
Communication-Efficient Distributed Online Prediction
using Dynamic Model Synchronizations

[Extended Abstract]

Mario Boley and Michael Kamp
Fraunhofer IAIS & University Bonn

{mario.boley,michael.kamp}@iais.fraunhofer.de

Daniel Keren
Haifa University

dkeren@cs.haifa.ac.il
Assaf Schuster and Izchak Sharfman

Technion, Israel Institute of Technology
assaf@technion.ac.il & tsachis@technion.ac.il

ABSTRACT
We present the first protocol for distributed online predic-
tion that aims to minimize online prediction loss and net-
work communication at the same time. Applications in-
clude social content recommendation, algorithmic trading,
and other scenarios where a configuration of local prediction
models of high-frequency streams is used to provide a real-
time service. For stationary data, the proposed protocol re-
tains the asymptotic optimal regret of previous algorithms.
At the same time, it allows to substantially reduce network
communication, and, in contrast to previous approaches,
it remains applicable when the data is non-stationary and
shows rapid concept drift. The protocol is based on con-
trolling the divergence of the local models in a decentralized
way. Its beneficial properties are also confirmed empirically.

1. INTRODUCTION
We consider online prediction problems where data points

are observed at local nodes in a distributed environment
and there is a trade-off between maximizing prediction ac-
curacy and minimizing network communication. This situ-
ation abounds in a wide range of machine learning applica-
tions, in which communication induces a severe cost. Ex-
amples are parallel data mining [Zinkevich et al., 2009, Hsu
et al.] where communication constitutes a performance bot-
tleneck, learning with mobile sensors [Nguyen et al., 2004,
Predd et al., 2006] where communication drains battery
power, and, most centrally, prediction-based real-time ser-
vices [Dekel et al., 2012] carried out by several servers, e.g.,
for social content promotion, ad placement, or algorithmic
trading. In addition to the above, here the cost of commu-
nication can also be a loss of prediction quality itself when
training examples have to be discarded due to network la-
tency.

1.1 Setting and Related Work
Despite the communication costs it induces, decentraliza-

tion is inevitable in many modern scale applications. Hence,
recent articles [Balcan et al., 2012, Daumé III et al.] explic-
itly investigate the communication complexity of learning
with decentralized data. They consider, however, the of-
fline task of finding a good global model over the union of
all data as a final computation result. The same applies
to some work on parallel machine learning (e.g., Zinkevich
et al. [2010], McDonald et al. [2010]) where data shards are
distributed among several processors and then all computa-
tion is carried out independently in parallel except for one
final model merging step. While these approaches avoid
communication for performance reasons, they do not intend
to optimize the predictive performance during the compu-
tation. In contrast, we are interested in the online in-place
performance, i.e., for every data point performance is as-
sessed locally when and where it is received or sampled.

To this end, research focused so far on specific environ-
ments with fixed communication constraints. Correspond-
ingly, the learning strategies that are proposed and analyzed
for these settings, do not aim to minimize communication
beyond the level that is enforced by these constraints. Zinke-
vich et al. [2009] considers a shared-memory model, in which
all local nodes can update a global model in a round-robin
fashion as they process their training examples. Since this
approach is problematic if there is a notable communication
latency, strategies have been investigated [Mann et al., 2009,
Dekel et al., 2012] that communicate only periodically after
a statically fixed number of data points have been processed.
Dekel et al. [2012] shows that for smooth loss functions and
stationary environments optimal asymptotic regret bounds
can be retained by updating a global model only after mini-
batches of O(3

√
m) data points. Here, m denotes the total

number of data points observed throughout the lifetime of
the system. For large values of m, the effect of bounded
latency values is asymptotically outgrown by the increasing
mini-batch size.

While a fixed periodic communication schedule reduces
the communication by some fixed amount, further reduction
is desirable: The above mentioned costs of communication
can have a severe impact on the practical performance—even
if they are not reflected in asymptotic performance bounds.
This is further amplified because a large number of modeling

1

tasks are performed simultaneously sharing the same limited
bandwidth. Moreover, distributed learning systems that are
deployed for a long lifetime relative to their data through-
put can experience periodical or singular target drifts (e.g.,
corresponding to micro-trends in social networks). In these
settings, a static schedule is bound to either provide only lit-
tle to no communication reduction or to insufficiently react
to changing data distributions.

