
Dynamic Partitioning of Big Hierarchical Graphs∗

Vasilis Spyropoulos
Athens University of Economics and Business

76 Patission Street
Athens, Greece

vasspyrop@aueb.gr

Yannis Kotidis
Athens University of Economics and Business

76 Patission Street
Athens, Greece

kotidis@aueb.gr

ABSTRACT
Hierarchical graphs are multigraphs, which have as vertices the leaf
nodes of a tree that lays out a hierarchy, and as edges the interac-
tions between the entities represented by these nodes. In this paper
we deal with the management of records that are the edges of such
a graph by describing a model that fits well in a number of appli-
cations, many of which deal with very big volumes of streaming
distributed data that have to be stored in a way so as their future re-
trieval and analysis will be efficient. We formally define a partition-
ing schema that respects the hierarchy tree, and apply these ideas
by using well known open source big data tools such as Apache
Hadoop and HBase on a small cluster. We built a framework on
which we examine some basic policies for the partitioning of such
graphs and draw interesting conclusions regarding the quality of the
partitions produced and their effectiveness in processing analytical
queries drawn from the imposed hierarchy.

1. INTRODUCTION
There are numerous applications such as management and visu-

alization of Telecommunications data [1], Web log mining [2] or
Internet traffic analysis [3], in which data records can be described
as edges between vertices of a hierarchical graph, i.e a directed
multigraph whose vertices are also the leaf nodes in a hierarchy
tree. As an example, Call Detail Records (CDRs) can be naturally
depicted via a massive graph structure in which nodes represent
customers’ phone numbers and edges between them their calls. At
the same time, the nodes of this graph are the leaves of a tree that
indicates their location and superimposes a geographical hierarchy
over this data [4].

You can see such an example in Figure 1 which presents a small
part of the hierarchy of locations in Greece. In this Figure, At-
tiki and Messinia are states of Greece, while Athens, Piraeus and
Kalamata are cities in these states. The unlabeled nodes represent

∗This research has been co-financed by the European Union (Euro-
pean Social Fund ESF) and Greek national funds through the Op-
erational Program ”Education and Lifelong Learning” of the Na-
tional Strategic Reference Framework (NSRF) - Research Funding
Program: RECOST

Greece

Attiki Messinia

Athens Piraeus Kalamata

Figure 1: Example of a hierarchical graph - the graph consists
of the unlabeled nodes, which are also the leaves of a hierarchy
tree, and the edges/interactions between them

subscribers of a telephony network. Then, each call serviced by the
telephony network instantiates a new directed edge in the graph, be-
tween the respective vertices (caller and callee) located at the leaves
of the hierarchy tree, as is shown in the Figure. This hierarchy is
exploited in order to help pose queries that seek to retrieve cer-
tain records for further analysis. For instance in order to calculate
statistics on the out-of-state calls originating in Athens, this inten-
tion may be described by a query edge between Athens and Greece
in the tree. Similarly, query edge (Attiki, Attiki) denotes the set of
calls originating and terminating within this state. The aforemen-
tioned query edges are shown in Figure 1 (dashed lines). Another
example where similar hierarchical graphs exist, is social networks
where users are organized in groups according to their location or
other characteristics such as age or interests and we need to record
the interactions between them. Users (e.g. analysts) of such data
often need to answer queries regarding interactions or distributions
of records between hierarchy groups not necessarily belonging to
the same level of the hierarchy.

In the aforementioned applications, this kind of graphs can grow
to enormous size. For instance a large telecom provider may ser-
vice hundreds of millions of calls per day, each triggering a new
edge in the graph. Moreover, this data is distributed by nature
as it is being streamed from distant locations (e.g. call centers,
web hosts, ip routers). Thus, we need solutions that can cope with
the volume, but also with the streaming and distributed nature that
characterize this kind of data.

