
Safe­Zones for Monitoring Distributed Streams

Daniel Keren
Haifa University

Guy Sagy
Technion

Amir Abboud
Technion

David Ben­David
Technion

Izchak Sharfman
Technion

Assaf Schuster
Technion

ABSTRACT

In many emerging applications, the data which has to be
monitored is of very high volume, dynamic, and distributed,
making it infeasible to collect the distinct data streams to
a central node and process them there. Often, the monitor-
ing problem consists of determining whether the value of a
global function, which depends on the union of all streams,
crossed a certain threshold. A great deal of effort is di-
rected at reducing communication overhead by transforming
the monitoring of the global function to the testing of local
constraints, checked independently at the nodes. Recently,
geometric monitoring (GM) proved to be very useful for
constructing such local constraints for general (non-linear,
non-monotonic) functions. Alas, in all current variants of
geometric monitoring, the constraints at all nodes share an
identical structure and are, thus, unsuitable for handling
heterogeneous streams, which obey different distributions
at the distinct nodes. To remedy this, we propose a general
approach for geometric monitoring of heterogeneous streams
(HGM), which defines constraints tailored to fit the distinct
data distributions at the nodes. While optimally selecting
the constraints is an NP-hard problem, we provide a prac-
tical solution, which seeks to reduce running time by hier-
archically clustering nodes with similar data distributions
and then solving more, but simpler, optimization problems.
Experiments are provided to support the validity of the pro-
posed approach.

1. INTRODUCTION
For a few years now, processing and monitoring of dis-

tributed streams has been emerging as a major effort in
data management, with dedicated systems being developed
for the task [1]. This paper deals with threshold queries
over distributed streams, which are defined as “retrieve all
items x for which f(x) ≤ T”, where f() is a scoring func-
tion and T some threshold. Such queries are the building
block for many algorithms, such as top-k queries, anomaly
detection, and system monitoring. They are also applied in

important data processing and data mining tools, including
feature selection, decision tree construction, association rule
mining, and computing correlations. Another important ap-
plication is data classification, which is often also achieved
by thresholding a function, such as the output of a neural
net or support vector machine.

Geometric monitoring (GM) [2, 3, 4, 5] has been recently
proposed for handling such threshold queries over distributed
data. While a more detailed presentation is deferred until
Section 2, we note that GM can be applied to the impor-
tant case of scoring functions f() evaluated at the average of
dynamic data vectors v1(t), . . . , vn(t), maintained at n dis-
tributed nodes. Here, vi(t) is an m-dimensional data vec-
tor, often denoted as local vector, at the i-th node Ni at
time t (often t will be suppressed). In a nutshell, each node
monitors a convex subset, often referred to as the node’s
safe-zone, of the domain of these data vectors, as opposed
to their range. What is guaranteed in GM is that the global
function f() will not cross its specified threshold as long as
all data vectors lie within their corresponding safe-zones.
Thus, each node remains silent as long as its data vector
lies within its safe zone. Otherwise, in case of a safe-zone
breach, communication needs to take place in order to check
if the function has truly crossed the given threshold.

The geometric technique can support any scoring function
f(), evaluated at the average of the dynamic data vectors.
Thus, f() is not assumed to obey some simple property (e.g.,
linearity or monotonicity). To add to the generality of the
technique [3, 6], the vi vector can contain not only the raw
data, but any function (i.e., norm, logarithm, power, vari-
ance, etc) computed over the data of Ni. Thus, GM allows
the monitoring of functions that are far more complex and
general than simple aggregates.

A crucial component for reducing the communication re-
quired by the geometric method is the design of the safe-zone
in each node. Nodes remain silent as long as their local vec-
tors remain within their safe-zone. Thus, good safe-zones
increase the probability that nodes will remain silent, while
also guaranteeing correctness: a global threshold violation
cannot occur unless at least one node’s local vector lies out-
side the corresponding node’s safe-zone.