1.2 Contributions and Outline
In this work, we give the first distributed prediction proto-

col for linear models that, at the same time, aims to provide
a high online in-place prediction performance and explic-
itly tries to minimize communication. In terms of predictive
power, as shown Sec. 3.1, the protocol retains the asymp-
totic optimal regret of the distributed mini-batch algorithm
of Dekel et al. [2012] for stationary data. In addition, it
allows to reduce the communication among the local nodes
substantially. This is achieved by a dynamic data depen-
dent communication schedule, which, in contrast to previ-
ous algorithms, remains applicable when the data is non-
stationary and shows rapid concept drifts. The main idea is
to synchronize the local models to their mean model in order
to reduce their variance, but to do so only in system states
that show a high divergence among the models. This diver-
gence, measured by the average model distance to the mean
model, indicates the synchronizations that are most impor-
tant in terms of their correcting effects on the predictions. In
stable phases this allows communicative quiescence, while,
in hard phases where variance reduction is crucial, the pro-
tocol will trigger a lot of model synchronizations. In order
to efficiently implement this strategy one has to monitor the
non-linear divergence function without communication over-
head. We propose a solution to this problem that adapts re-
cent ideas from distributed systems research based on local
safe-zones in the function domain (Sec. 3.2). Experiments
confirm the beneficial properties of the protocol (Sec. 4).

2. PRELIMINARIES
In this section we formally introduce the distributed on-

line prediction task. As simple local learning tool we recall
stochastic gradient descent for linear models. Finally, we
review the state-of-the-art communication protocol as a de-
parture point for developing a more communication-efficient
solution in subsequent sections.

2.1 Distributed Online Prediction
Throughout this paper we consider a distributed online

prediction system of k local learners that maintain individ-
ual linear models wt,1, . . . , wt,k ∈ Rn of some global envi-
ronment through discrete time t ∈ [T] where T ∈ N denotes
the total time horizon with respect to which we analyze the
system’s performance. This environment is represented by
a target distribution Dt : X × Y → [0, 1] that describes
the relation between an input space X ⊆ Rn and an output
space Y ⊆ R. The nature of Y varies with the learning task
at hand; Y = {−1, 1} is used for binary classification, Y = R
for regression. While we allow Dt to vary with time, we as-
sume that it remains constant most of the time and only
experiences a small number of rapid drifts. That is, there
are drift points 0 = d0 < d1 < · · · < dp = T such that for
all i ∈ [p] and t, t′ ∈ [T] with di−1 ≤ t ≤ t′ < di it holds that
Dt = Dt′ . Hence, there are identically distributed episodes

Ei = {di, . . . , di+1 − 1} between any two drift points. We
assume that all learners sample from D independently in
parallel using a constant and uniform sampling frequency,
and we denote by (xt,l, yt,l) ∼ Dt the training example
received at node l at time t. Generally, we assume that all
training examples are bounded by a ball with radius R.

Conceptually, every learner first observes the input part
xt,l and performs a real time service based on the linear
prediction score pt,l = 〈wt,l, xt,l〉, i.e., the inner prod-
uct of xt,l and the learner’s current model vector. Only
then it receives as feedback the true label yt,l, which it can
use to locally update its model to wt+1,l = ϕ(wt,l, xt,l, yt,l)
by some update rule ϕ : Rn × X × Y → Rn. Finally,
the learners are connected by a communication infrastruc-
ture that allows them to jointly perform a synchroniza-
tion operation σ : Rk×n → Rk×n that resets the whole
model configuration to a new state and that may take into
account the information of all local learners simultaneously.
The performance of such a distributed online prediction sys-
tem is measured by two quantities: 1) the predictive perfor-

mance
∑T

t=1

∑k
l=1 f(pt,l, yt,l) measured by a loss function

f : R × Y → R+ that assigns positive penalties to predic-
tion scores; and 2) the amount of communication within
the system that is measured by the number of bits sent in-
between learners to compute the sync operation. Next, spec-
ify possible choices for the update rule, the loss function, and
the synchronization operator.

