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ABSTRACT 
Acceleration of huge data analysis, especially an analysis of huge, 
and fast streaming data is one of the major issues in recent 
computer science. Proper modeling, and understanding of 
streaming data analysis are indispensable for speed-up, scale out, 
and faster response time of streaming data analysis. Especially for 
the research on scheduling, or load balancing algorithms, a model 
of the target application truly impacts on the performance of the 
scheduling, or load balancing algorithms, however, there is no 
study on the realistic models, or the actual behaviors of streaming 
data analysis yet. This paper proposes a task graph for stream 
mining algorithms with some examples of actual applications. A 
task graph represents a workload of the target application with 
data dependencies, and control flows. This is the first proposal of 
task graphs for stream mining algorithms, and the task graphs play 
an important role as a benchmarking tool for the development of 
scheduling, or load balancing algorithms targeting on stream 
mining algorithms. 

1. INTRODUCTION 
Applications to process a massive amount of data, so-called “big 
data”, is one of the recent hot research topics. Big data 
applications are sometimes considered to be quite similar with 
data intensive applications in high performance computing (HPC), 
however, the behaviors of applications in these two domains are 
quite different [9]. 

Big data applications utilize often stream mining algorithms, 
while data intensive applications process huge data in a batch. 
That is, big data application often tries to analyze  data stream, 
which is a sequence of data arriving in chronological order, on the 
fly. As the data stream flows very fast, stream mining algorithms 
are developed with the purpose of the perfect analysis over such 
fast data flows. Once the delay of the analysis arises, and the 
analysis fails to keep up with the data arrival, the whole process 
will be forced to drop some of the arriving data. As many of the 
streaming analysis processes place emphasis on the real-time 
analysis in chronological order, a drop of the arrival data is highly 
critical. 

As big data applications scale up with such a severe requirement 
for extremely low latency, big data applications become to run on 
the parallel and distributed computing environment such as the 
computing cloud. In order to exploit parallelism, and speed up the 
applications, scheduling is indispensable. Scheduling algorithms 
in parallel and distributed computing environment have been 
studied intensively for a long time especially in HPC, and these 
researches often validate, and compare the scheduling algorithms 
with task graphs. A task graph represents a workload of a target 

application, which is often synthetic workload generated 
randomly. As the quality of task graphs heavily impacts on 
validation of scheduling algorithms, the methodology to generate 
task graphs have been studied as well with a strong focus on data 
intensive applications in HPC. 

This paper proposes task graphs generated from the actual 
implementations of stream mining algorithms in order to 
contribute to a development of effective, and practical scheduling 
algorithms for stream mining algorithms. The contributions of this 
paper are 1) the first proposal of task graphs for stream mining 
algorithms, 2) the practical and realistic workloads extracted from 
the existing implementations, 3) task graphs as representations of 
the behaviors of stream mining algorithms to open up unexplored 
problems for conventional scheduling algorithms, and 4) task 
graphs as a benchmarking tool to accelerate the development of 
scheduling algorithms for stream mining algorithms. 

The rest of this paper is organized as follows. Section 2 gives a 
generic model of stream mining algorithms in order to clarify data 
dependencies of the process. Section 3 describes the procedure of 
task graph generation, and proposes a format of task graphs for 
stream mining algorithms. Section 4 overviews actual stream 
mining algorithms analyzed in this paper, and represents 
corresponding task graphs. Section 5 briefly introduces the related 
work, and Section 6 concludes this paper. 

2. STREAM MINING ALGORITHMS 
A stream mining algorithm is an algorithm specialized for a data 
analysis over data streams on the fly. There are many variations of 
stream mining algorithms, however, general stream mining 
algorithms share a fundamental structure, and a data access 
pattern as shown in Figure 1 [1]. 

