

1

Task Graphs of Stream Mining Algorithms
 Sayaka Akioka

Meiji University
4-21-1 Nakano, Nakano-ku

Tokyo, 164-8525, Japan
+81-3-5343-8305

akioka@meiji.ac.jp

ABSTRACT
Acceleration of huge data analysis, especially an analysis of huge,
and fast streaming data is one of the major issues in recent
computer science. Proper modeling, and understanding of
streaming data analysis are indispensable for speed-up, scale out,
and faster response time of streaming data analysis. Especially for
the research on scheduling, or load balancing algorithms, a model
of the target application truly impacts on the performance of the
scheduling, or load balancing algorithms, however, there is no
study on the realistic models, or the actual behaviors of streaming
data analysis yet. This paper proposes a task graph for stream
mining algorithms with some examples of actual applications. A
task graph represents a workload of the target application with
data dependencies, and control flows. This is the first proposal of
task graphs for stream mining algorithms, and the task graphs play
an important role as a benchmarking tool for the development of
scheduling, or load balancing algorithms targeting on stream
mining algorithms.

1. INTRODUCTION
Applications to process a massive amount of data, so-called “big
data”, is one of the recent hot research topics. Big data
applications are sometimes considered to be quite similar with
data intensive applications in high performance computing (HPC),
however, the behaviors of applications in these two domains are
quite different [9].

Big data applications utilize often stream mining algorithms,
while data intensive applications process huge data in a batch.
That is, big data application often tries to analyze data stream,
which is a sequence of data arriving in chronological order, on the
fly. As the data stream flows very fast, stream mining algorithms
are developed with the purpose of the perfect analysis over such
fast data flows. Once the delay of the analysis arises, and the
analysis fails to keep up with the data arrival, the whole process
will be forced to drop some of the arriving data. As many of the
streaming analysis processes place emphasis on the real-time
analysis in chronological order, a drop of the arrival data is highly
critical.

As big data applications scale up with such a severe requirement
for extremely low latency, big data applications become to run on
the parallel and distributed computing environment such as the
computing cloud. In order to exploit parallelism, and speed up the
applications, scheduling is indispensable. Scheduling algorithms
in parallel and distributed computing environment have been
studied intensively for a long time especially in HPC, and these
researches often validate, and compare the scheduling algorithms
with task graphs. A task graph represents a workload of a target

application, which is often synthetic workload generated
randomly. As the quality of task graphs heavily impacts on
validation of scheduling algorithms, the methodology to generate
task graphs have been studied as well with a strong focus on data
intensive applications in HPC.

This paper proposes task graphs generated from the actual
implementations of stream mining algorithms in order to
contribute to a development of effective, and practical scheduling
algorithms for stream mining algorithms. The contributions of this
paper are 1) the first proposal of task graphs for stream mining
algorithms, 2) the practical and realistic workloads extracted from
the existing implementations, 3) task graphs as representations of
the behaviors of stream mining algorithms to open up unexplored
problems for conventional scheduling algorithms, and 4) task
graphs as a benchmarking tool to accelerate the development of
scheduling algorithms for stream mining algorithms.

The rest of this paper is organized as follows. Section 2 gives a
generic model of stream mining algorithms in order to clarify data
dependencies of the process. Section 3 describes the procedure of
task graph generation, and proposes a format of task graphs for
stream mining algorithms. Section 4 overviews actual stream
mining algorithms analyzed in this paper, and represents
corresponding task graphs. Section 5 briefly introduces the related
work, and Section 6 concludes this paper.

2. STREAM MINING ALGORITHMS
A stream mining algorithm is an algorithm specialized for a data
analysis over data streams on the fly. There are many variations of
stream mining algorithms, however, general stream mining
algorithms share a fundamental structure, and a data access
pattern as shown in Figure 1 [1].

A stream mining algorithm consists of two parts; a stream
processing part, and a query processing part. First, the stream
processing module picks the target data unit, which is a chunk of
data arrived in a limited time frame, and executes a quick analysis
over the data unit. The quick analysis here can be a
preconditioning process such as a morphological analysis, or a
word counting. Second, the stream processing module updates the
data cached in one or more sketches with the latest results through
the quick analysis. That is, the sketches keep the intermediate
analysis, and the stream processing module updates the analysis
incrementally as more data units are processed. Third, the analysis
module reads the intermediate analysis from the sketches, and
extracts the essence of the data in order to complete the quick
analysis in the stream processing part. Finally, the query

2

processing part receives this essence for the further analysis, and
the whole process for the target data unit is closed.