2.2 Losses and Gradient Descent
Generally, the communication protocol developed in this

paper is applicable to a wide range of online update rules for
linear models from, e.g., the passive aggressive rule [Cram-
mer and Singer, 2001] to regularized dual averaging [Xiao,
2010]. However, the regret bound given in Theorem 2 as-
sumes that the updates are contractions. That is, there
is some constant c < 1 such that for all w,w′ ∈ Rn, and
x, y ∈ X × Y it holds that ‖ϕ(w, x, y) − ϕ(w′, x, y)‖ ≤
c‖w−w′‖. For the sake of simplicity, in this paper, we focus
on rules based on l2-regularized stochastic gradient descent,
for which this contraction property is readily available. We
note that by considering expected contractions the result can
be extended to rules that reduce on average the distance to
a (regularized) loss minimizer.

Before we can define gradient descent updates, we have to
introduce the underlying loss functions measuring predictive
performance. Again for convenience, we restrict ourselves to
functions that are differentiable, convex, and globally Lips-
chitz continuous in the prediction score, i.e., there is some
constant L such that for all p, p′, y ∈ R2n × Y it holds that
|f(p, y)− f(p′, y)| ≤ L|p− p′|. While these assumptions can
be relaxed by spending some technical effort, they already
include loss functions for all standard predictions tasks such
as the logistic loss flg(p, y) = ln(1 + exp(−yp)) for binary
classification (case Y = {−1, 1}) or the Huber loss for re-
gression (in the case Y = R)

fhu(p, y) =

{
1
2
(p− y)2 , for |p− y| ≤ 1

|p− y| − 1
2

.

See, e.g., Zhang [2004] for further possible choices. In both
of these cases the (best) Lipschitz constant is L = 1.

2

Algorithm 1 Static Synchronization Protocol

Initialization:

local models w1,1, . . . , w1,k ← (0, . . . , 0)

Round t at node l:

observe xt,l and provide service based on pt,l
observe yt,l and update wt+1,l ← ϕ(wt,l, xt, yt)
if t mod b = 0 then

send wt,l to coordinator

At coordinator every b rounds:

receive local models {wt,l : l ∈ [k]}
send wt,1, . . . , wt,k ← 1

k

∑
l∈[k] wl

With this we can define stochastic gradient descent
(SGD) rules with l2-regularization, i.e., rules of the form

ϕ(w, x, y) = w − ηt∇w

(
λ

2
‖w‖2 + f(〈w, x〉, y)

)
where λ ∈ R+ is a strictly positive regularization pa-
rameter and ηt ∈ R+ are strictly positive learning rates
for t ∈ N. For stationary target distributions, one often
chooses a decreasing learning rate such as ηt = 1/

√
t in or-

der to guarantee convergence of the learning process. For
non-stationary targets this is infeasible, because for large t
it would prevent sufficient model adaption to target changes.
However, one can show [Zinkevich et al., 2010] that stochas-
tic gradient descent is a contraction for sufficiently small
constant learning rates. Namely, for η ≤ (RL + λ)−1 the
updates do contract with constant c = 1− ηλ. This can be
used to show that the stochastic learning process converges
to a distribution centered close to a regularized loss mini-
mizer even when the process is distributed among k nodes
(see the analysis of Zinkevich et al. [2010]). This refers to
the stochastic learning process defined by the mean of inde-
pendent local models that result from SGD with iid samples
from (episodes of) the target distribution. In this paper, the
contraction property is used for the regret bound of Thm. 2.

2.3 Communication and Mini-batches
For every episode Ei, the predictive performance of a dis-

tributed prediction system lies between two baselines that
correspond to the two extremes in terms of communication
behavior—complete centralization and no communication.
Let Ti = |Ei| denote the length of episode Ei and by R =∑

t∈Ei, l∈[k] f(pt,l, yt,l)−f∗ the regret with respect to the op-

timal expected loss f∗ = argminw∈Rn E(x,y)∼Di
[f(〈w, x〉, y)].

