
Multi-Stage Malicious Click Detection on

Large Scale Web Advertising Data

Leyi Song, Xueqing Gong⇤, Xiaofeng He, Rong Zhang, Aoying Zhou
Center for Cloud Computing and Big Data

East China Normal University
3663 North Zhongshan Road, Shanghai, China

songleyi@ecnu.cn, {xqgong,xfhe,rzhang,ayzhou}@sei.ecnu.cn

ABSTRACT
The healthy development of the Internet largely depends on
the online advertisement which provides the financial sup-
port to the Internet. Click fraud, however, poses serious
threat to the Internet ecosystem. It not only brings harm
to the advertisers, but also damages the mutual trust be-
tween advertiser and ad agency. Click fraud prediction is
a typical big data application in that we normally need to
identify the malicious clicks from massive click logs, there-
fore e�cient detection methods in big data framework are
much desired to combat this fraudulent behavior. In this
paper, we propose a three-stage filtering system to attack
click fraud. The serialized filters e↵ectively detect the mali-
cious clicks with decreasing confidence that can satisfy both
advertisers and content providers.

1. INTRODUCTION
The fast development of the Internet depends not only on

the increase of rich content, but also on online advertise-
ment which provides the financial support to the Internet
ecosystem. Online advertising tends to benefit all involved
parties including content provider, advertiser, ad agency and
ad network. It requires the mutual trust among all parties.
This trust was at risk, however, by fraudulent clicks. Click
fraud (also called click spam, malicious click) is an action of
intentional clicking with the purpose of making undue profit,
or doing harm to competitors. Click fraud is becoming a se-
rious problem to the World Wide Web [5]. Failing to deter
such behaviors will discourage advertisers from actively en-
gaging in more online advertising activities, resulting in less
revenue for content providers or ad agencies, and ultimately
endangering the Internet ecosystem as a whole. Therefore
it is of high importance to detect the malicious clicks.

Ad agencies or networks often deploy di↵erent filters to
identify malicious clicks [10]. By setting a proper thresh-
old or training a classifier, these methods can handle cer-

* Corresponding Author

tain types of anomaly click behaviors generated by human
or bots [7, 12, 13]. Despite such e↵orts, there still remains
great challenge to address the problem of malicious clicks. In
this paper, we focus on detecting malicious clicks from large
scale web advertising data on ad agency side. Ad agency
plays an intermediate role between advertisers and publish-
ers in the online advertising system. In order to identify
malicious clicks of di↵erent categories, for instance, suspi-
cious users, stealthy click-bots and cheating publishers, we
build a series of filters at di↵erent stages in big data compu-
tation framework. The filters are ordered by the decreasing
confidence of predicting the malicious clicks. At first stage,
a rule based filter identifies the malicious clicks with high
confidence since these rules catch strong signals for abnor-
mal clicks. At second stage, a supervised classification ap-
proach is used to detect malicious clicks, whose prediction
results are of lower confidence than rule based ones. Fi-
nally we cluster the clicks into group at stage 3 with the
hope that fraudulent clicks generated from one publisher
will be grouped together. The clustering method is an unsu-
pervised learning process, hence results in lowest prediction
confidence. Sequentially organizing the filters in decreasing
confidence order provides us with flexibility and scalability
to add extra filters. For instance, we can replace one classi-
fier with another classifier at stage 2, or add more classifiers
to stage 2 to form an ensemble. Users have the freedom to
use the result corresponding to di↵erent confidence.

We use the precision as the measure of confidence in this
paper. The reason to use precision, instead of other metrics
such as recall or F-measure is because 1) precision focuses
on singling out bad clicks while trying to minimize the pos-
sibility of predicting valid clicks as fraudulent ones; 2) it is
well-known that the judgement of whether or not a click is
a fraudulent one is very subjective in many cases. Too large
recall can potentially classify large number of valid clicks as
bad ones unless we have high quality classifiers which is hard
to obtain, especially when human judgement is di�cult.

