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ABSTRACT

Distributed data stream processing systems, like Twitter
Storm or Yahoo! S4, have been primarily focusing on adapt-
ing to varying event rates. However, as these systems are
becoming increasingly multi-tenant, adaptation to the vary-
ing query load is becoming an equally important problem.

In this paper we present FUGU — an elastic allocator for
Complex Event Processing systems. FUGU uses bin pack-
ing to allocate continuous queries to a varying set of nodes.
Driven by elasticity requirements FUGU maximizes the over-
all system utilization while trying to maintain stable process-
ing latencies.

The specific contributions of this paper are: (1) introduc-
tion of a re-balancing scheme for bin packing allowing FUGU
to increase overall system utilization by six percent and (2)
a detailed study of achievable system utilization and latency
under real-life workload from Frankfurt Stock Exchange.

1. INTRODUCTION

Distributed complex event processing (CEP) has been
commonly used in context of financial trading systems [1].
Typical CEP use cases in financial domain usually revolved
around single user, single query usage pattern. However, with
recent proliferation of CEP in industries such as manufac-
turing [8] or analytics [11] the usage pattern is switching
towards multiple users, multiple queries per system. The
implication of this trend is the need for CEP systems to be
able to accommodate not only varying event load but also
varying query load.

In order to avoid constant overprovisioning and to be able
to handle sudden load surges distributed CEP systems must
be able to scale both in and out. Being able to scale both
in and out while maintaining high overall system utilization
is the ultimate goal of an elastic system [2]. Elasticity is an
important property of every distributed system as it ensures
its economic feasibility while being executed on any cloud
platform.
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Several authors have studied building elastically scalable
complex event processing systems [7, 12]. However, we are not
aware of a work which would explicitly target the problem of
the varying query load in elastic CEP systems. In this paper
we present the design and evaluation of the elastic allocation
component — FUGU. FUGU can dynamically allocate and
de-allocate both stateless and stateful queries in order to
meet the utilization goals. To that end FUGU relies on bin
packing to allocate queries to hosts.

The contributions of this paper are following: (1) we present
a re-balancing extension of a state of the art bin packing
approach [4], which allows to improve the average utilization
of the system by up to 6% and (2) we present a detailed
evaluation of the achievable utilization as a function of a
given utilization target. The evaluation of our elastic alloca-
tion component has been performed on top of a commercial
distributed complex event processing system using tick data
streams from Frankfurt Stock Exchange.

2. SYSTEM ARCHITECTURE

Figure 1 shows the FUGU component and its interaction
with the underlying CEP system. The underlying CEP sys-
tem consists of several instances of a CEP engine running
in parallel on heterogeneous hosts. The CEP system accepts
and processes continuous queries consisting of direct acyclic
graphs of operators. Our system supports primitive relational
algebra operators (selection, projection, join, aggregation) as
well as additional CEP specific operators (sequence, source
and sink). Each operator can be executed on an arbitrary host.
Therefore, the computation of a query can be partitioned
over multiple hosts. The number of hosts is variable and
dynamically adapted to the changing resource requirements
by the FUGU component. FUGU is always provisioning one
or two hot hosts to allow for a fast scale out [6].
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Figure 1: System architecture

FUGU is a centralized component. The role of FUGU is
twofold: (1) it coordinates different instances of the CEP



engine and (2) it calculates placement decisions. When a
new query is added or an existing query is removed, a bin
packing algorithm is used (see Section 3) to calculate the
operator to host assignment. When a new operator needs
to be placed, FUGU will always try to locate a host with
enough available resources to host this operator. If no such
host can be found, a new host will be assigned to the system.
When all operators on a certain host are removed, the host
is then released by the system.

As soon as such an assignment has been derived, FUGU
coordinates the placement of new and re-placement of existing
operators. To that end FUGU communicates with all involved
hosts using a topic-based publish/subscribe protocol. Newly
added operators subscribe to their predecessor operators.
Data published by an operator is sent to all subscribers.
FUGU supports re-placement of both stateless (source, filters,
projection, sinks) as well as stateful operators (aggregation,
join, sequence) using a state transfer protocol similar to the
one of [13].

3. OPERATOR PLACEMENT

The foundation of our operator placement approach is a
load model, which estimates and measures CPU, memory and
network consumption for each individual operator. When new
queries are added, all variables in the model are first estimated
using a worst case assumption. These values are subsequently
updated during runtime with precise measurements.