Based on the modeling above, we can conclude that the major
responsibility of the stream processing part is to process each data
unit for the further analysis, and that the stream processing part
has the huge impact over the latency of the whole process. The
stream processing part needs to finish the preconditioning of the
current data unit before the next data unit arrives, otherwise, the
next data unit will be lost as there is no storage for buffering the
incoming data in a stream mining algorithm. On the other hand,
the query processing part takes care of the detailed analysis such
as a frequent pattern analysis, or a hot topic extraction based on
the intermediate data passed by the stream processing part. The
output by the query processing part is usually pushed into a
database system, and there is no such an urgent demand for an
instantaneous response. Therefore, only the stream processing part
needs to run on a real-time basis, and the successful analysis over
all the incoming data simply relies on the speed of the stream
processing part.

The model of a stream mining algorithm shown in Figure 1 also
indicates that the data access pattern of the stream mining
algorithms is totally different from the data access pattern of so-
called data intensive applications, which is intensively
investigated in HPC. The data access pattern in the data intensive
applications is a write-once-read-many [9]. That is, the application
refers to the necessary data many times during the computation;
therefore, the key for the speedup of the application is to place he
necessary data close to the computational nodes for the faster data

accesses. On the other hand, in a stream mining algorithm, a
process refers to its data unit only once, which is a read-once-
write-once style. Therefore, a scheduling algorithm for the data
intensive applications is not simply applicable or the purpose of
the speedup of a stream mining algorithm.

Figure 2 illustrates data dependencies between two processes
analyzing data units in line, and data dependencies inside ne
process. The left top flow represents the stream processing part of
the preceding process, and the right bottom flow represents the
stream processing part of the successive process. Each flow
consists of the six stages; read from sketches, read from input,
stream processing, update sketches, read from sketches, and
analysis. An arrow represents a control flow, and a dashed arrow
represents a data dependency.

In Figure 2, there are three data dependencies in total as follows,
and all of these three dependencies are essential to keep the
analysis results consistent, and correct.

1. The processing module in the preceding process should
finish updating the sketches before the processing module in
the successive process starts reading the sketches (Dep.1 in
Figure 2).

2. The processing module should finish updating the sketches
before the analysis module in the same process starts
reading the sketches (Dep.2 in Figure 2).

3. The analysis module should finish reading the sketches
before the processing module in the successive process
starts updating the sketches (Dep.3 in Figure 2).

3. TASK GRAPH DEFINITIONS
As discussed in Section 2, a model of a stream mining algorithm
has data dependencies both across the processes, and inside one
process. Therefore, a task graph or a stream mining algorithm
should consist of a data dependency graph, and a control flow
graph. We already modeled both the data dependencies, and the
control flows for stream mining algorithms in Section 2, however,
a task graph is a finer grained model for a specific algorithm and
implementation.
A data dependency graph is drawn via an analysis of the actual
implementation of the target algorithm. Figure 3(a) is an example
of a data dependency graph of the training stage of Naïve Bayes
classifier[2] implemented by MOA project [8]. Figure 4
represents a pseudo code for the data dependency graph in Figure
3(a). A data dependency graph is a directed acyclic graph (DAG).
In a data dependency graph, each node represents a basic block, or

Figure 1. A model of stream mining algorithms.
.

Figure 2. Data dependencies of the stream processing parts in two processes in line.
.

3

an equivalent chunk of codes in the actual implementation, and
each array indicates a data dependency. If an arrow comes up
from node A to node B, the arrow indicates that there is a data
dependency between node A, and node B, and that the process
represented by node B relies on the data generated by the process
represented by node A for consistency of the analysis.

A data dependency graph in Figure 3(a) actually consists of two
DAGs; a DAG with nodes in white, and a DAG with nodes in
gray. Each DAG represents each process in Figure 2. That is, the
DAG with white nodes in Figure 3(a) indicates the preceding
process in Figure 2, and the DAG with gray nodes in Figure 3(b)
indicates the successive process in Figure 2. The arrows between
the two DAGs represent data dependencies between the two
processes. In the case of stream mining applications, which is the
most different point from conventional applications, the
application continues running as long as a new data unit arrives. A
DAG with nodes in a same color represents one process for one
data unit, therefore, DAGs should lie in a line as many as the
number of data the corresponding application processes. In this
case, two DAGs are sufficient for the representation of the
minimum unit of the repeated pattern in the application, and the
data dependency graph does not contain any more redundant
DAGs for simple but sufficient representation.