When all data points are centrally processed by one online
learner, for long enough episodes one can achieve an ex-
pected regret of O(

√
kTi) which is optimal (see Cesa-Bianchi

and Lugosi [2006] and Abernethy et al. [2009]). In contrast,
when the k nodes perform their learning processes in paral-
lel without any communication this results in an expected
regret of O(k

√
Ti), which is worse than the centralized per-

formance by a factor of
√
k. Therefore, we are interested

in algorithms that lie between these two extremes and that
show a beneficial trade-off between predictive performance
and the amount communication.

Mann et al. [2009] and Dekel et al. [2012] give algorithms
where information between nodes is only exchanged every
b rounds where b ∈ N is referred to as batch size. These
algorithms can be written as static model synchronization

protocol similar to Alg. 1. Here, after a batch of kb examples
has been processed globally in the system, all local models
are re-set to the mean model of the configuration w de-
fined as w = 1/k

∑k
l=1 wl. Formally, the synchronization

operator that is implicitly employed in these algorithms is
given by σ(wt) = (wt, . . . ,wt). We refer to this operation
as full mean synchronization. The choice of a (uniform)
model mixture is often used for combining linear models that
have been learned in parallel on independent training data
(see Mann et al. [2009], McDonald et al. [2010], Zinkevich
et al. [2010]). The motivation is that the mean of k models

provides a variance reduction of
√
k over an individual ran-

dom model (recall that all learners sample from the same
distribution, hence their models are identically distributed).
Dekel et al. [2012] shows that when the gradient variance is
bounded then the optimal regret can be asymptotically re-
tained by setting b = O(3

√
Ti) even if a constant number of

examples have to be discarded during each synchronization
due to network latency. Note that this reference considers
a slightly modified algorithm based on delayed gradient de-
scent, which only applies (accumulated) updates at synchro-
nization points. However, the expected loss of eager updates
(as used in Alg. 1) is bounded by the expected loss of de-
layed updates (as used in Dekel et al. [2012]) as long as the
updates reduce the distance to a loss minimizer on average
(which is the case for sufficiently small learning rates and
regularization parameters; see again Zhang [2004, Eq. 5]).

Closing this section, let us analyze the communication
cost of this protocol.Using a designated coordinator note as
in Alg. 1, σ can computed simply by all nodes sending their
current model to the coordinator, who in turn computes the
mean model and sends it back to all the nodes. For assessing
the communication cost of this operation, we only count the
number of model vectors sent between the learners. This is
feasible because, independently of the exact communication
infrastructure, the number of model messages asymptoti-
cally determines the true bit-based cost. Hence, asymptot-
ically the communication cost of static model synchro-
nization over k nodes with batch size b is O(kT/b). Dekel
et al. [2012] assumes that the data distribution is station-

ary over all rounds and b can therefore be set to O(3
√
T).

This results in an automatic communication reduction that
increases with a longer system lifetime. However, this strat-
egy is not applicable when we want to stay adaptive towards
changing data distributions. In this case, we have to set the
batch size with respect to the expected episode length and
not with respect to the overall system lifetime. This num-
ber can be much smaller than T resulting in batch sizes that
are too small to meet our communication reduction goal. In
the following section, we therefore design a synchronization
protocol that can substantially reduce this cost based on a
data-dependent dynamic schedule.

3. DYNAMIC SYNCHRONIZATION
The synchronization protocol of Alg. 1 is static because it

synchronizes after a fixed number of rounds independently
of the sampled data and its effect on the local models. Con-
sequently, it incurs the communication cost of a full synchro-
nization round even if the models are (almost) identical and
thus only receive little to none correction. In this section,
we develop a dynamic protocol for synchronizations based
on quantifying their effect. After showing that this approach

3

is sound from a learning perspective, we discuss how it can
be implemented in a communication-efficient way.

3.1 Partial Synchronizations
A simple measure to quantify the correcting effect of syn-

chronizations is given by the average Euclidean distance be-
tween the current local models and the result model. We
refer to this quantity as the divergence of a model con-
figuration, denoted by δ(·), i.e., δ(w) = 1

k

∑k
l=1 ‖w −wl‖2.

In the following definition we provide a relaxation of the
full mean synchronization operation that introduces some
leeway in terms of this divergence.