In this paper, we propose a click fraud detecting architec-
ture which organizes filters sequentially by decreasing con-
fidence order. This architecture was applied to large scale
advertising log obtained from an ad agency. Specifically,

• we address the malicious click problem on the ad agency
side. In addition to rule-based and supervised meth-
ods, we propose a clustering-based method to analyse
the tra�c quality;

• we design a click detecting mechanism in big data com-
putation framework, i.e., Hadoop, to detect malicious

1

clicks e�ciently by sequentially organizing three types
of filters of di↵erent confidence level;

• we carefully design and analyse important features,
and verify our approach by evaluating the dissimilarity
between predicted fraudulent clicks vs. valid clicks.

The rest of the paper is organized as follows. In Section 2,
we introduce previous work related to click fraud detection.
We present our detection architecture in Section 3. In Sec-
tion 4, we comprehensively analyze the results of our ap-
proach by applying it to over one month real click log data
from an ad agency, and conclude our paper in Section 5.

2. RELATED WORK
There are many participants play in online advertising

ecosystem. Ad agency usually plays an match maker role
between publishers and advertisers. Publishers own the web-
site pages containing ad slots. Advertisers purpose their ad
creativity to attract users to buy their products or to make
other kinds of profit. Ad agency buys inventory from pub-
lishers and sells advertising tra�c to advertisers. Thus, for a
reputed ad agency, it is responsible to filter these malicious
clicks before charging.

Undoubtedly there are great e↵orts in the area of fraud
detection, including the click fraud problem, but most solu-
tions are not easily available. The report by Tuzhilin [10]
introduced some of the approaches that Google adapted to
fight click fraud, in which both rule-based and anomaly-
based filters were incorporated into search engine. Since
search advertising is one of the major forms of online adver-
tisement, this work inspired us to take similar approach in
fraud detection system.

Another type of malicious click detection methods was
based on click stream analysis techniques which identified
patterns of fraudulent tra�c. Metwally et al. proposed
fraud detection solutions for data stream by combining asso-
ciation rules and duplicate detection methods [8]. E↵ective
data structure such as modified Bloom Filter was used in
this situation [13]. However, it is often di�cult for most
data mining-based detection methods to be implemented
into stream analysis, hence limits the adaptation of such
techniques to click fraud detection.

Supervised learning approach detects the malicious clicks
by training a classifier. Data collection is one of the most
important steps in this approach. Haddadi [3] proposed
the idea of blu↵ ads, which is unrelated to the user search,
user profile and recently activity. If a high ratio of such
ads was clicked, the user could be flagged as suspicious. In
some other work, CAPTCHA was used for training data
generation and useful data collection [6]. For ad agencies,
they have various advertiser and publisher sources, hence
CAPTCHA approach is hardly applicable. The next key
step is to extract features. The work [1] investigated query
attributes between human and robot tra�c. Di↵erent type
of features could be extracted from the click attributes and
user attributes, such as click count or geographic origin [1,
4].

Bot-generated click tra�c is a big part of malicious clicks.
The state-of-the-art bot detection work mostly aimed at
clicks in search engine logs [6, 12]. Yu et al. proposed SBot-
Miner, a system which automatically identified bot gener-
ated search tra�c from query log, using history-based as
well as matrix-based unsupervised methods [12].

������	��
��������
������

����

trust users

malicious
clicks

Stage 1:
Rule-
based

Filtering

Stage 2:
Classification-

based
Filtering

Heavy Hitter

Frequent
Click

Blacklist

Feature
Extraction

Result
Validation

Result
Analysis &
Ensemble

Stage 4:
Validation and

 Analysis

Stage 3:
Clustering-

based
Filtering

Malicious
Publishers
Detection

Malicious User
Prediction

Model

C
onfidence

Figure 1: Architecture Overview.

Previous approaches to identify and understand malicious
clicks focused on one specific method, or one specific prob-
lem. Researchers adopted click-through rate related meth-
ods for web spam in search engine [11]. However, it is
di�cult for an ad agency to access the click-though rate,
therefore some fraudulent patterns can not be easily iden-
tified by traditional methods. In our framework, we design
a more general way of data collection and filtering strategy
for malicious click detection, implemented in a stage-wise
architecture.

3. STAGE-WISE CLICK FRAUD FILTER-
ING ARCHITECTURE

3.1 Architecture Overview
In order to accommodate di↵erent filtering methods with

di↵erent confidence in predicting the fraudulent clicks, we
argue that it is advantageous to take the approach of stage-
wise filtering architecture. The filters are sequentially con-
nected such that the filter generating results with higher
predicting confidence is put in the chain before the one with
lower confidence. The intuition is that we need to identify
most confident malicious clicks, and reduce the data size
which need further processing, hence reduce the complex-
ity of the problem. Furthermore, stage-wise structure o↵ers
prediction results of di↵erent confidence, which enables the
users to utilize the result with more flexibility.