In a data dependency graph, each node has a number, and the
number indicates that the particular node represents which basic
block in the pseudo code, such as shown in Figure 4. In this
example, node 1 represents the line starting with “(1)” in the
pseudo code in Figure 4, and node 2 represents the lines starting

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="NodeType">
 <xs:attribute name="id" type="xs:string" use="required" />
 <xs:attribute name="cost" type="xs:int" use="required" />
 <xs:attribute name="parallelism" type="xs:int" />
 </xs:complexType>

 <xs:complexType name="ArrowType">
 <xs:attribute name="id" type="xs:string" use="required" />
 <xs:attribute name="src" type="xs:string" use="required" />
 <xs:attribute name="dest" type="xs:string" use="required" />
 </xs:complexType>

 <xs:complexType name="DummyNodeType">
 <xs:attribute name="id" type="xs:string" use="required" />
 <xs:attribute name="cost" type="xs:int" fixed="-1" />
 </xs:complexType>

 <xs:complexType name="DDType">
 <xs:sequence maxOccurs="unbounded" minOccurs="2">
 <xs:element ref="arrow" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="CFType">
 <xs:sequence maxOccurs="unbounded" minOccurs="2">
 <xs:element ref="arrow" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="NodeListType">
 <xs:sequence>
 <xs:element ref="startNode" />
 <xs:sequence maxOccurs="unbounded" minOccurs="1">
 <xs:element ref="node" />
 </xs:sequence>
 <xs:element ref="endNode" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="TaskGraph">
 <xs:sequence>
 <xs:element ref="nodeList" />
 <xs:element ref="cf" />
 <xs:element ref="dd" />
 </xs:sequence>
 </xs:complexType>

 <xs:element name="node" type="NodeType" />
 <xs:element name="startNode" type="DummyNodeType" />
 <xs:element name="endNode" type="DummyNodeType" />
 <xs:element name="arrow" type="ArrowType" />
 <xs:element name="dd" type="DDType" />
 <xs:element name="cf" type="CFType" />
 <xs:element name="nodeList" type="NodeListType" />
 <xs:element name="taskgraph" type="TaskGraph" />
</xs:schema>

Figure 5. XML scheme for a task graph.

Figure 4. The training stage of Naïve Bayes algorithm.

for all training data do
(1) Fetch one training data v
for all attributes for v do

(2-1) Update the weight sum of this attribute.
(2-2) Update the mean value of this attribute.

 end for
end for

Figure 3. The data dependency graph (a), and the
control flow graph (b) for Naïve Bayes implementation

of MoA.

1

2 22

1

2 22

...

...

(a) (b)

1

2 22

1

2 22

...

...

285

285

360360360

360 360 360

4

with “(2-1)”, and “(2-2)” in the pseudo code in Figure 4. Here, as
determined from the pseudo code in Figure 4, the basic block
indicated by node 2 is data parallel. Therefore, in the data
dependency graph, several node 2s are located in the same level of
the DAG. Logically, there is no limit of the number of node 2s in
this case, therefore, an user can put node 2s as many as desired.

A control flow graph is also drawn via an analysis of the actual
implementation of the target algorithm again, and the basic
definitions are almost the same to the case of a data dependency
graph. Figure 3(b) is a control flow graph for Naïve Bayes
classifier, and the corresponding pseudo code is shown in Figure 4.
Each node represents basic block again, however, each arrow in a
control flow graph represents the order of the process of basic
blocks. That is, in Figure 3(b), node 2 always has to be processed
just after node 1 is completed. On the other hand, nodes without
arrays in between do not have any ordering restriction. Therefore,
these nodes can be executed in a shuffled order, or on the same
stage. As the same to the data dependency graph, a control flow
graph consists of the minimum but sufficient DAGs for the
simplicity.