Definition 1. A partial synchronization operator with
a positive divergence threshold ∆ ∈ R is an operator σ∆ :
Rk×n → Rk×n that 1) leaves the mean model invariant and
2) after its application the model divergence is bounded by
∆. That is, for all model configurations w ∈ Rk×n it holds
that w = σ∆w and δ(σ∆w) ≤ ∆.

An operator adhering to this definition does not generally
put all nodes into sync (albeit the fact that we still refer
to it as synchronization operator). In particular it allows
to leave all models untouched as long as the divergence re-
mains below the threshold ∆. The following theorem notes
that partial synchronization has a controlled regret over full
synchronization if the batch size is sufficiently large and the
divergence threshold is set proportional to the Lipschitz con-
stant L of the losses and the data radius R.

Theorem 2. Suppose the update rule ϕ is a contraction
with constant c. Then, for batch sizes b ≥ log−1

2 c−1 and
divergence thresholds ∆ ≤ ε/(2RL), the average regret of
using a partial synchronization operator σ∆ instead of σ is
bounded by ε, i.e., for all rounds t ∈ N it holds that the
average regret 1/k

∑k
l=1 |f(p∆

t,l, yt,l)−f(pt,l, yt,l)| is bounded

by ε where pt,l and p∆
t,l denote the prediction scores at learner

l and time t resulting from σ and σ∆, respectively.

We omit the proof here referring to the full version of this
paper. While the contraction assumption is readily avail-
able for regularized SGD, as mentioned in Sec. 2, it can be
relaxed: by requiring the updates to only contract on expec-
tation it is possible to extend the theorem to unregularized
SGD updates as well as to other rules. Moreover, we remark
that Thm. 2 implies that partial synchronizations retain the
optimality of the static mini-batch algorithm of Dekel et al.
[2012] for the case of stationary targets: By using a time-
dependent divergence threshold based on εt ∈ O(1/

√
t) the

bound of O(
√
T) follows.

3.2 Communication-efficient Protocol
After seeing that partial synchronization operators are

sound from the learning perspective, we now turn to how
they can be implemented in a communication-efficient way.
Every distributed learning protocol that implements a par-
tial synchronization operator has to implicitly control the
divergence of the model configuration. However, we cannot
simply compute the divergence by centralizing all local mod-
els, because this would incur just as much communication
as static full synchronization. Our strategy to overcome this
problem is to first decompose the global condition δ(w) ≤ ∆
into a set of local conditions that can be monitored at their
respective nodes without communication (see, e.g., Sharf-
man et al. [2007]). Secondly, we define a resolution protocol

Algorithm 2 Dynamic Synchronization Protocol

Initialization:

local models w1,1, . . . , w1,k ← (0, . . . , 0)
reference point r ← (0, . . . , 0)
violation counter v ← 0

Round t at node l:

observe xt,l and provide service based on pt,l
observe yt,l and update wt+1,l ← ϕ(wt,l, xt, yt)
if t mod b = 0 and ‖r − wt,l‖ > ∆/2 then

send wt,l to coordinator

At coordinator on violation:

let B be set of nodes with violation
v ← v + |B|
if v = k then B ← [k], v ← 0
while B 6= [k] and ‖r − 1

B

∑
l∈B wl‖ > ∆ do

augment B by augmentation strategy
receive models from nodes added to B

send to nodes in B model w = 1
B

∑
l∈B wl

if B = [k] also set new reference model r ← w

that transfers the system back into a valid state whenever
one or more of these local conditions are violated. This in-
cludes carrying out a sufficient amount of synchronization
to reduce the divergence to be less or equal than ∆.

For deriving local conditions we consider the domain of
the divergence function restricted to an individual model
vector. Here, we identify a safe-zone S (see Keren et al.
[2012]) such that the global divergence can not cross the
∆-threshold as long as all local models remain in S.1 The
following statement, which we give again without proof, pro-
vides a valid spherical safe zone Sr that is centered around
some global reference point r.

Theorem 3. Let r ∈ Rd be some reference point. If for
all nodes l ∈ {1, . . . , k} it holds that ‖r − wl‖ ≤ ∆/2 then
we have for the model divergence that δ(w) ≤ ∆.