However, prior work on geometric monitoring has failed to
take into account the nature of heterogeneous data streams,
in which the data distribution of the local vectors at differ-
ent nodes may vary significantly. This has led to a uniform
treatment of all nodes, independently of their characteris-
tics, and the assignment of identical safe-zones (i.e., of the
same shape and size) to all nodes.
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As we demonstrate in this paper, designing safe-zones that
take into account the data distribution of nodes can lead
to efficiently monitoring threshold queries at a fraction (re-
quiring an order of magnitude fewer messages) of what prior
techniques achieve. However, designing different safe-zones
for the nodes is by no means an easy task. In fact, the prob-
lem is NP-hard (proof omitted due to lack of space). We
thus propose a more practical solution that hierarchically
clusters nodes, based on the similarity of their data distri-
butions, and then seeks to solve many small (and easier)
optimization problems.
The contributions of this work are:

• We formulate a far more general safe-zone assignment
problem than those which were treated so far. Instead of
constructing one safe-zone which is common to all nodes,
we seek to fit each node with a safe-zone that suits its
data distribution.

• We present a practical solution, which uses hierarchical
clustering of the nodes to construct the safe-zones, while
applying various geometric and computational tools.

• The resulting safe-zones were tested on real data, where
we demonstrate that: (i) the hierarchical clustering ap-
proach dramatically reduces the running time of the safe-
zone assignment process, (ii) our techniques may result
in one order of magnitude (or even larger) improvements
in communication over previous geometric monitoring
methods, even for a small number of nodes.

Outline. We survey prior work on the geometric approach
in Section 2. In Section 3 we formulate our optimization
problem, which involves the design of safe-zones at the nodes.
Section 4 presents our algorithmic framework. Experiments
are resented in Section 5. Lastly, conclusions are offered.
Hereafter we denote our proposed method for geometric

monitoring of heterogeneous streams as HGM, in contrast
to prior work on geometric monitoring that is denoted GM.

2. RELATED WORK
Space limitations allow us to only survey previous work

on geometric monitoring (GM). We now describe some basic
ideas and concepts of the GM technique, which was intro-
duced and applied to monitor distributed data streams in [2,
7].
As described in Section 1, each node Ni maintains a local

vector vi, while the monitoring function f() is evaluated
at the average v of the vi vectors. Before the monitoring
process, each node Ni is assigned a subset of the data space,
denoted as Si – its safe-zone – such that, as long as the local
vectors are inside their respective safe-zones, it is guaranteed
that the global function’s value did not cross the threshold;
thus the node remains silent as long as its local vector vi is
inside Si. If vi /∈ Si (local violation), a violation recovery
(“balancing”) algorithm [2] can be applied.
For details and scope of GM see [5] and the survey in [8].

Recently, GM was successfully applied to detecting outliers
in sensor networks [3], extended to prediction-based moni-
toring [4], and applied to other monitoring problems [9, 10,
11].
Basic definitions relating to GM. A basic construct is

the admissible region, defined by A , {v|f(v) ≤ T}. Since
the value we wish to monitor is f

(

v1+...+vn
n

)

, any viable
assignment of safe-zones must satisfy

n
∧

i=1

(vi ∈ Si) → v = (v1 + ... + vn)/n ∈ A. This guarantees

that as long as all nodes are silent, the average of the vi
vectors remains in A and, therefore, the function has not
crossed the threshold. The question is, of course, how to
determine the safe-zone Si of each node Ni; in a sense to be
made precise in Section 3, it is desirable for the safe-zones
to be as large as possible.

In [5] it was proved that all existing variants of GM share
the following property: each of them defines some convex
subset C of A (different methods induce different C’s), such
that each safe-zone Si is a translation of C – that is, there
exist vectors ui (1 ≤ i ≤ n) such that Si = {ui + c|c ∈ C}

and

n
∑

i=1

ui = 0. This observation unifies the distinct variants

of GM, and also allows to easily see why
n
∧

i=1

(vi ∈ Si) implies

that v ∈ C ⊆ A – it follows immediately from the fact that
convex subsets are closed under taking averages and from
the fact that the ui vectors sum to zero.

Here we assume that C is given; it can be provided by
any of the abovementioned methods (obviously, if A itself
is convex, we just choose C = A). We propose to extend
previous work in a more general direction. Our goal here is
to handle a basic problem which haunts all the existing GM
variants: the shapes of the safe-zones at different nodes are
identical. Thus, if the data is heterogeneous across the dis-
tinct streams (an example is depicted in Figure 1), meaning
that the data at different nodes obeys different distributions,
existing GM algorithms will perform poorly, causing many
local violations that do not correspond to global threshold
crossing (“false alarms”).