In our work we address these challenges by moving the storage
and processing of these graphs to the cloud. We propose a sys-
tem that uses the distributed data store HBase [5] running on the



Hadoop distributed file system [6], but also MapReduce [7] tech-
niques so as to handle a continuous stream of updates efficiently.
Our system leverages the available degree of hardware parallelism
by devising a dynamic partitioning scheme over the streamed edges
of the hierarchical graph. Our techniques aim at generating parti-
tions that correspond to clusters of graph edges, which are naturally
mapped to collections of nodes in the hierarchy tree, while respect-
ing the distribution of the streamed records. In this way, analysis of
the records based on the superimposed hierarchy can be performed
in an efficient manner. Our contributions are:

• We revisit the problem of managing massive hierarchical
graphs that are streamed by many applications of interest.
Our techniques utilize emerging computational and data man-
agement platforms for manipulating large, dynamic and dis-
tributed collections of records in a cluster of machines. Avail-
able parallelism is exploited via a dynamic partitioning
scheme we propose for the streamed records.

• We formally define the space of choices for partitioning the
streamed graph, while respecting the hierarchy tree that is
superimposed over its nodes. We then present a number of
interesting partitioning policies, and describe the details of
the system we built for implementing our framework while
utilizing off-the-shelf tools.

• We present an experimental evaluation of our system using a
small cluster of machines. Our results demonstrate the effi-
ciency of our system in managing massive graphs scaling to
millions of edges. We also provide a comparison among the
partitioning policies we implemented based on the results of
a number of experiments that we conducted.

The rest of the paper is organized as follows. In Section 2 we dis-
cuss related work. In Section 3 we formally introduce our frame-
work, discuss the type of graph data and queries we consider. Then,
we describe a partitioning scheme based on the tree hierarchy that
accompanies the graph data, a number of partitioning policies that
we implemented and discuss the architecture of our system. Sec-
tion 4 presents our experiments and Section 5 contains concluding
remarks.

2. RELATED WORK
Interest in graphs and their applications in data management has

been renewed due to the wide spread of fields such as social net-
works and the semantic web. In the same time there is a profound
need for the efficient management of big distributed data. As a
result we can see a lot of recent work done in the area, ranging
from graph databases to distributed graph processing or graph par-
titioning techniques. The latter mainly cope with the problem of
splitting a large graph by assigning its vertices into independent
partitions. While there are several variations of the problem, a typ-
ical objective is to obtain partitions such that the sum of the vertex
weights across partitions is even while the sum of the inter-partition
edges is minimized [8, 9]. The work in [10] proposes data parti-
tioning that is guided by the user’s queries. Another approach that
aims at the partitioning of graphs across clusters of servers in a dy-
namic way by using queries during the runtime of the system can
be found in [11]. Our query-driven partitioning policy described in
Section 3 is motivated by these ideas but the actual setting is dif-
ferent. In [12] the authors present SPAR, a social partitioning and
replication middle-ware that uses the social graph structure in or-
der to achieve data locality. In our work we also use a structure to
guide the partitioning but the structure we use is a hierarchy tree.

(Greece,Greece)

(Attiki,Greece) (Messinia,Greece)

(Attiki,Attiki) (Attiki,Messinia)

(Attiki,Athens) (Attiki,Piraeus)

Figure 2: Example state of a partition tree TP

The objective in our work is quite different to vertex partition-
ing since we actually do partitioning of the edges of a hierarchical
multigraph. These edges represent interactions between nodes that
need to be investigated according to the imposed hierarchy. In a
typical scenario aggregation of these edges at the higher levels of
the hierarchy tree is more important for the application, while in
certain applications, such as analysis of call detail records, deci-
sion making based on fine-granularity statistics (i.e. low-level ag-
gregations) is in-fact prohibited by law, so that certain carriers can-
not obtain unfair advantage over their competitors. Our techniques
can benefit systems built for visualizing hierarchical multigraphs
(e.g. [1]). Moreover, indexing techniques for hierarchical multi-
graphs such as [4] and multi-dimensional indexes over key-value
stores as in [13] can be incorporated in our system for providing
fast access to individual records within the partitions created by
our framework.