We now incorporate these local conditions into a distributed
prediction protocol. As a first step, we have to guarantee
that at all times all nodes use the same reference point. For
a prediction t, let us denote by t′ the last time prior to
t when a full model synchronization was performed (resp.
t′ = 0 in case no full synchronization has happened un-
til round t). The mean model wt′ is known to all local
learners. We use this model as the reference model and set
r = wt′ . A local learners l can then monitor their local
condition ‖r − wl‖ ≤ ∆/2 in a decentralized manner.

It remains to design a resolution protocol that specifies
how to react when one or several of the local conditions are
violated. A direct solution is to trigger a full synchroniza-
tion in that case. This approach, however, does not scale
well with a high number of nodes in cases where model up-
dates have a non-zero probability even in the asymptotic
regime of the learning process. When, e.g., PAC models for
the current target distribution are present at all local nodes,
the probability of one local violation, albeit very low for an
individual node, increases exponentially with the number of
nodes. An alternative approach that can keep the amount

1Note that a direct distribution of the threshold across the
local nodes (as in, e.g., Keralapura et al. [2006]) is in-
feasible, because the divergence function is non-linear.

4

0 500000 1000000 1500000
Number of messages

80000

100000

120000

140000

160000

180000

200000

220000

240000
E
rr

o
r

8
1216

2432

64

128

256

512

0.050.10.30.50.93.0

5.0

No Synchronization

static (batch sizes)
dynamic (div. thres.)

0 50000 100000 150000 200000 250000 300000 350000
Number of messages

86000

88000

90000

92000

94000

96000

98000

100000

E
rr

o
r

8

16

24

32

64

0.0250.05

0.075
0.1

0.15

0.2

No Synchronization

static (batch sizes)
dynamic (div. thres.)

Figure 1: Performance of static and dynamic model synchronization that track (left) a rapidly drifting
disjunction over 100-dimensional data with 512 nodes; and (right) a neural network with one hidden layer and
150 output variables. with 1024 nodes.

of communication low relative to the number of nodes is
to perform a local balancing procedure: on a violation, the
respective node sends his model to a designated note we
refer to as coordinator. The coordinator then tries to bal-
ance this violation by incrementally querying other nodes for
their models. If the mean of all received models lies within
the safe zone, it is transferred back as new model to all par-
ticipating nodes, and the resolution is finished. If all nodes
have been queried, the result is equal to a full synchroniza-
tion and the reference point can be updated. In both cases,
the divergence of the model configuration is bounded by ∆
at the end of the balancing process, because all local condi-
tions hold. Also this protocol leaves the global mean model
unchanged. Hence, it is complying to Def. 1.

While balancing can achieve a high communication reduc-
tion over direct resolution particularly for a large number
of nodes, it potentially degenerates in certain special situ-
ations: We can end up in a stable regime in which local
violations are likely to be balanced by a subset of the nodes;
however a full synchronization would strongly reduce the
expected number of violations in future rounds. In other
words: balancing can delay crucial reference point updates
indefinitely. A simple hedging mechanism for online opti-
mization can be employed to avoid this situation: we count
the number of local violations using the current reference
point and trigger a full synchronization whenever this num-
ber exceeds the number of nodes. This concludes our dy-
namic protocol for distributed prediction. All components
are summarized in Alg. 2

4. EMPIRICAL EVALUATION
In this section we investigate the practical performance

of the dynamic learning protocol for two controlled settings:
one with linearly separable data and one with unsepara-
ble data. Our main goal is to empirically confirm that the
predictive gain of static full synchronizations (using a batch
size of 8) over no synchronization can be approximately pre-
served for small enough thresholds, and to assess the amount
of communication reduction achieved by these thresholds.