C

1
N 2

N

1
S

2
S

Figure 1: Why GM may fail for heterogeneous
streams. Here C is equal to a square, and the data
distribution at the two nodes is schematically rep-
resented by samples. In GM, the safe-zones at both
nodes are restricted to be a translation of C, and
thus cannot cover the data; HGM will allow much
better safe-zones (see Section 3, and Figure 2).

In this paper, we present a more general approach that al-
lows to assign differently shaped safe-zones to different nodes.
Our approach requires tackling a difficult optimization prob-
lem, for which practical solutions need to be devised.

3. SAFE­ZONE DESIGN AS AN OPTIMIZA­

TION PROBLEM
We now seek to formulate an optimization problem, whose

solution defines the safe-zones at all nodes. The safe-zones
should satisfy the following properties:
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Correctness: If Si denotes the safe-zone at node Ni, we
must have:
n
∧

i=1

(vi ∈ Si) → (v1 + ... + vn)/n ∈ C. This ensures that

every threshold crossing by f(v) will result in a safe-zone
breach in at least one node.
Expansiveness: Every safe-zone breach (local violation)
triggers communication, so the safe-zones should be as “large”
as possible. We measure the “size” of a safe-zone Si by its
probability volume, defined as

∫

Si

pi(v)dv where pi is the pdf

of the data at node Ni. Probabilistic models have proved
useful in predicting missing and future stream values in var-
ious monitoring and processing tasks [12, 13, 14], including
previous geometric methods [5], and their incorporation in
our algorithms proved useful in monitoring real data (Sec-
tion 5). To handle these two requirements, we formulate a
constrained optimization problem as follows:

Given: (1) probability distribution functions p1, . . . , pn at n nodes
(2) A convex subset C of the admissible region A

Maximize
∫

S1

p1dv1 · ... ·
∫

Sn

pndvn (expansiveness)

Subject to S1⊕···⊕Sn

n
⊆ C (correctness)

where S1⊕···⊕Sn

n
=

{

v1+···+vn
n

|v1 ∈ S1, . . . , vn ∈ Sn

}

, or the
Minkowski sum [15] of S1, . . . , Sn, in which every element
is divided by n (the Minkowski average). Introducing the
Minkowski average is necessary in order to guarantee cor-
rectness, since vi must be able to range over the entire safe-
zone Si. Note that instead of using the constraint S1⊕...⊕Sn

n
⊆

A, we use S1⊕...⊕Sn

n
⊆ C. This preserves correctness, since

C ⊆ A. The reason we chose to use C is that typically
it’s much easier to check the constraint for the Minkowski
average containment in a convex set; this is discussed in
Section 4.4.
To derive the target function

∫

S1

p1dv1 · ... ·
∫

Sn

pndvn, which

estimates the probability that the local vectors of all nodes
will remain in their safe-zones, we assumed that the data is
not correlated between nodes (hence we multiply the indi-
vidual probabilities), as it was the case in the experiments
in Section 5 (see also [13] and the discussion therein). If
the data is correlated, the algorithm is essentially the same,
with the expression for the probability that data at some
node breaches its safe-zone modified accordingly.
Note that correctness and expansiveness have to reach a

“compromise”: figuratively speaking, the correctness con-
straint restricts the size of the safe-zones, while the proba-
bility volume increases as the safe-zones become larger. This
trade-off is central in the solution of the optimization prob-
lem.
The advantage of the resulting safe-zones is demonstrated

by a schematic example (Figure 2), in which C and the
stream pdfs are identical to those in Figure 1. In HGM, how-
ever, the individual safe-zones can be shaped very differently
from C, allowing a much better coverage of the pdfs, while
adhering to the correctness constraint. Intuitively speaking,
nodes can trade “geometric slack” between them; here S1

trades “vertical slack” for “horizontal slack”.

4. CONSTRUCTING THE SAFE­ZONES

1
N

2
N1

S

2
S

        

2

1
S 2

S

C

Figure 2: Schematic example of HGM safe-zone as-
signment for two nodes, which also demonstrates the
advantage over previous work. The convex set C
is a square, and the pdf at the left (right) node is
uniform over a rectangle elongated along the hor-
izontal (vertical) direction. HGM can handle this
case by assigning the two rectangles S1, S2 as safe-
zones, which satisfies the correctness requirement
(since their Minkowski average is equal to C). GM
(Figure 1) will perform poorly in this case.