The required CPU load (loadcpu) for a given operator (op)
is calculated based on the operator’s input rate (input(op))
and its per event processing time (proc(op)):

loadcpu(op) = proc(op) - input(op) (1)

During the estimation phase, we assume that the processing
time of a new operator is comparable to the processing time of
currently running/previously executed operators of the same
type. The input rate is derived based on the input rate of the
predecessor operators and estimations of their selectivities
in a fashion similar to the approach presented by Viglas et
al. [14]. For the purpose of the estimation we constantly
measure the source input rate and use the maximum value
observed so far. The major advantage of this scheme is that
it only requires the input rates of the sources.

We use similar approach to estimate operators’ memory
and network consumption. The network bandwidth is derived
from the operators’ input and output rates, their selectivity
(predicate) and the average size of input and output events.
The memory consumption is estimated using a linear model
which multiplies the operators’ event rate by the window size
and event size. The network consumption model is placement-
aware: operators placed on the same host are assumed to
communicate via in memory message passing. Operators on
different hosts are assumed to communicate via network.

3.1 Elastic Operator Placement

The placement is calculated using a global bin packing
algorithm [5] in a fashion similar to the one proposed by
Backman et al. [4]. Bin packing algorithm calculates an as-
signment of items (operators) to bins (hosts) in a way that a
minimal number of bins is used. The major criteria for assign-
ment is the required CPU load of an operator. In addition,
hosts with insufficient memory or network bandwidth are
removed from the list of potential target hosts. FUGU uses
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Figure 2: Example for applying the rebalancing
heuristics

a FirstFit bin packing variant, which assigns a newly added
operator to the first node with enough remaining capacity.
The placement algorithm can be configured to aim for a
certain target utilization. This is realized by an additional
user-defined parameter: the utilization threshold thres. The
thres value is used as the available capacity of a host, which
should not be exceeded by the bin packing algorithm.

3.2 Re-balancing Heuristics

The above bin packing approach allows to scale out and
to scale in with a changing number of queries. However,
after evaluating this approach we have observed that the
system is often reporting suboptimal utilization values — see
Section 4. This is caused by the fact that remaining operators
are scattered across all hosts in the system. This, in turn,
prevents FUGU from releasing these hosts.

There exist two alternative approaches towards solving
this issue. Either the bin packing algorithm is re-executed
for all operators left in the system or specific operators are
selected and re-placed so as to release least loaded hosts. A
re-execution of the bin packing approach with all remaining
operators would provide the best solution, however, it would
also result in a large amount of operators and state being
moved. This in turn would negatively impact the availability
of the system. Therefore, in order to minimize the impact on
the system availability we have implemented a re-balancing
approach.

As soon as a query is removed, the re-balancing algorithm
calculates the currently required minimal number of hosts
(hostmin):

(2)

hostmin = ZVO” loadcru(op)
thres

In case the current number of hosts used by the system is
larger than the calculated minimal number of hosts (hostmin)
a re-balancing is triggered. During re-balancing only oper-
ators from hosts with the minimal load are subject to bin
packing. Bin packing is executed for these operators until
the total number of used hosts reaches hostmin.

An additional heuristic is used to detect imbalance during
addition of queries. Let us consider the scenario shown in



Figure 2, where three active hosts are used and a new operator
a5 should be placed. None of the hosts has enough remaining
capacity to allow an assignment of the operator a5. Therefore,
a new host needs to be allocated and the a5 operator needs
to be placed on this host. However, if we consider the total
remaining capacity on all hosts it should be possible to
place the operator without allocating any new hosts. The
re-balancing is triggered if during the addition of an operator
op a new host should be allocated and the following condition
holds:

loadcpu(op) < (n - thres — Z loadcpu (o)) (3)
Yo

where n is the number of currently active hosts in the system
and Vo represents all operators currently running in the
system.

For re-balancing we choose the host, where the difference
between remaining capacity and the newly assigned operator
load is minimal. For this host we use a subset algorithm [10]
to identify a minimal set of operators to redistribute in order
to make place for the new operator to be added. We use the
algorithm to calculate all valid solutions with a summed CPU
load within the interval [loadcpu(op),loadcrpu(op) + int],
where int describes the interval size. From this set we select
the solution, which requires the smallest amount of state
to be moved. Considering the example in Figure 2, Host 3
will be selected as one with the closest remaining capacity.
Subsequently, operator f4 will be selected and moved to Host
1 and operator a5 will be placed on Host 3.