A control flow graph has a computational cost for each node. A
computational cost shown in a control flow graph is the average
of the actual computational costs measured in the actual
computations, however, this version of the control flow graphs do
not contain communication costs. As the control flow graphs here
are fine-grained, it is not beneficial to scatter one control flow
graph over the distributed computing environment. That is,
pipelining control flow graphs according to the speed of the input
data is a more realistic, and practical solution. Communication
costs for pipelining in the distributed computing environment
contains further discussions, and we reserve this topic for the
future work.

Figure 5 is the XML schema for a task graph, and Figure 6 is an
example representation of XML for Figure 3. Task graphs should

be represented also in XML according to this schema, and a
designer of scheduling simulators can easily employ the task
graph as a benchmark by reading this XML.

4. ACTUAL TASK GRAPHS
This section introduces task graphs extracted from the actual
popular methodologies. One is top-k implemented as a Java 1.7
application. The other is Hoeffding tree algorithm[6], which is
one of decision tree algorithms, and implemented as MOA
module[8].

We implemented top-k based on min summary algorithm
proposed by Lam et al.[7], and the base proposal by Calders et al.
[3]. Figure 7 is the pseudo-code of the corresponding algorithm.
Figure 8 (a) represents the extracted data dependency graph, and
Figure 8(b) represents the extracted control flow graph.
As we already saw through the generic model of the stream
mining algorithms in Section 2, each node processing one data
unit basically depends on the results of the previous node. That is,
each node is a consumer of the previous node. The exception is
node 1 (data fetching), and node 6 (update of the pruning
threshold). Especially, node 6 updates the pruning threshold based
on the length of the summary, and node 6 has to wait for the
elimination of the obsolete border points, which is node 5. On the
other hand, the process represented from node 2 to node 5 is
independent across the distinct items appeared during the
observation, and this part is capable of parallel execution.
When we focus on the dependency between the preceding process,
and the successive process, node 2 in the successive process
depends on node 5 in the preceding process. Node 5 in the
preceding process deletes the obsolete border points, while node 2
adds a new border point, or increment the counter of the existing
border point according to the input. There is no dependency when
node 2 adds a new border point, however, node 2 needs to decide
which border point should be updated when node 2 increments the
count of the existing border point. This is the reason why node 2
in the successive process behaves as a consumer of node 5 in the
preceding process.
One more thing we would note here is that the computational cost
of node 6 is relatively huge compared to the computational costs
of the other nodes. The major reason of the heavy load of node 6
is that node 6 needs to calculate the maximum relative frequency
of the least appeared item during the observation. Because of this
process, node 6 is a consumer of node 5, needs to sweep all the
data in the summary, and consumes more time for completion.

<?xml version="1.0" encoding="utf-8" ?>
<taskgraph>
 <nodeList>
 <startNode id="0" />
 <node id="1" cost="285" parallelism="1" />
 <node id="2" cost="360" parallelism="-1" />
 <endNode id="3" />
 </nodeList>

 <cf>
 <arrow id="cfa01" src="0" dest="1" />
 <arrow id="cfa12" src="1" dest="2" />
 <arrow id="cfa22" src="2" dest="2" />
 <arrow id="cfa23" src="2" dest="3" />
 </cf>

 <dd>
 <arrow id="dda10" src="1" dest="0" />
 <arrow id="dda21" src="2" dest="1" />
 <arrow id="dda22" src="2" dest="2" />
 <arrow id="dda32" src="3" dest="2" />
 </dd>
</taskgraph>
 Figure 6. XML representation for the task graph in Figure 3.

for all input data items do
 (1) fetch one input data v
 for all distinct items appeared do
 (2) create or update a border point for v
 (3) update summary
 (4) update frequency
 (5) delete obsolete border points
 end for
 (6) update pruning threshold
end for

Figure 7. A pseudo-code of top-k (min summary).

5

This tendency of the computational cost implies that the execution
in a pipeline is really effective for min summary algorithm. In fact,
the computational cost of node 6 is almost equivarent to the total
cost of the single path of nodes 1-5, and node 6 is independent
from these nodes. Therefore, node 1-5, and node 6 are capable of
running in a pipeline, and consumes almost the same
computational time. That is, there is a chance to hide almost half
of the execution time of the process time of one data unit, and
improve the throughput by pipelining.