We now briefly describe the overall operation of the dis-
tributed nodes. The computation of the safe-zones is ini-
tially performed by a coordinator node, using a process
described in this section. This process is performed infre-
quently, since there is no need to change the safe-zones of
a node unless a global threshold violation occurs. As de-
scribed in Section 3, the input to the algorithm is: (1) The
probability distribution functions p1, . . . , pn at the n nodes.
These pdfs can be of any kind (e.g., Gaussian [7], random
walk [16], uniform, etc). (2) A convex subset C of the ad-
missible region A.

Given this input, the coordinator applies the algorithm
described in Sections 4.1 to 4.5 to compute S1...Sn which
solve the optimization problem defined in Section 3. Then,
node Nk is assigned Sk.

4.1 Solving the Optimization Problem
In order to efficiently solve our optimization problem, we

need to answer several questions:
• What kinds of shapes to consider for candidate safe-

zones? This is discussed in Section 4.2.
• The target function is defined as the product of integrals

of the respective pdfs on the candidate safe-zones. Given
candidate safe-zones, how do we efficiently compute the
target function? This is discussed in Section 4.3.

• Given candidate safe-zones, how do we efficiently test if
their Minkowski average lies in C? This is discussed in
Section 4.4.

• As we will point out, the number of variables to optimize
over is very large, with this number increasing with the
number of nodes. It is well-known that the computational
cost of general optimization routines increases at a super-
linear rate with the number of variables. To remedy this
issue, we propose in Section 4.5 a hierarchical clustering
approach, which uses a divide-and-conquer algorithm to
reduce the problem to that of recursively computing safe-
zones for small numbers of nodes.
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4.2 Shape of Safe­Zones to Consider
The first step in solving an optimization problem is de-

termining the parameters to optimize over. Here, the space
of parameters is huge – all subsets of the Euclidean space
are candidates for safe-zones. For one-dimensional (scalar)
data, intervals provide a reasonable choice for safe-zones,
but for higher dimensions no clear candidate exists.
To achieve a practical solution, we choose the safe-zones

from a parametric family of shapes, denoted by S. This fam-
ily of shapes should satisfy the following requirements:
• It should be broad enough so that its members can rea-

sonably approximate every subset which is a viable can-
didate for a safe-zone.

• The members of S should have a relatively simple shape.
In practice, this means that they are polytopes with a
restricted number of vertices, or can be defined by a small
number of implicit equations (e.g., polynomials [17]).

• It should not be too difficult to compute the integral of
the various pdfs over members of S (Section 4.3).

• It should not be too difficult to compute, or bound, the
Minkowski average of members of S (Section 4.4).

The last two conditions allow efficient optimization. If com-
puting the integrals of the pdf or the Minkowski average are
time consuming, the optimization process may be lengthy.
We thus considered and applied in our algorithms various
polytopes (such as triangles, boxes, or more general poly-
tope) as safe-zones; this yielded good results in [5].
The choices of S applied here have provided good results

in terms of safe-zone simplicity and effectiveness. However,
the challenge of choosing the best shape for arbitrary func-
tions and data distributions is quite formidable, and we plan
to continue studying it in the future.

4.3 Computing the Target Function
The target function is defined as the product of integrals

of the respective pdfs on the candidate safe-zones. Typi-
cally, data is provided as discrete samples. The integral can
be computed by first approximating the discrete samples by
a continuous pdf, and then integrating it over the safe-zone.
We used this approach, fitting a GMM (Gaussian Mixture
Model) to the discrete data and integrating it over the safe-
zones, which were defined as polytopes. To accelerate the
computation of the integral, we used Green’s Theorem to re-
duce a double integral to a one-dimensional integral over the
polygon’s boundary, for the two-dimensional data sets in the
experiments. For higher dimensions, the integral can also be
reduced to integrals of lower dimensions, or computed using
Monte-Carlo methods.