4. EVALUATION

We have implemented FUGU on top of a state of the art,
commercial, distributed CEP engine. We have extended the
underlying CEP system with capabilities required for dy-
namic host addition and removal as well as state migration.
The evaluation is conducted in a shared, private cloud envi-
ronment with up to 10 hosts with 2 cores and 4 GB RAM
each. For evaluation we use a real-world tick stream from the
Frankfurt Stock Exchange. We can replay the tick stream
with a variable or a fixed data rate. For evaluating our system
we use the following query template:

SELECT avg(price) FROM tickStream WITHIN x SEC
GROUP BY comp WHERE sector=y;

The above query calculates the average price for each
company within a certain sector. The query workload is made
variable by choosing the window size () and the sector (y)
randomly. The query workload pattern was extracted from a
web server log [3] — see Figure 3(a) and 3(b).

Performance is evaluated based on the end to end latency.
We define the end to end latency as the difference between the
time an event enters the system via source operator and the
time it leaves the system via sink operator. Due to different
complexities of queries the end to end latency of different
queries can not be easily compared. Instead, for each query
we calculate the ratio between the initial latency measured
for the first ten seconds after the query has been added and
the current end to end latency. We label this value as latency
ratio. Latency ration should be ideally always equal to 1.

4.1 Elastic Scaling of FUGU

The goal of the first experiment is to demonstrate that
FUGU is able to elastically scale the underlying CEP system
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Figure 4: System utilization as a function of utiliza-
tion threshold thres
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Figure 5: Latency ratio as a function of utilization
threshold thres

with a varying number of queries. For this experiment we
set the utilization threshold thres to 0.85. Figure 3(a) shows
the average system utilization and used hosts count as a
function of the query count. During peak load system runs
45 queries in parallel across six hosts. It can be observed that
FUGU automatically scales underlying CEP system out and
in depending on the query workload. The average utilization
remains constant and oscillates around 60%. Figure 3(c)
shows the corresponding maximum latency ratio across all
queries running in the system. The average latency ratio of
all queries stays close to 1, however certain queries experience
short latency peaks. According to expectations this behavior
manifests itself mainly during reconfigurations of the system,
i.e., addition or removal of hosts.

In the following experiment we have enabled the re-balancing
algorithm and re-executed the experiment. Figure 3(b) shows
that the system is able to release hosts earlier and in average
uses less hosts than the approach without re-balancing. The
average utilization increases to 65%. However, due to the
re-balancing more peaks in the latency ratio can be observed
— see Figure 3(d). This confirms the existence of a basic intu-
itive trade-off: the more aggressive the elasticity policy the
less stable the system becomes.

4.2 Achievable Utilization

The goal of FUGU is to maximize the system utilization
without significantly impacting the end to end latency of the
running queries. In order to study the maximal achievable
utilization of our system we changed the threshold thres
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Figure 3: Elastic scaling with and without re-balancing
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Figure 6: Average utilization as a function of varying
event rate and utilization threshold

for the upper bound of utilization per host from 75% up to
90%. Figure 4 shows the resulting system utilization as a
function of the threshold thres. In addition, Figure 5 shows
the average latency ratio. We can observe that the achievable
utilization increases from 53% for thres = 0.75 to 64% for
thres = 0.9 while the latency ratio increases from 1.6 to 2.7.
The maximal achievable utilization saturates starting from a
value of utilization threshold thres = 0.85.

By using the re-balancing scheme the average utilization
can be improved by up to six percent points, e.g. for thres =
0.9 to 70%. The maximal latency ratio increases to 3.8. The
maximal latency ratio is proportional to the frequency with
which the re-balancing is executed.

4.3 Influence of Event Rate

We have also measured the achievable utilization as a func-
tion of different stable event rates — see Figure 6. We have
varied the event rate between 500 and 1250 events per second.
The number of queries is identical as in case of the previous
experiment. The number of hosts is automatically changing
from 3 hosts for 500 events per second run with threshold
0.9 up to 9 hosts for 1250 events per second run with thresh-
old of 0.75. From the experiment we can conclude that no
linear correlation between the input rate and the achiev-
able utilization can be drawn. This indicates that setting a
good utilization threshold for different system conditions is
a challenging problem.