We also extracted a task graph of Hoeffding tree algorithm from
MOA implementation. Figure 9 is the pseudo-code of the
algorithm, and Figure 10 represents the extracted data dependency
graph. The control graph is omitted for the page limitation. We
skip the detailed discussion for the page limitation again, however,
we can observe similar tendency of the application as we saw in
the generic model in Section 2, Naïve Bayes in Section 3, and min
summary algorithm in this section. One major difference from the
previous cases is that node 1 depends on node 9, therefore, the
effect of the pipelining is not huge compared to the other cases.

Here, we need to discuss computational costs in the control flow
graph. This version of the task graph represents a computational
cost as the average of actual executions. This is in a sort of the
simplified model as the computational cost of stream mining
algorithms easily varies depending on the input data. We need to

develop the better methodology for the computational model,
however, we reserve this issue as a future work.

Figure 8. The data dependency graph (a), and the control
flow graph for top-k (min summary).

1

22 2

3 3 3

4 4 4

5 5 5

6

...

...

...

...

1

22 2

3 3 3

4 4 4

5 5 5

6

...

...

...

...

424

424

1355

2322

1143

694

6376

6376

694 694

694 694 694

1355 1355

1355 1355 1355

2322 2322

2322

1143 1143

1143

2322 2322

1143 1143

1

22 2

3 3 3

4 4 4

5 5 5

6

...

...

...

...

1

22 2

3 3 3

4 4 4

5 5 5

6

...

...

...

...

(a) (b)

Let HT be a tree with a single leaf (the root)
for all training data do

(1) Fetch one training data v, and sort v into leaf l
using HT

 for all attributes for v do
 (2) Update sufficient statistics in l
 end for
 (3) Increment nl, the number of examples seen at l
 if n1 mod nmin = 0 and data seen at l not all of same
 class then
 (4) Compute Gl(Xi) for each attribute
 (5) Let Xa be attribute with highest Gl
 (6) Let Xb be attribute with second-highest Gl
 (7) Compute Hoeffding bound
 if Xa != Xb and (Gl(Xa) − Gl(Xb) > ε or ε < τ)	
 then
 (8) Replace l with an internal node that splits on Xa
 for all branches of the split do
 (9) Add a new leaf with initialized sufficient
 statistics
 end for
 end if
 end if
end for

Figure 9. A pseudo-code of a training tree of Hoeffding
tree algorithm.

1

22 2

3

4 4 4

5

6

...

...

7

8

9 9 9...

1

22 2

3

4 4 4

5

6

...

...

7

8

9 9 9...

Figure 10. A data dependency graph for Hoeffding tree
algorithm.

6

5. RELATED WORK
There are several studies on task graph generation, mainly
focusing on random task generation. A few projects reported task
graphs generated based on the actual well-known applications,
however, those applications are from numerical applications such
as Fast Fourier Transformation, or applications familiar to HPC
community for a long time.

Task Graphs for Free (TGFF) provides pseudo-random task
graphs [5,11]. TGFF allows users to control several parameters,
however, generates only directed acyclic graphs (DAGs) with one
or multiple start nodes, and one or multiple sink nodes. Each task
graph is assigned a period, and a deadline based on the length of
the maximum path in the graph, and the user specified parameter.

GGen is another random task graph generator proposed by
Cordeiro et al [4]. GGen generates random task graphs according
to the well-known random task generation algorithms. In addition
to the graph generator, GGen provides a graph analyzer, which
characterizes randomly generated task graphs based on the longest
path, the distribution of the out-degree, and the number of edges.

Task graph generator provides both random task graphs, such as
Fast Fourier Transformation, Gaussian Elimination, and LU
Decomposition [12]. The random task graph generator supports
variety of network topologies, including star, and ring. Task graph
generator also provides scheduling algorithms as well.

Tobita et al. proposed Standard Task Graph Set (STG), evaluated
several scheduling algorithms, and published the optimal
schedules for STG [10,13]. STG is a set of random task graphs,
which are ready to download. Tobita et al. also provides task
graphs from numerical applications such as a robot control
programs, a sparse matrix solver, and SPEC fpppp.
Besides the studies on task graph generation, Cordeiro et al.
pointed out that randomly generated task graphs can create biased
results, and that the biased results can mislead the analysis of
scheduling algorithms[4]. According to the experiments by
Cordeiro et al., a same scheduling algorithm man obtain a speedup
of 3.5 times only by changing the graph generation algorithm for
the performance evaluation.