The stage-wise filtering system architecture is illustrated
in Figure 1. The major components are following 3 stages.
1) Rule-based filters at stage 1 to detect obvious invalid
clicks with high confidence. They can identify two types
of malicious clicks: heavy hitter and frequent clicker. 2)
Classification-based filters at stage 2 to determine more com-
plicated clicks with human judged training set. 3) The
clustering-based filter at stage 3 to identify cheating groups
from similar publisher websites. We use intra-cluster dis-
tance and query diversity to separate malicious groups.

2

0 1 2 3 4 5 6 7 8 9 10

0
50
00
0

10
00
00

0 2 4 6 8 10

0
40
00
0

80
00
0

N
um

be
r o

f U
se

rs

Clicks in One Interval

 3 hours as interval
 6 hours as intervel
 12 hours as interval
 24 hours as interval

N
um

be
r o

f U
se

rs

Number of Periods

 10 min as period
 30 min as period
 60 min as period
 180 min as period

(a) Click density (b) Click frequency

Figure 2: Click statistics of a trusted user click log
dataset in one month

3.2 Rule-based Filtering
To fight click fraud, generating blacklist in the filtering

system is the most reliable method. It is easy to compile
the blacklist for violating entities such as user agent(UA)
or IP address, but the coverage of a blacklist is limited.
Setting certain rules is e�cient to exclude more malicious
clicks from entering accounting system. In this paper we
focus on setting rules for the heavy hitter and frequent click
problems [8, 13, 7].

Heavy hitter in click logs means, at a specific time in-
terval, the click rate of a user is relatively higher than a
threshold �1, while frequent click problem refers to the sit-
uation that user’s click appears in relatively more periods1

than a predefined threshold �2.
To obtain a reasonable filtering threshold, we note from

Figure 2 that the number of clicks and periods follows the
Zipfian distribution. We set the maximum number for nor-
mal user behavior as the lower value of the two: number of
clicks in one interval and number of periods the user clicks.
For better accuracy, we can also determine the threshold
based on the p-quantile value on the entire log dataset.

3.3 Classification-based Filtering
Classification-based methods are widely used in fraud de-

tection or spam detection field [9]. Classification is an ef-
fective way for addressing malicious clicks, especially for
stealthy clicks that are hard to be captured by rule-based
approach. The classification has been applied to real data
with success [4, 10]. One of the biggest advantages with
classification approach is that once a model has been built,
the prediction of new instance is usually quite fast. There is
also research on the attributes which can distinguish human
and bot tra�c [1]. In our work, we use the traditional fea-
tures used in previous work, and also engineer new features
useful for training classifiers. We will discuss the features
in more details later. The result of this stage is a set of
malicious users from the click log.

3.4 Clustering-based Filtering
It is obvious that results of supervised methods highly de-

pend on the accuracy, coverage and labeling scheme of the
labeled corpus. The classified malicious clicks are limited by
the fraudulent types in training set. Hence, we develop our
clustering-based method, which is based on our observation

1We use period to represent the window for counting in fre-
quent clicks problem, in order to distinguish the interval

of heavy hitter. Clicks of each user occur within the same
period will be ignored.

that, for agency’s customers(advertisers), some of the suspi-
cious ad tra�c from the same website shows high similarity.
We try to group similar tra�c and analyze them as a group
in order to detect abusive clicks from the publisher-side.
This approach can also be applied to search engine tra�c,
since the query diversity can be used to separate the suspi-
cious groups from the search ad log. Considering the result
confidence and filtering cost, this stage can be an optional
choice for each advertiser. For valuable customers, this is
an attractive feature, which di↵ers from previous work.

For clustering, We define the dissimilarity between two
log entries x, y as:

D(x, y) =
X

f2Fields

wfdf (x, y) (1)

where each log entry is represented by a vector of click at-
tributes as < user, IP, referrer, UA, area, query >. Fields

is the feature set used in click attributes and df (x, y) is the
distance measure defined on each attribute f , normalized
between [0,1]. wf is the weight of df (x, y).