3. SYSTEM OVERVIEW

3.1 Definitions
Assuming a rooted hierarchy tree T , we denote the set of its

leaves as Leaves(T ). We refer to a subtree rooted at a vertex
x ∈ T as Tx. For vertices u and v of T we say that v is de-
scendant of u if there is a path descending from u to v, including
the case that u equals v. Vertices u and v are called comparable in
T if one of them is descendant of the other and incomparable in T
if neither u nor v is a descendant of the other. Also, by depth(u)
we shall refer to the number of edges that have to be crossed so as
to get from u to the tree root node.

A hierarchical graph is a multigraph G(T, V,E), where T is a
tree, V is the set of vertices in the graph, which are also the leaves
of T (V =Leaves(T )) and E is a multiset of edges between the
nodes in V . We assume that each instance of an edge is labeled
with a unique identifier in order to be able to assign data on them
(i.e. in the CDRs example, each edge is associated with a unique
key that identifies the corresponding CDR).

In order to represent the set of edges between nodes in T and
their relationships, we define the graph GT2 . Each possible pair of
nodes u and v in T is a vertex [u, v] in GT2 and we refer to u as the
source node in T and v as the destination node in T . The edges in
GT2 imply a hierarchy inherited from the hierarchy described by
tree T . In particular, there is an edge between nodes [u1, v1] and
[u2, v2] in GT2 if exactly one of the following conditions hold: (i)
u2 is a child of u1 in T , (ii) v2 is a child of v1 in T .

Graph GT2 is used in our framework in order to define our par-
titioning scheme on the edges of the hierarchical graph. Moreover,
the nodes of GT2 , as will be explained in Section 3.2, are used
in order to model possible queries on this data. Then, the edges of
GT2 will determine partitions that contain relevant data for a query.

Each vertex [u, v] ∈ GT2 is a candidate partition Pu,v to be ma-



terialized by our partitioning scheme. Keeping all GT2 in memory
is not a feasible solution at its size is quadratic on the size of T .
As will be explained, our partitioning process progressively splits
the hierarchical graph and constructs a partition tree TP , which is a
subgraph of GT2 . When we need to locate partitions so as to insert
new records or answer queries we use TP as our lookup structure.
An example partition tree TP which follows the hierarchy of Figure
1 is shown in Figure 2

Finally, by Cu,v we refer to a counter of how many records are
contained in the partition Pu,v and by threshold to the value that
when the number of records in a partition grows bigger than, the
partition has to be split in smaller ones and then get dropped.

3.2 Hierarchical Queries
In our framework, retrieval of edges belonging to the hierarchi-

cal graph is accomplished via queries that are modeled using the
hierarchy tree T . In particular a query Qu′,v′ is denoted as a query
edge in T (see Figure 1). This query denotes our intention to re-
trieve all edges that have as source vertices the leaves of Tu′ and as
destination vertices the leaves of Tv′ . When such a query arrives we
need to be able to decide which of the materialized partitions in TP

may contain relevant graph edges. In order to achieve that we tra-
verse TP in a top-down fashion and check each vertex Pu,v against
the query Qu′,v′ . The partition is considered useful in answering
the query when their respective source and destination vertices are
comparable in T . We continue traversing TP descending the use-
ful partitions until we get to the active partitions (active partitions
are these that contain data and are pointed by the leaf nodes of TP

as explained in Section 3.3), which are returned to the query for
further processing (e.g. filtering of relevant edges). In case that
during the traversal we come across a Pu,v for which it stands that
u is equal to u′ and v is equal to v′ then we stop the traversal and
retrieve the leaf nodes in the subtree rooted at Pu,v . In that case,
all the edges in the respective partitions are returned to the user.