A stream mining algorithm consists of two parts; a stream 
processing part, and a query processing part. First, the stream 
processing module picks the target data unit, which is a chunk of 
data arrived in a limited time frame, and executes a quick analysis 
over the data unit. The quick analysis here can be a 
preconditioning process such as a morphological analysis, or  a 
word counting. Second, the stream processing module updates the 
data cached in one or more sketches with the latest results through 
the quick analysis. That is, the sketches keep the intermediate 
analysis, and the stream processing module updates the analysis 
incrementally as more data units are processed. Third, the analysis 
module reads the intermediate analysis from the sketches, and 
extracts the essence of the data in order to complete the quick 
analysis in the stream processing part. Finally, the query 
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processing part receives this essence for the further analysis, and 
the whole process for the target data unit is closed. 

Based on the modeling above, we can conclude that the major 
responsibility of the stream processing part is to process each data 
unit for the further analysis, and that the stream processing part 
has the huge impact over the latency of the whole process. The 
stream processing part needs to finish the preconditioning of the 
current data unit before the next data unit arrives, otherwise, the 
next data unit will be lost as there is no storage for buffering the 
incoming data in a stream mining algorithm. On the other hand, 
the query processing part takes care of the detailed analysis such 
as a frequent pattern analysis, or a hot topic extraction based on 
the intermediate data passed by the stream processing part. The 
output by the query processing part is usually pushed into a 
database system, and there is no such an urgent demand for an 
instantaneous response. Therefore, only the stream processing part 
needs to run on a real-time basis, and the successful analysis over 
all the incoming data simply relies on the speed of the stream 
processing part. 

The model of a stream mining algorithm shown in Figure 1 also 
indicates that the data access pattern of the stream mining 
algorithms is totally different from the data access pattern of so-
called data intensive applications, which is intensively 
investigated in HPC. The data access pattern in the data intensive 
applications is a write-once-read-many [9]. That is, the application 
refers to the necessary data many times during the computation; 
therefore, the key for the speedup of the application is to place he 
necessary data close to the computational nodes for the faster data 

accesses. On the other hand, in a stream mining algorithm, a 
process refers to its data unit only once, which is a read-once-
write-once style. Therefore, a scheduling algorithm for the data 
intensive applications is not simply applicable or the purpose of 
the speedup of a stream mining algorithm. 

Figure 2 illustrates data dependencies between two processes 
analyzing data units in line, and data dependencies inside ne 
process. The left top flow represents the stream processing part of 
the preceding process, and the right bottom flow represents the 
stream processing part of the successive process. Each flow 
consists of the six stages; read from sketches, read from input, 
stream processing, update sketches, read from sketches, and 
analysis. An arrow represents a control flow, and a dashed arrow 
represents a data dependency. 

In Figure 2, there are three data dependencies in total as follows, 
and all of these three dependencies are essential to keep the 
analysis results consistent, and correct. 

1. The processing module in the preceding process should 
finish updating the sketches before the processing module in 
the successive process starts reading the sketches (Dep.1 in 
Figure 2). 

2. The processing module should finish updating the sketches 
before the analysis module in the same process starts 
reading the sketches (Dep.2 in Figure 2). 

3. The analysis module should finish reading the sketches 
before the processing module in the successive process 
starts updating the sketches (Dep.3 in Figure 2). 

3. TASK GRAPH DEFINITIONS 
As discussed in Section 2, a model of a stream mining algorithm 
has data dependencies both across the processes, and inside one 
process. Therefore, a task graph or a stream mining algorithm 
should consist of a data dependency graph, and a control flow 
graph. We already modeled both the data dependencies, and the 
control flows for stream mining algorithms in Section 2, however, 
a task graph is a finer grained model for a specific algorithm and 
implementation. 
A data dependency graph is drawn via an analysis of the actual 
implementation of the target algorithm. Figure 3(a) is an example 
of a data dependency graph of the training stage of Naïve Bayes 
classifier[2] implemented by MOA project [8]. Figure 4 
represents a pseudo code for the data dependency graph in Figure 
3(a). A data dependency graph is a directed acyclic graph (DAG). 
In a data dependency graph, each node represents a basic block, or 

Figure 1. A model of stream mining algorithms. 
. 