We start with the problem of tracking a rapidly drifting
random disjunction. In this case the target distribution pro-
duces data that is episode-wise linearly separable. Hence, we
can set up the individual learning processes so that they con-

verge to a linear model with zero classification error within
each episode. Formally, we identify a target disjunction with
a binary vector z ∈ {0, 1}n. A data point x ∈ X = {0, 1}n
is labeled positively y = 1 if 〈x, z〉 ≥ 1 and otherwise re-
ceives a negative label y = −1. The target disjunction is
drawn randomly at the beginning of the learning process
and is randomly re-set after each round with a fixed drift
probability of 0.0002. In order to have balanced classes, the
disjunctions as well as the data points are generated such
that each coordinate is set independently to 1 with proba-
bility

√
1− 2−1/n. As loss function for the stochastic gradi-

ent descent we use the logistic loss. Corresponding to our
setting of noise-free linearly separable data, we choose the
regularization parameter λ = 0 and the learning rate η = 1.

In Fig. 1 (left) we present the result for dimensionality
n = 100, with k = 512 nodes, processing m = 12.8M data
points through T = 25000 rounds. For divergence thresholds
up to 3.0, dynamic synchronization can retain the error num-
ber of statically synchronizing every 8 rounds. At the same
time the communication is reduced to 3.9% of the original
number of messages. An approximately similar amount of
communication reduction can also be achieved using static
synchronization by increasing the batch size to 128. This
approach, however, only retains 51.5% of the error reduc-
tion over no communication. Analyzing the development of
the evaluation metrics over time reveals: At the beginning
of each episode there is a relatively short phase in which
additional errors are accumulated and the communicative
protocols acquire an advantage over the baseline of never
synchronizing. This is followed by a phase during which no
additional error is made. Here, the communication curve
of the dynamic protocols remain constant acquiring a gain
over the static protocols in terms of communication.

We now turn to a harder experimental setting, in which
the target distribution is given by a rapidly drifting two-
layer neural network. For this target even the Bayes op-
timal classifier per episode has a non-zero error, and, in
particular, the generated data is not linearly separable. In-
tuitively, it is harder in this setting to save communication,
because a non-zero residual error can cause the linear mod-
els to periodically fluctuate around a local loss minimizer—
resulting in crossings of the divergence threshold even when
the learning processes have reached their asymptotic regime.
We choose the network structure and parameter ranges in

5

a way that allow for a relatively good approximation by
linear models (see Bshouty and Long [2012]). The pro-
cess for generating a single labeled data point is as fol-
lows: First, the label y ∈ Y = {−1, 1} is drawn uniformly
from Y . Then, values are determined for hidden variables
Hi with 1 ≤ i ≤ dlogne based on a Bernoulli distribution
P [Hi = · |Y = y] = Ber(phi,y). Finally, x ∈ X = {−1, 1}n
is determined by drawing xi for 1 ≤ i ≤ n according to
P [Xi = xi, |Hp(i) = h] = Ber(poi,h) where p(i) denotes the
unique hidden layer parent of xi. In order to ensure lin-
ear approximability, the parameters of the output layer are
drawn such that |poi,−1 − poi,1| ≥ 0.9, i.e., their values have
a high relevance in determining the hidden values. As in
the disjunction case all parameters are re-set randomly af-
ter each round with a fixed drift probability (here, 0.005).
For this non-separable setting we choose again to optimize
the logistic loss, this time with parameters λ = 0.5 and
η = 0.05 respectively. Also, in order to increase the stabil-
ity of the learning process, we apply averaged updates over
mini-batches of size 8.

Figure 1 (right) contains the results for dimensionality
150, with k = 1024 nodes, processing m = 2.56M data
points through T = 2500 rounds. For divergence thresholds
up to 0.05, dynamic synchronization can retain the error
of the baseline. At the same time the communication is
reduced to 46% of the original number of messages.

5. CONCLUSION
We presented a protocol for distributed online prediction

that aims to dynamically save on network communications
in sufficiently easy phases of the modeling task. The pro-
tocol has a controlled predictive regret over its static coun-
terpart and experiments show that it can indeed reduce the
communication substantially—up to 95% in settings where
the linear learning processes are suitable to model the data
well and converge reasonably fast. Generally, the effectivity
of the approach appears to correspond to the effectivity of
linear modeling by SGD in the given setting.