In our running example, assuming that the partition tree TP is
at the state shown in Figure 2 and that we have to answer query
QAthens,Messinia that retrieves all CDRs from locations in Athens
to locations in the state of Messinia, we first check the root of TP

which is [Greece, Greece]. Since Athens is comparable to Greece
and Messinia is comparable to Greece we continue with examin-
ing the children of [Greece, Greece], which are [Attiki, Greece]
and [Messinia, Greece]. Athens is comparable to Attiki and so is
Messinia to Greece, so node [Attiki, Greece] is useful, but Athens
is incomparable to Messinia so we do not have to further investi-
gate the node [Messinia, Greece] or any node in TMessinia,Greece.
Next we have to check nodes [Attiki, Attiki] and [Attiki, Messinia]
which are the children of [Attiki, Greece]. Athens is comparable
to Attiki but Messinia is incomparable to Attiki so [Attiki, Attiki]
is not considered useful. On the other hand [Attiki, Messinia] is
useful since Athens is comparable to Attiki and Messinia is compa-
rable to Messinia. [Attiki, Messinia] is a leaf node in TP and so the
traversal ends here and the partition pointed by [Attiki, Messinia]
is the result returned to the query.

3.3 Overview of the Partitioning Process
A high level description of the partitioning process is as follows:

In the beginning let TP consist of just one vertex [r, r] where r
refers to the root of T . That means that we initially materialize
just one global partition Pr,r containing all possible edges amongst
leaves in T . When Cr,r grows greater than threshold the split
process is triggered. The split process decides whether Pr,r will
be split by its source or destination node, depending on the rules
of the chosen partitioning policy, which is discussed later. Each

outcome is encoded by a set of nodes that are reachable from node
[r, r] in graph GT2 , depending whether the respective edge denotes
a parent-child relationship on the source or destination node.

After the split, the vertices representing the new partitions are
added to TP . Vertex [r, r] in TP points no longer to an active par-
tition but we keep it since it describes the records contained in the
active partitions pointed by its descendants (the new vertices that
we added) and we use this information when we traverse TP in
order to insert new records or answer a query. This process takes
place for every active partition Pu,v when Cu,v grows greater than
threshold after the insertion of new records. This way the vertices
in TP that point, or previously have been pointing, to an active par-
tition, form a hierarchical tree. At any moment the leaves of TP

point to the active partitions while the inner nodes, including the
root, are “aggregations” of these partitions.

Any node in TP can optionally maintain a series of useful ap-
plication specific statistics such as the number of records in the
partition, aggregations over measures of these records, calculations
regarding heavy hitters such as top-k sources and top-k destina-
tions, etc. Furthermore, when fast approximate answers are desired
by the application (for example during exploratory data analysis or
as a preview while the exact answer is computed) it is also possible
to maintain synopses such as Sketches [14], Histograms [15, 16]
or Wavelets [17, 18] on the nodes of TP . Since these nodes are
traversed while new data is added in the partitions, maintenance of
these synopses can be easily incorporated in the process. While
these extensions are applicable in our framework, their discussion
is beyond the scope of this paper.

In what follows we describe the different split/partitioning poli-
cies that we implemented in our system and used in our experi-
ments. First we describe two simple query agnostic policies and
next, in more detail, a partitioning policy that we call Query-Driven
Partitioning that decides the split to materialize by taking under
consideration a set of queries that are most important to the user
and makes the split decisions according to them.

Query-Agnostic Policies: The first two policies assume no previ-
ous knowledge about the interests of the user. Each of them though
utilizes a different heuristic as explained below.

• Round-Robin Partitioning: Round-Robin is a simple ap-
proach to partitioning the hierarchical graph. Partitions in
TP that need to split, are split alternately by source or des-
tination. This process results in creating balanced partitions
in the sense that source and destination nodes in a partition
have a maximum distance of one hierarchy level. That way
the partitions created are not biased towards the source or
destination nodes of the constituent edges.