 
 

Figure 2. Data dependencies of the stream processing parts in two processes in line. 
. 
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an equivalent chunk of codes in the actual implementation, and 
each array indicates a data dependency. If an arrow comes up 
from node A to node B, the arrow indicates that there is a data 
dependency between node A, and node B, and that the process 
represented by node B relies on the data generated by the process 
represented by node A for consistency of the analysis. 

A data dependency graph in Figure 3(a) actually consists of two 
DAGs; a DAG with nodes in white, and a DAG with nodes in 
gray. Each DAG represents each process in Figure 2. That is, the 
DAG with white nodes in Figure 3(a) indicates the preceding 
process in Figure 2, and the DAG with gray nodes in Figure 3(b) 
indicates the successive process in Figure 2. The arrows between 
the two DAGs represent data dependencies between the two 
processes. In the case of stream mining applications, which is the 
most different point from conventional applications, the 
application continues running as long as a new data unit arrives. A 
DAG with nodes in a same color represents one process for one 
data unit, therefore, DAGs should lie in a line as many as the 
number of data the corresponding application processes. In this 
case, two DAGs are sufficient for the representation of the 
minimum unit of the repeated pattern in the application, and the 
data dependency graph does not contain any more redundant 
DAGs for simple but sufficient representation. 

In a data dependency graph, each node has a number, and the 
number indicates that the particular node represents which basic 
block in the pseudo code, such as shown in Figure 4. In this 
example, node 1 represents the line starting with “(1)” in the 
pseudo code in Figure 4, and node 2 represents the lines starting 

<?xml version="1.0" encoding="utf-8" ?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
  <xs:complexType name="NodeType"> 
    <xs:attribute name="id" type="xs:string" use="required" /> 
    <xs:attribute name="cost" type="xs:int" use="required" /> 
    <xs:attribute name="parallelism" type="xs:int" /> 
  </xs:complexType> 
 
  <xs:complexType name="ArrowType"> 
    <xs:attribute name="id" type="xs:string" use="required" /> 
    <xs:attribute name="src" type="xs:string" use="required" /> 
    <xs:attribute name="dest" type="xs:string" use="required" /> 
  </xs:complexType> 
 
  <xs:complexType name="DummyNodeType"> 
    <xs:attribute name="id" type="xs:string" use="required" /> 
    <xs:attribute name="cost" type="xs:int" fixed="-1" /> 
  </xs:complexType> 
 
  <xs:complexType name="DDType"> 
    <xs:sequence maxOccurs="unbounded" minOccurs="2"> 
      <xs:element ref="arrow" /> 
    </xs:sequence> 
  </xs:complexType> 
 
  <xs:complexType name="CFType"> 
    <xs:sequence maxOccurs="unbounded" minOccurs="2"> 
      <xs:element ref="arrow" /> 
    </xs:sequence> 
  </xs:complexType> 
 
  <xs:complexType name="NodeListType"> 
    <xs:sequence> 
      <xs:element ref="startNode" /> 
      <xs:sequence maxOccurs="unbounded" minOccurs="1"> 
 <xs:element ref="node" /> 
      </xs:sequence> 
      <xs:element ref="endNode" /> 
    </xs:sequence> 
  </xs:complexType> 
 
  <xs:complexType name="TaskGraph"> 
    <xs:sequence> 
      <xs:element ref="nodeList" /> 
      <xs:element ref="cf" /> 
      <xs:element ref="dd" /> 
    </xs:sequence> 
  </xs:complexType> 
 
  <xs:element name="node" type="NodeType" /> 
  <xs:element name="startNode" type="DummyNodeType" /> 
  <xs:element name="endNode" type="DummyNodeType" /> 
  <xs:element name="arrow" type="ArrowType" /> 
  <xs:element name="dd" type="DDType" /> 
  <xs:element name="cf" type="CFType" /> 
  <xs:element name="nodeList" type="NodeListType" /> 
  <xs:element name="taskgraph" type="TaskGraph" /> 
</xs:schema> 
 

Figure 5. XML scheme for a task graph. 