4.4 Checking the Constraints
A simple method to test the Minkowski sum constraint

relies on the following result [18]:

Lemma 1. If P and Q are convex polytopes with vertices
{Pi}, {Qj}, then P ⊕Q is equal to the convex hull of the set
{Pi +Qj}.

Now, assume we wish to test whether the Minkowski average
of P and Q is contained in C. Since C is convex, it contains
the convex hull of every of its subsets; hence it suffices to
test whether the points (Pi + Qj)/2 are in C, for all i, j.
If not all points are inside C, then the constraint violation
can be measured by the maximal distance of a point (Pi +
Qj)/2 from C’s boundary. The method easily generalizes to

more polytopes: for three polytopes it is required to test the
average of all triplets of vertices, etc.

4.5 Hierarchical Clustering
While the algorithms presented in Sections 4.3-4.4 reduce

the running time for computing the safe-zones, our opti-
mization problem still poses a formidable difficulty. For ex-
ample, fitting octagonal safe-zones [5] to 100 nodes with
two-dimensional data requires to optimize over 1,600 vari-
ables (800 vertices in total, each having two coordinates),
which is quite high. To alleviate this problem, we first orga-
nize the nodes in a hierarchical structure, which allows us to
then solve the problem recursively (top-down) by reducing
it to sub-problems, each containing a much smaller number
of nodes.

We first perform a bottom-up hierarchical clustering of
the nodes. To achieve this, a distance measure between
nodes needs to be defined. Since a node is represented by
its data vectors, a distance measure should be defined be-
tween subsets of the Euclidean space. We apply the method
in [19], which defines the distance between sets by the L2

distance between their moment vectors (vectors whose co-
ordinates are low-order moments of the set). The moments
have to be computed only once, in the initialization stage.
The leaves of the cluster tree are individual nodes, and the
inner vertices can be thought of as “super nodes”, each con-
taining the union (Minkowski average) of the data of nodes
in the respective sub-tree. Since the moments of a union of
sets are simply the sum of the individual sets’ moments, the
computation of the moment for the inner nodes is very fast.

After the hierarchical clustering is completed, the safe-
zones are assigned top-down: first, the children of the root
are assigned safe-zones under the constraint that their
Minkowski average is contained in C. In the next level,
the grandchildren of the root are assigned safe-zones under
the constraint that their Minkowski average is contained in
their parent nodes’ safe-zones, etc. The leaves are either
individual nodes, or clusters which are uniform enough and
can all be assigned safe-zones with identical shapes.

5. EXPERIMENTS
HGMwas implemented and compared with the GMmethod,

as described in [5], which is the most recent variant of pre-
vious work on geometric monitoring that we know of. We
are not aware of other algorithms which can be applied to
monitor the functions treated here (the ratio queries in [20]
deal with accumulative ratios and not instantaneous ones as
in our experiments).

5.1 Data, Setup and Monitored Functions

5.1.1 Data and Monitored Functions

Our data consists of air pollutant measurements taken
from “AirBase – The European Air Quality Database” [21],
measured in micrograms per cubic meter. Nodes correspond
to sensors at different geographical locations. The data at
different nodes greatly varies in size and shape and is ir-
regular as a function of time. The monitored functions
were chosen due to their practical importance, and also as
they are non-linear and non-monotonic and, thus, cannot
be handled by most existing methods. In Section 5.2 re-
sults are presented for monitoring the ratio of NO to NO2,
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which is known to be an important indicator in air qual-
ity analysis [22]. An example of monitoring a quadratic
function in three variables is also presented (Section 5.3);
quadratic functions are important in numerous applications
(e.g., the variance is a quadratic function in the variables,
and a normal distribution is the exponent of a quadratic
function, hence thresholding it is equivalent to thresholding
the quadratic).

5.1.2 Choosing the Family of Safe­Zones

To solve the optimization problem, it is necessary to define
a parametric family of shapes S from which the safe-zones
will be chosen. Section 4.2 discusses the properties this fam-
ily should satisfy. In [5], the suitability of some families of
polytopes is studied for the simpler, but related, problem of
finding a safe-zone common to all nodes. The motivations
for choosing S here were:
• Ratio queries (Section 5.2) – the triangular safe-zones

(Figure 3) have the same structure, but not size or loca-
tion, as C, and are very simple to define and apply.

Figure 3: Triangular safe-zones used for ratio mon-
itoring.