• Min-Split Partitioning: Min-Split partitioning policy is a
heuristic method, which tries to create the minimum number
of new partitions, when an active partition overflows. This
policy seems preferable when the goal is to create as few
active partitions as possible, while keeping their size close
to the selected threshold. Thus, when it has to make a split
choice, it simply chooses between the candidate splits the
one containing fewer partitions.

Query-Driven Partitioning: In Query-Driven Partitioning we as-
sume that we have a prior knowledge of the queries that the users
of the system are mostly interested in. So, when we have to make
a split choice we chose the candidate split that suggests a parti-
tioning better suited to answer the set of queries. In what follows
we present the idea of Query-Driven Partitioning for hierarchical
graphs in a formal way.



Let Pu,v be a partition in the partition tree TP and Qu′,v′ be a
query asking for all records having as source and destination all the
nodes that are leaves of the hierarchy tree’s T subtrees Tu′ and Tv′ ,
respectively. Recall that a partition is useful for answering a query
if their respective source and destination nodes are comparable in
T , otherwise the partition is pruned while navigating the partition
tree in search of answers to the query.

For a useful partition, we can define a measure of the overhead
that the retrieval of Pu,v adds to the overall cost of answering the
query by considering the number of records that belong to Pu,v but
are not part of the result of Qu′,v′ . We can use this measure to make
the split choice for a partition to be split, by calculating the query
answering overhead for each of the candidate splits. Extending this,
we can calculate the overhead not just for one query but for a set of
queries that the users are mostly interested in.

In order to measure the overhead of a useful partition for a given
query, we have to estimate the portion of the partition records that
are not useful for the query, but will have to be retrieved when scan-
ning the partition for relevant data. Since both the partition and
the query follow the hierarchy implied by the hierarchy tree T we
should check the partition’s source and destination nodes u and v
against the query’s source and destination nodes u′ and v′, respec-
tively. We will describe the procedure for u and u′, but whatever
we mention holds true also for v an v′.

Since nodes u and u′ are comparable (otherwise the partition is
not useful), we have to consider the following three cases: (i) u
equals u′, (ii) u is a descendant of u′ (depth(u) > depth(u′),
and (iii) u′ is a descendant of u (depth(u) < depth(u′)). Let
fitness(u′, u) denote the portion of the leaf nodes in Tu that are
also leaves in the subtree of Tu′ . In the first and second cases we
can safely infer that fitness(u′, u) equals to 1, since Tu is con-
tained in Tu′ . On the contrary, in the third case, Tu′ is contained in
Tu and, thus, fitness(u′, u) is calculated by considering the ratio
of the leaves of Tu′ over the leaves of Tu.

fitness(u′, u) =


0 , if u and u′ are not comparable
1 , if u and u′ are comparable

and depth(u) ≥ depth(u′)
|leaves(Tu′ )|
|leaves(Tu)| , otherwise

Then, the fitness of the partition for the query is computed as:

fitness(Qu′,v′ , Pu,v) = fitness(u′, u) · fitness(v′, v)

Intuitively, this measure estimates the percentage of records in the
partition that are useful for the query, assuming no additional knowl-
edge on the data distribution is given.

In case the partition is split into k sub-partitions, assuming a
uniform distribution of the records in Pu,v , then each of these par-
titions will receive Cu,v

k
of records, where Cu,v is the size of the

partition. Then, given that we have calculated the fitness for each
of these smaller partitions denoted as f1, . . . fk, respectively, we
compute the overhead of the split as the number of non-useful to
the query records expected to be retrieved from the set of partitions
belonging to the candidate split as:

overhead(Qu′,v′ , Split(Pu,v)) =
Cu,v

k

∑
i=1...k,fi>0

(1− fi)

For a set of queries the cumulative overhead of the split is com-
puted by summing the estimated overhead for each query. Thus,
given a choice of splitting the partition by source of destination,
we compare the overheads that we calculated for each of the splits
and select to materialize the one with the lowest number. As have

HDFS

MapReduce
Insertion Job Query JobPartitioning Job

HBase

Buffer
Storage

new data

Admission
Manager

Partitioning
Engine Query

Engine

Metadata

Data

client

Figure 3: Framework overview

been explained, our calculations are based on the assumption that
the data distribution within the partition is uniform. Of course, this
is a bold assumption and we expect that the system may occasion-
ally make wrong decisions, leading to suboptimal splits. An easy
workaround is to consider additional statistics, for instance in the
form of sketches, that will help better estimate the distribution of
records within a partition, at the cost of increased overhead due
to bookkeeping of these synopses. We leave exploration of such
choices as future work.