Figure 4. The training stage of Naïve Bayes algorithm. 

for all training data do 
(1) Fetch one training data v 
for all attributes for v do 

(2-1) Update the weight sum of this attribute. 
(2-2) Update the mean value of this attribute. 

    end for 
end for 

Figure 3. The data dependency graph (a), and the 
control flow graph (b) for Naïve Bayes implementation 

of MoA. 
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with “(2-1)”, and “(2-2)” in the pseudo code in Figure 4. Here, as 
determined from the pseudo code in Figure 4, the basic block 
indicated by node 2 is data parallel. Therefore, in the data 
dependency graph, several node 2s are located in the same level of 
the DAG. Logically, there is no limit of the number of node 2s in 
this case, therefore, an user can put node 2s as many as desired. 

A control flow graph is also drawn via an analysis of the actual 
implementation of the target algorithm again, and the basic 
definitions are almost the same to the case of a data dependency 
graph. Figure 3(b) is a control flow graph for Naïve Bayes 
classifier, and the corresponding pseudo code is shown in Figure 4. 
Each node represents basic block again, however, each arrow in a 
control flow graph represents the order of the process of basic 
blocks. That is, in Figure 3(b), node 2 always has to be processed 
just after node 1 is completed. On the other hand, nodes without 
arrays in between do not have any ordering restriction. Therefore, 
these nodes can be executed in a shuffled order, or on the same 
stage. As the same to the data dependency graph, a control flow 
graph consists of the minimum but sufficient DAGs for the 
simplicity. 

A control flow graph has a computational cost for each node. A 
computational cost shown in a control flow graph is the average 
of the actual computational costs measured in the actual 
computations, however, this version of the control flow graphs do 
not contain communication costs. As the control flow graphs here 
are fine-grained, it is not beneficial to scatter one control flow 
graph over the distributed computing environment. That is, 
pipelining control flow graphs according to the speed of the input 
data is a more realistic, and practical solution. Communication 
costs for pipelining in the distributed computing environment 
contains further discussions, and we reserve this topic for the 
future work. 

Figure 5 is the XML schema for a task graph, and Figure 6 is an 
example representation of XML for Figure 3. Task graphs should 

be represented also in XML according to this schema, and a 
designer of scheduling simulators can easily employ the task 
graph as a benchmark by reading this XML. 

4. ACTUAL TASK GRAPHS 
This section introduces task graphs extracted from the actual 
popular methodologies. One is top-k implemented as a Java 1.7 
application. The other is Hoeffding tree algorithm[6], which is 
one of decision tree algorithms, and implemented as MOA 
module[8]. 

We implemented top-k based on min summary algorithm 
proposed by Lam et al.[7], and the base proposal by Calders et al. 
[3]. Figure 7 is the pseudo-code of the corresponding algorithm. 
Figure 8 (a) represents the extracted data dependency graph, and 
Figure 8(b) represents the extracted control flow graph.  
As we already saw through the generic model of the stream 
mining algorithms in Section 2, each node processing one data 
unit basically depends on the results of the previous node. That is, 
each node is a consumer of the previous node. The exception is 
node 1 (data fetching), and node 6 (update of the pruning 
threshold). Especially, node 6 updates the pruning threshold based 
on the length of the summary, and node 6 has to wait for the 
elimination of the obsolete border points, which is node 5. On the 
other hand, the process represented from node 2 to node 5 is 
independent across the distinct items appeared during the 
observation, and this part is capable of parallel execution.  
When we focus on the dependency between the preceding process, 
and the successive process, node 2 in the successive process 
depends on node 5 in the preceding process. Node 5 in the 
preceding process deletes the obsolete border points, while node 2 
adds a new border point, or increment the counter of the existing 
border point according to the input. There is no dependency when 
node 2 adds a new border point, however, node 2 needs to decide 
which border point should be updated when node 2 increments the 
count of the existing border point. This is the reason why node 2 
in the successive process behaves as a consumer of node 5 in the 
preceding process.  
One more thing we would note here is that the computational cost 
of node 6 is relatively huge compared to the computational costs 
of the other nodes. The major reason of the heavy load of node 6 
is that node 6 needs to calculate the maximum relative frequency 
of the least appeared item during the observation. Because of this 
process, node 6 is a consumer of node 5, needs to sweep all the 
data in the summary, and consumes more time for completion. 