For attributes like refer URL and user agent, we care
about the longest matching prefix, and the distance mea-
sure is defined as:

durl(x, y) = 1� LCP (x, y)
max(|x|, |y|) (2)

where LCP means the longest common prefix of two strings.
Even though network address translation (NAT) might

allow many users behind a single IP address, the cheating
groups always show strong similarity in IP address. To am-
plify the importance of the tail part in IP address, we take
32 bits IPv4 address as an example to define the distance.
If LCB(longest common bits) � 16, then

dIP (x, y) = 1� LCB(x, y)
total bits

, (3)

otherwise, the distance between two IP addresses is 1.
For other attributes such as area, we simply treat their dis-

similarity as binary value (0 or 1). Furthermore, we can eas-
ily prove that D(x, y) is a metric, since it follows the proper-
ties: (1) D(x, y) = 0iffx = y, (2) D(x, y) � 0, (3) D(x, y) =
D(y, x), and (4) D(x, y) D(x, z) + D(z, y)(triangle in-
equality). Due to space limit, we skip the proof here.

After obtaining the dissimilarity matrix of a log set, we
use k-medoids algorithm to produce the clustering in this
stage. K-medoids is an adaptation of k-means algorithm.
Rather than calculating the mean of the items for each clus-
ter, which is not applicable in our situation, a representative
item, or medoid, is chosen for each cluster. Medoids for each
cluster are calculated to finding object i by minimizing

J̃ =
X

j2Ci

D(i, j) (4)

where Ci is the cluster containing object i and D(i, j) is
the dissimilarity function defined in equation 1. Since the
algorithm simply looks up the dissimilarity matrix, it only
needs to be calculated once in the beginning.

The next step is how to distinguish cheating groups from
all clusters. Obviously, if one group agrees on most fields,
it indicates this group of clicks come from a botnet using
similar terminals and browsers or a real interested user with
high probability. From the click statistics we can figure that,

3

Table 1: Examples of Labeled Malicious Clicks
User Advertiser Area IP Referer Query User agent

1 c1 1 x.x.25.177 none none Mozilla/5.0
2 c2 1 x.x.25.178 none none Mozilla/5.0

3 c3 2 y.y.51.137 http://r1.com/s?wd=wvihv wvihv Mozilla/4.0(compatible; MSIE 7.0;)
3 c3 2 y.y.51.142 http://r1.com/s?wd=jmfitxm jmfitxm Mozilla/4.0(compatible; MSIE 7.0;)
4 c3 2 y.y.51.145 http://r2.com/s?wd=qyfsoc qyfsoc Mozilla/4.0(compatible; MSIE 7.0;)

0 4 8 12 16 20 24 28
0.00

0.02

0.04

0.06

0.08

0.10

Fr
ac

tio
n

of
 g

ro
up

s

SC score

Figure 3: Fraction of groups vs. Scatter scores

if the group size is reasonable, it is less possible to be an in-
terested user. In other words, if the intra-cluster similarity
of a group is lower, then the probability of the tra�cs in the
group being malicious is higher. Moreover, the high similar-
ity of the referrer in a suspicious group means the low tra�c
quality of the publisher except search engine. In particular,
we add the query diversity factor for search engine tra�c.
We define the Scatter(SC) score of each group as:

SC = intra distance⇥ query diversity (5)

where query diversity is defined as the ratio of distinct search
phrases to total search phrases. The query diversity is set
to 1 for non-search engine tra�c. By adding query diver-
sity, we want to give more importance to the website tra�c
groups, since it is more di�cult to locate the root cause of
problem in search engine groups. Thus, we use the intra-
cluster distance times query diversity to measure the ads
click Scatter-ness of groups. Finally, the groups with low SC

score will be regarded as suspicious groups. Figure 3 shows
the distribution of Scatter score across our test groups. A
brief description is shown in Algorithm 1.

input : clicks on each advertiser
output: groups of malicious clicks
initialize dissimilarity matrix;
while not at end of advertisers’ tra�c set do

step 1: apply K-medoids using D(x, y) distance to
get tra�c groups with similar features
step 2: select suspicious groups with lower SC score

end

Algorithm 1: Major steps of getting cheating groups

3.5 Feature Extraction
The features extracted from data that work in web page

spam domains may not work in ad log analysis. We inspect
the click data and introduce several features specifically de-
signed for classifiers to predict malicious clicks. Features are
created by studying the labeled users’ activity patterns.