To emphasize this result we re-ran above experiment with
a varying event rate — see Figure 7. For this experiment we
have fixed the utilization threshold at 0.9. The event rate
pattern over time is shown in Figure 7(a). The event rate
changes between 300 and 600 events per second for a speedup
value of 5, and between 400 and 1000 events per second for
a speedup value of 10.

Figure 7(b) shows that the average system utilization, in
case of variable event rate, is lower than in case of a fixed
event rate. It is also, to a large extent, independent of the
selected utilization threshold. Moreover, we have observed
(see Figure 7(c)) that for individual hosts the utilization
threshold is often exceeded. These two observations show
a need to combine our approach with run-time adaptation
and elasticity policies [6, 7], in order to be able to efficiently
handle varying event rates.
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Figure 7: Variable event rate evaluation

4.4 Discussion

Based on the above evaluation we can conclude that our
approach is well suited for elastic scaling with a varying num-
ber of queries. The system under control of FUGU is able
to dynamically adjust the number of hosts and is able to
keep the latency ratio close to 1 for the presented scenario.
By trying to maximize the utilization we have also demon-
strated that a trade off between latency ratio and achievable
utilization exists. Specifically, finding a good upper threshold
for the utilization of the system seems to be both important
and non-trivial.

We have also outlined, that the event rate has a major
influence on the achievable utilization. Especially, in case
of varying event rates the system utilization significantly
decreases. This requires the addition of run-time adaptation
to FUGU, which we consider as future work.

S. RELATED WORK

Elasticity in context of data stream processing systems
has been studied by various authors [6, 7, 12], however, none



of the proposed approaches considered a varying query load.
Schneider et al. [12] present a scheme for elastic resource
scaling within a single node. The system can adapt the num-
ber of threads used by a single operator to be able to handle
varying event rate. Other approaches focus on adapting a
distributed data stream processing system to changing event
rates. Gulisano et al. [7] describe a distributed system using
an upper and a lower bound on the load variance to trigger
operator migration whenever these bounds are violated. The
implication of this approach is the possibility of allocation of
new hosts and thus worsening of the overall system utiliza-
tion. Fernandez [6] et. al. present an integrated solution for
dynamic scale-out and fault tolerance. Presented system sup-
ports check-pointing-based fault tolerance and policy-based
scale out. However, it is not possible to scale the system
in, therefore, unlike FUGU, it cannot be considered as fully
elastic.

Balancing the load among hosts of a streaming system is re-
lated to a class of algorithms used for operator placement [15,
4]. Operator placement algorithms can target different ob-
jectives, most common being: end to end latency, network
bandwidth and load (im-)balance — see [9] for a comprehen-
sive survey of placement strategies. Xing et al. [15] presents
an algorithm which balances the load between all hosts of
the system by minimizing the load variation between hosts.
FUGU uses similar technique where an initial assignment is
optimized by partial re-balancing. However, the approach of
Xing et al. only works for a fixed number of hosts, whereas
FUGU can adjust the number of hosts dynamically. Back-
man et al. [4] present an approach, which balances the load
between hosts using bin packing. Using simulation Backman
et al. conclude that the system is able to provide latency
guarantees. Evaluation with FUGU demonstrates that this
claim is difficult to uphold in a system with a dynamic set of
queries. Moreover, it is in opposition to the high utilization
goal of elastic systems.

6. CONCLUSION

In this paper we have presented FUGU, an allocation
component for distributed complex event processing systems.
FUGU is able to elastically scale in and out the underlying
CEP system with a varying query load. We have evaluated
FUGU using real life workloads and demonstrated that it can
achieve a good average utilization with a stable latency ratio.
We have also presented a re-balancing extension allowing to
migrate stateful and stateless operators between hosts, thus
improving the overall system utilization by up to 6%.

For the future we plan to investigate how to improve the
ratio between achievable utilization and measured latency.
We also plan for provisioning QoS guarantees for a system
under the control of FUGU. In addition, we want to extend
the system to allow for run-time adaptation to dynamically
changing event rates.
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