks with similar IP addresses and user
agents from their website. Moreover, part of the suspicious
clicks were generated by download manager showing in UA.

Figure 4 shows that the percentage of malicious in first
stage distributed evenly. We could reasonably assume that
all the heavy hitters and frequent clicks are malicious, since
the upper bounds were setting based on the propriety of
distribution. Thus, the rule-based filter can be chosen as
the basic filter with absolute high confidence to meet ba-
sic requirement of ad agency. For classification stage, we
choose Random Forest as our model. This stage can dis-
cover stealthy clicks with suspicious patterns derived from
domain knowledge-based labeling. However, for the limita-
tion of supervised method, false positive is inevitable. Our
aim is to get the classifier with maximum precision. As to
the clustering stage, we evaluate the precision on three dif-
ferent advertisers’ click log. If the number of final result
groups is n, precision metric in this case is:

Precision =
1

n

nX

i

|Ci \ L|
|Ci|

where L is the cheating click set in result, and Ci is the total
click set from each of the advertisers. Figure 5 shows our test
results of clustering. Three advertisers’ dataset achieve dif-
ferent precision performance, which indicates that the con-
fidence partially depends on the distribution of real click
data. Therefore, we set the clustering-based filters in the
last stage. Indeed, even this filter has a lower confidence, it

5

Multi-Stage Malicious Click Detection on Large Scale Web Advertising Data

71

20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Number of Clusters

 Advertiser1
 Advertiser2
 Advertiser3

Figure 5: Precision performance of clustering
method on evaluation data from three advertisers.

1 2 3 4
60

80

100

P
re
ci
si
on
(%
)

day

 Rule-based
 Classification-based
 Clustering-based

Figure 6: Precision performance of three stages on
sampled result.

is important for ad agency to assess the tra�c quality from
publishers by evaluating the malicious group.

It is worth pointing out that our framework built on the
top of Hadoop platform achieved high e�ciency for process-
ing click log. Due to the as-many-as computation in one-pass
design, each stage could be finished in minutes for both daily
and monthly filtering.

To further validate the stage-wise precision, we pick 4-day
predicated malicious clicks for human judgement. We invite
domain expert to inspect these clicks and the comparison
results were shown in Figure 6. We see that the rule-based
methods achieve high precision, which verifies our assump-
tion. However, false positives are inevitable in any unsu-
pervised learning algorithms. It is interesting that most of
the false classified results are from mobile applications, es-
pecially on the 10th day. The missing of referrer field in
these clicks is the root cause, which makes the patterns of
these clicks similar to those of malicious clicks.

As a comparison, we check the diversity ratio on three
features: hash of cookie, hash of user agent, hash of refer-
rer, by sampling clicks from positive and negative results
respectively. The diversity is defined as the ratio of distinct
items to total samples. Figure 7 shows the result: diversi-
ties of normal clicks are relatively higher than these of mali-
cious groups. For example, a group of intentional clicks with
similar UA may come from one commander. The obvious
di↵erence between the malicious groups and normal groups
suggests that the identified ones are indeed very suspicious.

5. CONCLUSION
Fraudulent click is a malicious behavior which threat-

ens the healthy development of Internet ecosystem. In this
work, we propose a stage-wise click fraud filtering architec-
ture which e↵ectively identifies the fraud clicks for ad agency
with di↵erent prediction confidence. The stages in this work
can be further divided into a set of modules, which consist
of one or several rounds of Map/Reduce using parallel com-
puting. We performed an in-depth analysis on one month
click log using the proposed framework and evaluated our
results by di↵erent metrics.

6. ACKNOWLEDGMENTS

UA cookie referrer
0

20

40

60

80

D
iv

er
si

ty
 R

at
io

(%
)

Fields

 Normal
 Malicious in stage 2
 Malicious in stage 3

Figure 7: Diversity comparison on three features.

This work is partially supported by the Key Program of
National Natural Science Foundation of China grant No.
61232002, National Science Foundation of China under grant
No.60925008, No.61103039, No.61021004 and the Key lab
Project of Wuhan University.

7. REFERENCES
[1] O. Duskin and D. G. Feitelson. Distinguishing humans

from robots in web search logs: preliminary results
using query rates and intervals. In Proceedings of the
2009 workshop on Web Search Click Data, WSCD ’09,
pages 15–19, 2009.

[2] A. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. Narayanam, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava. Building a highlevel dataflow system on
top of mapreduce: The pig experience. PVLDB, 2(2),
2009.

[3] H. Haddadi. Fighting online click-fraud using blu↵
ads. Computer Communication Review, 40(2):21–25,
2010.

[4] M. Hager and T. Landergren. Implementing best
practices for fraud detection on an online advertising
platform. Master’s thesis, Chalmers University of
Technology, 2010.

[5] B. J. Jansen. Click Fraud. Computer, 40(7):85–86,
July 2007.

[6] H. Kang, K. Wang, D. Soukal, F. Behr, and Z. Zheng.
Large-scale bot detection for search engines. In
WWW, pages 501–510, 2010.

[7] B. Lahiri, J. Chandrashekar, and S. Tirthapura.
Space-e�cient tracking of persistent items in a
massive data stream. In DEBS, pages 255–266, 2011.

[8] A. Metwally, D. Agrawal, and A. El Abbadi.
Duplicate detection in click streams. In WWW, pages
12–21, 2005.

[9] C. Phua, D. Alahakoon, and V. C. S. Lee. Minority
report in fraud detection: classification of skewed
data. SIGKDD Explorations, 6(1):50–59, 2004.

[10] A. Tuzhilin. The lane’s gifts v. google report. http :
//googleblog.blogspot.in/pdf/TuzhilinReport.pdf ,
2007.

[11] C. Wei, Y. Liu, M. Zhang, S. Ma, L. Ru, and
K. Zhang. Fighting against web spam: a novel
propagation method based on click-through data. In
SIGIR, pages 395–404, 2012.

[12] F. Yu, Y. Xie, and Q. Ke. Sbotminer: large scale
search bot detection. In WSDM, pages 421–430, 2010.

[13] L. Zhang and Y. Guan. Detecting click fraud in
pay-per-click streams of online advertising networks.
In ICDCS, pages 77–84, 2008.

6

Multi-Stage Malicious Click Detection on Large Scale Web Advertising Data

72