In order to define useful features, we need to analyze
the di↵erence between normal and malicious click behav-
iors. Below, we discuss some of the features we identified to
represent the user.
Number of clicked advertisers. This feature counts the
number of distinct advertisers each user clicked. Malicious
users show extreme patterns, for instance most have empty
cookie and others have dense clicks on one advertiser.
Click ratio on advertisers. This feature takes into ac-
count both the total clicks and the distinct clicked adver-
tisers, defined as total clicks/total clicked advertisers. For
each user, it represents the average clicks per advertiser.
We observe that the trusted users show higher diversity by
comparing their histograms.

We also define features that can be used to characterize
the attribute of a user. For instance, a fraudulent user might
carry out the malicious click behaviors from one device, but
with many dynamically allocated IP addresses. Thus, we
derive features from user agent, IP and cookie. Short cookies
are more suspicious than normal cookies, same goes for user
agent. Some details about these features are shown below.
Click/IP ratio. This feature is defined as the total clicks
for a user/total unique IP addresses the clicks come from.
Variance of IP clicks. After counting the number of clicks
from each IP address, we can calculate the variance of these
clicks. It will be suspicious if one user launches clicks with
consistent frequency from some IP addresses. Besides, we
also use features such as the number of user agents, number
of referrers, length of agent, length of cookie.

There are some other features derived from geographic or
temporal attributes. For click timestamp, we divide a day
into four six-hour periods: night(0:00 to 5:59), morning(6:00
to 11:59), afternoon(12:00 to 17:59) and evening(18:00-23:59).
With the information available, the features below are also
extracted: most frequent area, most frequent period, num-

ber of clicks in each period, mean/std deviation of clicks in

periods and so on. We are not going to list out all the 17
features used in classification considering the space limit.

4. EXPERIMENTS
In this section we present the experimental results of the

stage-wise filtering framework.

4.1 Dataset
The data set used in the experiments is over one month

click log we get from an ad agency company. It contains
about 35 million records of ad clicks. The advertising log
data normally contains attributes as user ID, click times-
tamp, user’s IP, cookie, query phrase (if the ad tra�c is

from a search engine), user agent and referrer (url of the

page where user clicked the ad link).
To protect privacy, users who click the ads are assumed

to be only temporarily identified by cookie. We assume that

4

Table 2: Brief description of training set.
Description # of Clicks/Users
Fraudulent clicks 174,642
Non-fraudulent clicks 779,980
Malicious users 83,061
Benign users 649,204

some user actions such as buying stu↵ or registering are be-
nign. In this way, we extract non-fraudulent clicks from be-
nign users for training. On the other hand, some malicious
clicks were addressed using domain knowledge. Examples
of malicious clicks are shown in Table 1. We notice that
attack may come from similar IP addresses with fake user
agent, fake referrer, or meaningless query phrase. Besides,
the training data includes complete clicks of three advertis-
ers that can be used to evaluate clustering performance. A
brief description of dataset for training is shown in Table 2.

4.2 Experimental Setup
We run our stage-wise method on an 8-node Hadoop clus-

ter using Pig Latin [2]. We split each stage into Map/Reduce
modules in pipeline. Each module can be converted into
one or several rounds of Map/Reduce tasks. For example
the filtering phase in rule-based stage, users are partitioned
through mappers and the counting filter UDFs(User Define
Functions) on each user are performed in reducer. How to
minimize the I/O cost is a major research for analysis on
large scale dataset. Taking this problem into consideration,
briefly, we design our UDFs to get the most results through
one-pass over the data.

In the first stage of our framework, the bound rules for
click density and click frequency are determined using p-
quantile of the entire distribution. From our training data,
we find there contains over 0.5% heavy hitters. There exists
a certain percentage of noisy clicks in the log, 0.995 or similar
(consider the distributions in Figure 1) can be chosen as
value of p in our experiment for rule setting. The large click
logs are filtered by passing through click counting, period
counting, quantile calculating and filtering phases.