<?xml version="1.0" encoding="utf-8" ?> 
<taskgraph> 
  <nodeList> 
    <startNode id="0" /> 
    <node id="1" cost="285" parallelism="1" /> 
    <node id="2" cost="360" parallelism="-1" /> 
    <endNode id="3" /> 
  </nodeList> 
 
  <cf> 
    <arrow id="cfa01" src="0" dest="1" /> 
    <arrow id="cfa12" src="1" dest="2" /> 
    <arrow id="cfa22" src="2" dest="2" /> 
    <arrow id="cfa23" src="2" dest="3" /> 
  </cf> 
 
  <dd> 
    <arrow id="dda10" src="1" dest="0" /> 
    <arrow id="dda21" src="2" dest="1" /> 
    <arrow id="dda22" src="2" dest="2" /> 
    <arrow id="dda32" src="3" dest="2" /> 
  </dd> 
</taskgraph> 
 Figure 6. XML representation for the task graph in Figure 3. 

for all input data items do 
    (1) fetch one input data v 
    for all distinct items appeared do 
        (2) create or update a border point for v 
        (3) update summary 
        (4) update frequency 
        (5) delete obsolete border points 
    end for 
    (6) update pruning threshold 
end for 

Figure 7. A pseudo-code of top-k (min summary). 
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This tendency of the computational cost implies that the execution 
in a pipeline is really effective for min summary algorithm. In fact, 
the computational cost of node 6 is almost equivarent to the total 
cost of the single path of nodes 1-5, and node 6 is independent 
from these nodes. Therefore, node 1-5, and node 6 are capable of 
running in a pipeline, and consumes almost the same 
computational time. That is, there is a chance to hide almost half 
of the execution time of the process time of one data unit, and 
improve the throughput by pipelining. 

We also extracted a task graph of Hoeffding tree algorithm from 
MOA implementation. Figure 9 is the pseudo-code of the 
algorithm, and Figure 10 represents the extracted data dependency 
graph. The control graph is omitted for the page limitation. We 
skip the detailed discussion for the page limitation again, however, 
we can observe similar tendency of the application as we saw in 
the generic model in Section 2, Naïve Bayes in Section 3, and min 
summary algorithm in this section. One major difference from the 
previous cases is that node 1 depends on node 9, therefore, the 
effect of the pipelining is not huge compared to the other cases. 

Here, we need to discuss computational costs in the control flow 
graph. This version of the task graph represents a computational 
cost as the average of actual executions. This is in a sort of the 
simplified model as the computational cost of stream mining 
algorithms easily varies depending on the input data. We need to 

develop the better methodology for the computational model, 
however, we reserve this issue as a future work. 