• Quadratic function (Section 5.3) – here we allowed gen-
eral polytopes, and tested the results for increasing num-
bers of vertices. The model selected was with 12 vertices,
in which the target function to optimize was “saturated”
(i.e. adding more vertices increased the value by less than
0.1%).

5.1.3 Optimization Parameters and Tools

The triangular safe-zones (Section 5.2) have two degrees of
freedom each (Mi and βi, see Figure 3), hence for n nodes
we have 2n parameters to optimize over. The safe-zones
in Section 5.3 require 36 parameters each. In all cases we
used the Matlab routine fmincon to solve the optimization
problem [23]. To compute the integral of the pdf on the
safe-zones, data was approximated by a Gaussian Mixture
Model (GMM), using a Matlab routine [24].

5.2 Ratio Queries
This set of experiments concerned monitoring the ratio

between two pollutants, NO and NO2, measured in distinct
sensors. Each of the n nodes holds a vector (xi, yi) (the two

concentrations), and the monitored function is
∑

yi∑
xi

(in [20]

ratio is monitored but over aggregates over time, while here
we monitor the instantaneous ratio for the current readings).
An alert must be sent whenever this function is above a
threshold T (taken as 4 in the experiments), and/or when
the NO2 concentration is above 250. The admissible region
A is a triangle, therefore convex, so C = A. The safe-zones
tested were triangles of the form depicted in Figure 3, a
choice motivated by the shape of C. The half-planes method
(Section 4.4) was used to test the constraints. An example

with four nodes, which demonstrates the advantage of al-
lowing different safe-zones at the distinct nodes, is depicted
in Figure 4.

Figure 4: Example of safe-zones with four nodes.
The convex set C is the triangle outlined in black,
safe-zones are outlined in green. Nodes with more
compact distributions are assigned smaller safe-
zones, and nodes with high values of the monitored
function (NO/NO2 ratio) are assigned safe-zones
which are translated to the left in order to cover
more data. This is especially evident in the top right
node, in which the safe-zone is shifted to the left so
it can cover almost all the data points. In order
to satisfy the Minkowski sum constraint, the safe-
zone of top left node is shifted to the right, which in
that node hardly sacrifices any data points; also, the
larger safe-zones are balanced by the smaller ones.
Note that HGM allows safe-zones which are larger

than the admissible region A, as opposed to previous
work, in which the safe-zones are subsets of A.

Improvement Over Previous GM Work. We com-
pared HGM with GM in terms of the number of produced
local violations. In Figure 5, the number of safe-zone viola-
tions is compared for various numbers of nodes. HGM re-
sults in significantly fewer local violations, even for a small
number of nodes. As the number of nodes increases, the
benefits of HGM over GM increase. For a modest network
size of 10 nodes, HGM requires less than an order of mag-
nitude fewer messages than GM.

5.3 Monitoring a Quadratic Function
Another example consists of monitoring a quadratic func-

tion with more general polyhedral safe-zones in three vari-
ables (Figure 6). The data consists of measurements of three
pollutants (NO, NO2, SO2), and the safe-zones are polyhe-
dra with 12 vertices. The admissible region A is the ellipsoid
depicted in pink; since it is convex, C = A. As the extent of
the data is far larger than A, the safe-zones surround the re-
gions in which the data is denser. Here we did not compare
to previous methods.

6. CONCLUSIONS AND FUTURE WORK
An approach for minimizing communication while moni-

toring threshold queries over heterogeneous distributed streams
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Figure 5: Comparison of our HGM (green) to
GM [5] (blue) in terms of number of violations, up
to 10 nodes.

Figure 6: Monitoring a quadratic function. The set
C is the pink ellipsoid, the safe-zones are polyhe-
dra with 12 vertices each (in pale blue), and their
Minkowski average is in green.

was presented. It is formulated as an optimization problem
of a geometric and probabilistic flavor, whose solution as-
signs each node a “safe-zone” with the property that a node
may remain silent as long as its data vector is in its safe-zone.
While the problem is known to be difficult, a practical so-
lution using a hierarchical clustering algorithm is presented
and implemented for two and three dimensional data, allow-
ing to achieve substantial improvement over previous work,
while using rather simple safe-zones which also reduce the
computational effort at the nodes.
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