Next, the reduced dataset is passed to feature extraction
modules as well as classifiers in the second stage. In our ex-
periment, 17 features which have been discussed above are
created. Then, we use training set in Table 2 to train clas-
sification models and compare the performance of the fol-
lowing classifiers: Näıve Bayes, Decision Table, Bayes Net,
REP Tree and Random Forest(10 trees, 5 random features
each). The comparison results of 5-fold cross validation over
training set are presented in Table 3. Since the labelled ma-
licious are just partial of real malicious clicks, the relatively
recall performance is less important than precision. The
performance could be very good result of the simple label-
ing scheme, thus we need unsupervised methods.

Finally, three advertisers with di↵erent click size(100K,
10K, 1K) are chosen as the evaluation dataset in the clus-
tering stage. We set equal weight for di↵erent features in
experiment. According to Figure 3, we use 2.0 as the lower
bound for the SC score of groups, which means the group
is quite dense. The number of K in applying K-medoids are
determined experimentally.

4.3 Results Analysis and Validation

Table 3: Precision performance for classifiers.
Classifier % Precision Run Time (s)
Random Forest 97.6 322
REP Tree 96.8 98
Bayes Net 96.7 115
Decision Table 96.1 199.5
Näıve Bayes 52.9 27

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

40
00
00

80
00
00

12
00
00
0
16
00
00
0

 total clicks
 malicious filtered by stage 1
 malicious filtered by stage 2
 malicious filtered by stage 3

day

to
ta

l c
lic

ks

0
40
00

80
00

12
00
0

m
al

ic
io

us
 c

lic
ks

Figure 4: Analysis of the click log dataset.

Figure 4 illustrates the result of our implementation of
stage-wise approach applied on click log of one month.

From the daily result, we find that a high percentage of
clicks follows the format http://search-engine.com/s?word

with the same short UA. Further study suggests that these
clicks are coming from bot-net which directly inject noise
into our logs using fake referer, user agent and IP address.
We also find four suspicious publisher groups, which gener-
ate high density clicks with similar IP addresses and user
agents from their website. Moreover, part of the suspicious
clicks were generated by download manager showing in UA.

Figure 4 shows that the percentage of malicious in first
stage distributed evenly. We could reasonably assume that
all the heavy hitters and frequent clicks are malicious, since
the upper bounds were setting based on the propriety of
distribution. Thus, the rule-based filter can be chosen as
the basic filter with absolute high confidence to meet ba-
sic requirement of ad agency. For classification stage, we
choose Random Forest as our model. This stage can dis-
cover stealthy clicks with suspicious patterns derived from
domain knowledge-based labeling. However, for the limita-
tion of supervised method, false positive is inevitable. Our
aim is to get the classifier with maximum precision. As to
the clustering stage, we evaluate the precision on three dif-
ferent advertisers’ click log. If the number of final result
groups is n, precision metric in this case is:

Precision =
1
n

nX

i

|Ci \ L|
|Ci|

where L is the cheating click set in result, and Ci is the total
click set from each of the advertisers. Figure 5 shows our test
results of clustering. Three advertisers’ dataset achieve dif-
ferent precision performance, which indicates that the con-
fidence partially depends on the distribution of real click
data. Therefore, we set the clustering-based filters in the
last stage. Indeed, even this filter has a lower confidence, it

5

20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Number of Clusters

 Advertiser1
 Advertiser2
 Advertiser3

Figure 5: Precision performance of clustering
method on evaluation data from three advertisers.

1 2 3 4
60

80

100

P
re
ci
si
on
(%
)

day

 Rule-based
 Classification-based
 Clustering-based

Figure 6: Precision performance of three stages on
sampled result.

is important for ad agency to assess the tra�c quality from
publishers by evaluating the malicious group.

It is worth pointing out that our framework built on the
top of Hadoop platform achieved high e�ciency for process-
ing click log. Due to the as-many-as computation in one-pass
design, each stage could be finished in minutes for both daily
and monthly filtering.

To further validate the stage-wise precision, we pick 4-day
predicated malicious clicks for human judgement. We invite
domain expert to inspect these clicks and the comparison
results were shown in Figure 6. We see that the rule-based
methods achieve high precision, which verifies our assump-
tion. However, false positives are inevitable in any unsu-
pervised learning algorithms. It is interesting that most of
the false classified results are from mobile applications, es-
pecially on the 10th day. The missing of referrer field in
these clicks is the root cause, which makes the patterns of
these clicks similar to those of malicious clicks.