3.4 Implementation Overview
We implemented our system as a framework consisting of four

main modules, the Buffer Storage, the Admission Manager, the
Partitioning Engine and the Query Engine. It uses the well-known
distributed data store HBase running on top of HDFS (the Hadoop
Distributed File System) and also the Hadoop MapReduce engine
in order to accomplish tasks such as loading and repartitioning of
the data. We materialize each partition as an HBase table so as to
make easier the retrieval of records belonging to one partition by
involving the scan of one and only table. Another choice would be
to use one big table to store all the records and define each partition
space by applying a compound row-key design.

Figure 3 provides a high-level view of the framework. The Buffer
Storage module is located at the input of the system and stores tem-
porarily the new records that are streamed from distributed sources,
into text files. When the size of these records grows bigger than
a maximum buffer size, then the Buffer Storage module sends a
message to the Admission Manager module, which executes the
task of pulling the records from Buffer Storage and loading them
into HBase. After each load of new records, Admission Manager
checks for partitions that grew over the partitioning threshold. For
any such partition, Admission Manager passes the required instruc-
tions to Partitioning Engine, which decides a split according to the
selected policy amongst the ones described earlier and applies it.

For the support of these tasks, the system maintains a set of meta-
data, such as the hierarchy and partition trees that are used, updated
and shared by all the different modules. The actual execution of
the tasks is taking place as a number of MapReduce jobs, with the
most important of them being the Insertion Job which puts each
new record in the appropriate partition by looking up the hierarchy
and partition trees, and the Partitioning Job which moves the data
from a splitting partition to the new partitions.

Finally, we also implemented a Query Engine, which accepts a



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

round-robin min-split query-driven

lo
a
d
in

g
/p

a
rt

it
io

n
in

g
 t
im

e

policy

20M
200M

Figure 4: 20M vs 200M Records Loading Times

user query or set of queries and, by looking up the hierarchy and
partition trees, discovers the partitions that possibly contain rele-
vant records, scans them and returns the results to the user.

4. EXPERIMENTS

4.1 Experimental Setup
All experiments were conducted on a cluster of seven virtual

machines located at the GRNET’s cloud infrastructure Okeanos1.
Each machine had 4 processors, 4 GB of memory, while the disk
sizes varied from 40 to 100 GB. The operating system installed was
Ubuntu Server 12.04 and we used Hadoop version 1.1.2 and HBase
version 0.94.6.1. We used one machine as the system master run-
ning the NameNode, JobTracker and HMaster daemons, while each
of the remaining six slave machines were running instances of the
DataNode, TaskTracker and HRegionServer daemons.

In order to be able to generate massive graph data records, we
wrote a custom CDR data generator. We used the geopolitical hier-
archy of Greece as described by the Ministry of Interior2 to create
the hierarchy tree and then we generated a number of phone num-
bers for each city in it. The resulting hierarchy tree consisted of
five levels, which from top to bottom are Country, District, State,
City and Phone Number, each of them having a node count of 1,
13, 58, 324 and 1134698 nodes, respectively. The phone num-
bers consist of regular phone numbers that make and receive calls,
inbound-only phones as those found in customer service depart-
ments or telemarketing, and outbound-only phones as those used
by marketing agencies. Each record in the experiment data sets
consists of a source and destination phone number and a unique
call record id. Last, we created a random set of 10 queries which
we used to guide the Query-Driven policy, but also to examine the
performance of each policy in answering them. The queries were
picked randomly amongst all possible queries having as source or
destination inner nodes of the hierarchy tree, meaning we excluded
the root (country) and the leaves (single phone numbers).