Random task graphs contributes positively for evaluation of
scheduling algorithms, however, do not perfectly cover all the
domains of parallel and distributed applications as Cordeiro et al.
figured out in their work. Especially for stream mining
applications, which focus on in this paper, the characteristic of the
application behaviors are quite different from the characteristic of
the applications familiar to the conventional HPC community as
we discussed in Section 2. Task graphs generated from the actual
stream mining applications have profound significance in the
better optimization of the applications in parallel computing
environment for wider area of applications.

6. CONCLUSION
This paper proposed task graphs for stream mining algorithms.
This is the first clear proposal of task graphs modeling stream
mining algorithms, and the task graphs are extracted from the
actual implementations of the popular existing methodologies.
Task graphs proposed in this paper play an important role as the
benchmarking tool to evaluate scheduling algorithms, or load
balancing algorithm, which is indispensable for the research of
scheduling, or load balancing algorithms truly effective for stream
mining algorithms. In fact, in this paper, the proposed task graphs
represent apparently different characteristics, and dependencies

compared to the data intensive applications in HPC, and this fact
points out we need to consider scheduling methodologies focusing
on stream mining algorithms. For the better set of task graphs, we
are working on more stream mining algorithms.

7. REFERENCES
[1] Akioka, S., Muraoka, Y., Yamana, H., Data access pattern

analysis on stream mining algorithms for cloud computation.
In Proceedings of the 2011 International Conference on
Parallel and Distributed Processing (PDPTA2011) (Las
Vegas, USA, July 18-21, 2011), 2011, 36-42.

[2] Bifet, A., Holmes, G., Pfahringer, B., Karen, P., Kremer, H.,
Jansen, T., Seidl, T., MOA: Massive online analysis, a
framework for stream classification and clustering. Journal
of Machine Learning Research (JMLR), Workshop and
Conference Proceedings Vol. 11: Workshop on Application
of Pattern Analysis, 2010.

[3] Calders, T., Dexters, N., Goethals, B., Mining Frequent
Itemsets in a Stream. In Proceedings of 2007 IEEE
International Conference on Data Mining (ICDM2007)
(Omaha, USA, October 28-31, 2007), 2007.

[4] Corderiro, D., Mounie, G., Perarnau S., Trystram, D.,
Vincent, J. M., Wagner, F., Random graph generation for
scheduling simulations. In Proceedings of the 3rd
International ICST Conference on Simulation Tools and
Techniques (SIMUTools’10) (Torremolinos, Spain, March
15-19, 2010), 2010.

[5] Dick, R. P., Rhodes D. L., Wolf, W., TGFF: Task graphs for
free. In Proceedings of International Workshop on
Hardware/Software Codesign (Seattle, USA, March 15-18,
1998), 1998, 97-101.

[6] Domingos, P., Hulten, G., Mining High-Speed Data Streams.
In Proceedings of The 6th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD’00) (Boston,
USA, August 20-23, 2000), 2000, 71-80.

[7] Lam, H. G., Calders, T., Mining top-k frequent items in a
data stream with flexible sliding window. In Proceedings of
The 16th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD’10) (Washington DC,
USA, July 25-28, 2010), 2010.

[8] McCallum A., Nigram, K., A comparison of event models
for Naïve Bayes text classification. In Proceedings of AAAI-
98 Workshop on ‘Learning for Text Categorization’
(Madison, USA, July 26-27, 1998), 1998.

[9] Raicu, I., Foster, I. T., Zhao, Y., Little, P., Moretti, C. M.,
Chaudhary, A., Thain, D. The quest for scalable support of
data intensive workloads in distributed systems. In
Proceedings of the 18th ACM International Symposium on
High Performance Distributed Computing (HPDC2009)
(Munich, Germany, June 11-13, 2009), 2009, 207-216.

[10] STG, Standard task graph set.
http://www.kasahara.elec.waseda.ac.jp/schedule/index.html.

[11] TGFF. http://ziyang.eecs.umich.edu/~dickrp/tgff/.

[12] TGG, Task graph generator.
http://taskgraphgen.sourceforge.net/.

[13] Tobita T., Kasahara, H., A standard task graph set for fair
evaluation of multiprocessor scheduling algorithms. Journal
of Scheduling, Volume 5, Issue 5, 2002, 379-394.