As a comparison, we check the diversity ratio on three
features: hash of cookie, hash of user agent, hash of refer-
rer, by sampling clicks from positive and negative results
respectively. The diversity is defined as the ratio of distinct
items to total samples. Figure 7 shows the result: diversi-
ties of normal clicks are relatively higher than these of mali-
cious groups. For example, a group of intentional clicks with
similar UA may come from one commander. The obvious
di↵erence between the malicious groups and normal groups
suggests that the identified ones are indeed very suspicious.

5. CONCLUSION
Fraudulent click is a malicious behavior which threat-

ens the healthy development of Internet ecosystem. In this
work, we propose a stage-wise click fraud filtering architec-
ture which e↵ectively identifies the fraud clicks for ad agency
with di↵erent prediction confidence. The stages in this work
can be further divided into a set of modules, which consist
of one or several rounds of Map/Reduce using parallel com-
puting. We performed an in-depth analysis on one month
click log using the proposed framework and evaluated our
results by di↵erent metrics.

6. ACKNOWLEDGMENTS

UA cookie referrer
0

20

40

60

80

D
iv

er
si

ty
 R

at
io

(%
)

Fields

 Normal
 Malicious in stage 2
 Malicious in stage 3

Figure 7: Diversity comparison on three features.

This work is partially supported by the Key Program of
National Natural Science Foundation of China grant No.
61232002, National Science Foundation of China under grant
No.60925008, No.61103039, No.61021004 and the Key lab
Project of Wuhan University.

7. REFERENCES
[1] O. Duskin and D. G. Feitelson. Distinguishing humans

from robots in web search logs: preliminary results
using query rates and intervals. In Proceedings of the

2009 workshop on Web Search Click Data, WSCD ’09,
pages 15–19, 2009.

[2] A. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. Narayanam, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava. Building a highlevel dataflow system on
top of mapreduce: The pig experience. PVLDB, 2(2),
2009.

[3] H. Haddadi. Fighting online click-fraud using blu↵
ads. Computer Communication Review, 40(2):21–25,
2010.

[4] M. Hager and T. Landergren. Implementing best
practices for fraud detection on an online advertising
platform. Master’s thesis, Chalmers University of
Technology, 2010.

[5] B. J. Jansen. Click Fraud. Computer, 40(7):85–86,
July 2007.

[6] H. Kang, K. Wang, D. Soukal, F. Behr, and Z. Zheng.
Large-scale bot detection for search engines. In
WWW, pages 501–510, 2010.

[7] B. Lahiri, J. Chandrashekar, and S. Tirthapura.
Space-e�cient tracking of persistent items in a
massive data stream. In DEBS, pages 255–266, 2011.

[8] A. Metwally, D. Agrawal, and A. El Abbadi.
Duplicate detection in click streams. In WWW, pages
12–21, 2005.

[9] C. Phua, D. Alahakoon, and V. C. S. Lee. Minority
report in fraud detection: classification of skewed
data. SIGKDD Explorations, 6(1):50–59, 2004.

[10] A. Tuzhilin. The lane’s gifts v. google report. http :
//googleblog.blogspot.in/pdf/TuzhilinReport.pdf ,
2007.

[11] C. Wei, Y. Liu, M. Zhang, S. Ma, L. Ru, and
K. Zhang. Fighting against web spam: a novel
propagation method based on click-through data. In
SIGIR, pages 395–404, 2012.

[12] F. Yu, Y. Xie, and Q. Ke. Sbotminer: large scale
search bot detection. In WSDM, pages 421–430, 2010.

[13] L. Zhang and Y. Guan. Detecting click fraud in
pay-per-click streams of online advertising networks.
In ICDCS, pages 77–84, 2008.

6

	Introduction
	Related Work
	Stage-Wise Click Fraud filtering Architecture
	Architecture Overview
	Rule-based Filtering
	Classification-based Filtering
	Clustering-based Filtering
	Feature Extraction

	Experiments
	Dataset
	Experimental Setup
	Results Analysis and Validation

	Conclusion
	Acknowledgments
	References