4.2 Loading/Partitioning Time
The first experiment we conducted is a comparison of the load-

ing times for each of the partitioning policies we implemented. We
created a data set of a total of 50 million CDR records and broke
it into an initial ingest set of 20 million records and 10 append sets
of 3 million records each. For each of these 11 steps we traced
the total time it took to insert the records in HBase and perform

1https://okeanos.grnet.gr/
2http://www.ypes.gr/

the repartitioning of the schema, when needed. The results of this
experiment are summarized in Figure 5. We can see that the Min-
Split and Query-Driven policies spent slightly more time in repar-
titioning the hierarchical graph. This is explained since Min-Split
follows a conservative approach of repartitioning the data by taking
the minimum number of splits at each step, resulting in more sub-
sequent splits. The Query-Driven policy is often keen to repartition
the data by extending the partitioning tree in order to best fit the
input queries that drive its selection process. Finally, in Figure 4
we compare the scalability of our framework using a larger number
of input data (200 million records) for each policy. Compared to
the smaller dataset, the Figure suggest a sublinear increase of the
loading times, something that is contributed to the overhead times
of the underlying frameworks (e.g. MapReduce jobs setup) that
affects more (proportionally) the smaller input.

4.3 Partitions’ Quality
In order to examine the quality of the partitions created by each

of the policies tested, we propose a measure that we call distance.
This metric can be used in applications where the goal is to derive
the fewer number of partitions that are each smaller or equal to
the selected threshold. Given the actual final partition sizes sizei,
where i=1 . . . pm and pm is the number of the active partitions for
policy m at the end of the loading phase, we define distancem to
be:

distancem =

√√√√ pm∑
i=1

(sizei − threshold)2

Intuitively, a smaller distance value denotes a set of partitions that
are created evenly near, but not exceeding, the selected threshold.
We have calculated and present the value of the distance metric for
each policy and after each loading/partitioning job in Figure 6(a).

What is worth noticing in this Figure is that the Min-Split policy,
while in the beginning was the best amongst the others, later on it
created partitions that had a larger collective distance. This is ex-
plained by the fact that the choice of the smaller split, leads to many
deep splits of the partition tree and, subsequently, when the leaves
are reached, the deep partitions that need to be split are getting split
in high levels of the hierarchy (on the opposite direction) since this
is the only feasible split left. This fact also leads to the increase
of the number of active partitions that is evident in Figure 6(b).
Thus, even though at each step Min-Split makes (locally) optimal
decisions regarding the split that leads to the smaller increase of
the distance metric, the final resulting partitioning is worse that the
ones achieved by the other policies.

4.4 Queries Answering
In order to examine the effectiveness of the dynamic partitioning

schema, for each of the policies we ran the set of queries men-
tioned in Section 4.1. We used these same queries to guide the
Query-Driven policy. In Figure 6(c) we can see a comparison of the
total records retrieved by each of the policies, and the fraction of
them that were useful in answering these queries. As expected the
Query-Driven policy has better precision than the other two poli-
cies, while the Min-Split policy, which has gone deep in the hierar-
chy tree, was not able to create partitions suitable for the selected
set of random queries.