Figure 8. The data dependency graph (a), and the control 
flow graph for top-k (min summary). 
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Let HT be a tree with a single leaf (the root) 
for all training data do 

(1) Fetch one training data v, and sort v into leaf l  
using HT 

    for all attributes for v do 
        (2) Update sufficient statistics in l 
    end for 
    (3) Increment nl, the number of examples seen at l 
    if n1 mod nmin = 0 and data seen at l not all of same 
    class then 
        (4) Compute Gl(Xi) for each attribute 
        (5) Let Xa be attribute with highest Gl 
        (6) Let Xb be attribute with second-highest Gl 
        (7) Compute Hoeffding bound 
         if Xa != Xb and (Gl(Xa) − Gl(Xb) > ε or ε < τ)	  
         then 
            (8) Replace l with an internal node that splits on Xa 
            for all branches of the split do 
                (9) Add a new leaf with initialized sufficient  
                     statistics 
            end for 
        end if 
    end if 
end for 

Figure 9. A pseudo-code of a training tree of Hoeffding 
tree algorithm. 
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Figure 10. A data dependency graph for Hoeffding tree 
algorithm. 
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5. RELATED WORK 
There are several studies on task graph generation, mainly 
focusing on random task generation. A few  projects reported task 
graphs generated based on the actual well-known applications, 
however, those applications are from numerical applications such 
as Fast Fourier Transformation, or applications familiar to HPC 
community for a long time. 

Task Graphs for Free (TGFF) provides pseudo-random task 
graphs [5,11]. TGFF allows users to control several parameters, 
however, generates only directed acyclic graphs (DAGs) with one 
or multiple start nodes, and one or multiple sink nodes. Each task 
graph is assigned a period, and a deadline based on the length of 
the maximum path in the graph, and the user specified parameter. 

GGen is another random task graph generator proposed by 
Cordeiro et al [4]. GGen generates random task graphs according 
to the well-known random task generation algorithms. In addition 
to the graph generator, GGen provides a graph analyzer, which 
characterizes randomly generated task graphs based on the longest 
path, the distribution of the out-degree, and the number of edges. 

Task graph generator provides both random task graphs, such as 
Fast Fourier Transformation, Gaussian Elimination, and LU 
Decomposition [12]. The random task graph generator supports 
variety of network topologies, including star, and ring. Task graph 
generator also provides scheduling algorithms as well. 

Tobita et al. proposed Standard Task Graph Set (STG), evaluated 
several scheduling algorithms, and published the optimal 
schedules for STG [10,13]. STG is a set of random task graphs, 
which are ready to download. Tobita et al. also provides task 
graphs from numerical applications such as a robot control 
programs, a sparse matrix solver, and SPEC fpppp. 
Besides the studies on task graph generation, Cordeiro et al. 
pointed out that randomly generated task graphs can create biased 
results, and that the biased results can mislead the analysis of 
scheduling algorithms[4]. According to the experiments by 
Cordeiro et al., a same scheduling algorithm man obtain a speedup 
of 3.5 times only by changing the graph generation algorithm for 
the performance evaluation. 

Random task graphs contributes positively for evaluation of 
scheduling algorithms, however, do not perfectly cover all the 
domains of parallel and distributed applications as Cordeiro et al. 
figured out in their work. Especially for stream mining 
applications, which focus on in this paper, the characteristic of the 
application behaviors are quite different from the characteristic of 
the applications familiar to the conventional HPC community as 
we discussed in Section 2. Task graphs generated from the actual 
stream mining applications have profound significance in the 
better optimization of the applications in parallel computing 
environment for wider area of applications. 

6. CONCLUSION 
This paper proposed task graphs for stream mining algorithms. 
This is the first clear proposal of task graphs modeling stream 
mining algorithms, and the task graphs are extracted from the 
actual implementations of the popular existing methodologies. 
Task graphs proposed in this paper play an important role as the 
benchmarking tool to evaluate scheduling algorithms, or load 
balancing algorithm, which is indispensable for the research of 
scheduling, or load balancing algorithms truly effective for stream 
mining algorithms. In fact, in this paper, the proposed task graphs 
represent apparently different characteristics, and dependencies 

compared to the data intensive applications in HPC, and this fact 
points out we need to consider scheduling methodologies focusing 
on stream mining algorithms. For the better set of task graphs, we 
are working on more stream mining algorithms. 
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