For future research a theoretical characterization of this
behavior is desirable. A practically even more important di-
rection is to extend the approach to other model classes that
can tackle a wider range of learning problems. In principle,
the approach of controlling model divergence remains appli-
cable, as long as the divergence is measured with respect
to a distance function that induces a useful loss bound be-
tween two models. For probabilistic models this can for
instance be the KL-divergence. However, more complex
distance functions constitute more challenging distributed
monitoring tasks, which currently are open problems.

References
Jacob Abernethy, Alekh Agarwal, Peter L. Bartlett, and

Alexander Rakhlin. A stochastic view of optimal regret
through minimax duality. In COLT 2009 - The 22nd Con-
ference on Learning Theory, 2009.

Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay
Mansour. Distributed learning, communication complex-
ity and privacy. Journal of Machine Learning Research -
Proceedings Track, 23:26.1–26.22, 2012.

Nader H. Bshouty and Philip M. Long. Linear classifiers are
nearly optimal when hidden variables have diverse effects.
Machine Learning, 86(2):209–231, 2012.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning,
and games. Cambridge University Press, 2006. ISBN 978-
0-521-84108-5.

Koby Crammer and Yoram Singer. On the algorithmic im-
plementation of multiclass kernel-based vector machines.
Journal of Machine Learning Research, 2:265–292, 2001.

Hal Daumé III, Jeff M. Phillips, Avishek Saha, and Suresh
Venkatasubramanian. Efficient protocols for distributed
classification and optimization. In ALT 2012.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin
Xiao. Optimal distributed online prediction using mini-
batches. Journal of Machine Learning Research, 13:165–
202, 2012.

Daniel Hsu, Nikos Karampatziakis, John Langford, and
Alexander J. Smola. Parallel online learning. In Scaling
up machine learning: Parallel and distributed approaches.
Cambridge University Press.

Ram Keralapura, Graham Cormode, and Jeyashankher Ra-
mamirtham. Communication-efficient distributed mon-
itoring of thresholded counts. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD
2006), pages 289–300, 2006.

Daniel Keren, Izchak Sharfman, Assaf Schuster, and
Avishay Livne. Shape sensitive geometric monitoring.
Knowledge and Data Engineering, IEEE Transactions on,
24(8):1520–1535, 2012.

G. Mann, R. McDonald, M. Mohri, N. Silberman, and
D. Walker. Efficient large-scale distributed training of
conditional maximum entropy models. In Advances in
Neural Information Processing Systems (NIPS 2009), vol-
ume 22, pages 1231–1239, 2009.

Ryan T. McDonald, Keith Hall, and Gideon Mann. Dis-
tributed training strategies for the structured perceptron.
In Human Language Technologies: Conf. of the North
American Chapter of the Association of Computational
Linguistics, Proceedings (HLT-NAACL), pages 456–464,
2010.

XuanLong Nguyen, Martin J Wainwright, and Michael I
Jordan. Decentralized detection and classification using
kernel methods. In Proceedings of the twenty-first inter-
national conference on Machine learning, page 80. ACM,
2004.

Joel B Predd, SB Kulkarni, and H Vincent Poor. Distributed
learning in wireless sensor networks. Signal Processing
Magazine, IEEE, 23(4):56–69, 2006.

Izchak Sharfman, Assaf Schuster, and Daniel Keren. A ge-
ometric approach to monitoring threshold functions over
distributed data streams. ACM Trans. Database Syst., 32
(4), 2007.

Lin Xiao. Dual averaging methods for regularized stochastic
learning and online optimization. The Journal of Machine
Learning Research, 11:2543–2596, 2010.

Tong Zhang. Solving large scale linear prediction problems
using stochastic gradient descent algorithms. In Proceed-
ings of the 21st int. conf. on Machine learning (ICML
2004), 2004.

Martin Zinkevich, Alex J. Smola, and John Langford. Slow
learners are fast. In Proc. of 23rd Annual Conference
on Neural Information Processing Systems (NIPS 2009),
pages 2331–2339, 2009.

Martin Zinkevich, Markus Weimer, Alexander J. Smola, and
Lihong Li. Parallelized stochastic gradient descent. In
Proc. of 24th Annual Conference on Neural Information
Processing Systems (NIPS 2010), pages 2595–2603, 2010.

6