5. CONCLUSIONS
In this paper we considered the problem of managing big hierar-

chical graphs by exploiting the implied hierarchy so as to partition
the data edges in a way that would better support future retrieval



 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5 6 7 8 9 10 11

ti
m

e
 (

s
e

c
o

n
d

s
)

loading/partitioning job

loading
partitioning

(a) Round-Robin

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5 6 7 8 9 10 11

ti
m

e
 (

s
e

c
o

n
d

s
)

loading/partitioning job

loading
partitioning

(b) Min-Split

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5 6 7 8 9 10 11

ti
m

e
 (

s
e

c
o

n
d

s
)

loading/partitioning job

loading
partitioning

(c) Query-Driven

Figure 5: Policies’ loading and partitioning times

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

1 2 3 4 5 6 7 8 9 10 11

d
is

ta
n

c
e

loading/partitioning job

round-robin
min-split

query-driven

(a) Partitions’ distance

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 5 6 7 8 9 10 11

n
u

m
b

e
r 

o
f 

p
a

rt
it
io

n
s

loading/partitioning job

round-robin
min-split

query-driven

(b) Number of active partitions

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

round-robin min-split query-driven

n
u

m
b

e
r 

o
f 

re
tr

ie
v
e

d
 r

e
c
o

rd
s

policy

overhead
result

(c) Queries

Figure 6: Comparison between policies

and analysis. We evaluated a number of dynamic partitioning poli-
cies using open source big data tools on a small cluster of nodes.
From the policies considered, the Query-Driven partitioning policy
lead to partition schemes that enable faster analysis of the records,
assuming that some a-priori knowledge of the user queries is given.
In an uncertain environment, the Round-Robin policy seems to
result in more balanced partitions with good query performance.
Moreover, it has been shown to have the best performance in the
loading and partitioning processes.

6. REFERENCES
[1] J. Abello and J. Korn, “Visualizing massive multi-digraphs,”

in Proceedings of INFOVIS, pp. 39–47, 2000.
[2] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,

S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, “Graph
structure in the web,” Comput. Netw., vol. 33, June 2000.

[3] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law
relationships of the internet topology,” SIGCOMM Comput.
Commun. Rev., vol. 29, pp. 251–262, Aug. 1999.

[4] J. Abello and Y. Kotidis, “Hierarchical graph indexing,”
Proceedings of the twelfth international conference on
Information and knowledge management, 2003.

[5] “Apache HBase.” http://hbase.apache.org/.
[6] “Apache Hadoop.” http://hadoop.apache.org/.
[7] J. Dean and S. Ghemawat, “MapReduce : Simplified data

processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 1–13, 2008.

[8] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for
partitioning power-law graphs,” in Proceedings of IPDPS,
pp. 124–124, 2006.

[9] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts

without eigenvectors a multilevel approach,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 29, Nov. 2007.

[10] K. Tzoumas, A. Deshpande, and C. S. Jensen,
“Sharing-aware horizontal partitioning for exploiting
correlations during query processing,” Proc. VLDB Endow.,
vol. 3, pp. 542–553, Sept. 2010.

[11] S. Yang, X. Yan, B. Zong, and A. Khan, “Towards effective
partition management for large graphs,” in Proceedings of
ACM SIGMOD, pp. 517–528, 2012.

[12] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris,
P. Chhabra, and P. Rodriguez, “The little engine(s) that
could: scaling online social networks,” SIGCOMM Comput.
Commun. Rev., vol. 40, pp. 375–386, Aug. 2010.

[13] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi,
“MD-HBase: A scalable multi-dimensional data
infrastructure for location aware services,” 2011.

[14] G. Cormode and S. Muthukrishnan, “An improved data
stream summary: the count-min sketch and its applications,”
J. Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[15] F. Reiss, M. N. Garofalakis, and J. M. Hellerstein, “Compact
histograms for hierarchical identifiers,” in VLDB, 2006.

[16] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis,
S. Muthukrishnan, and M. Strauss, “Fast, small-space
algorithms for approximate histogram maintenance,” in
STOC, pp. 389–398, 2002.

[17] A. Deligiannakis, M. N. Garofalakis, and N. Roussopoulos,
“Extended wavelets for multiple measures,” ACM Trans.
Database Syst., vol. 32, no. 2, 2007.

[18] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss,
“One-pass wavelet decompositions of data streams,” IEEE
Trans. Knowl. Data Eng., vol. 15, no. 3, pp. 541–554, 2003.


