
Large-scale Online Mobility Monitoring with Exponential
Histograms

Christine Kopp
Fraunhofer IAIS

St. Augustin, Germany

christine.kopp
@iais.fraunhofer.de

Michael Mock
Fraunhofer IAIS

St. Augustin, Germany

michael.mock
@iais.fraunhofer.de

Odysseas Papapetrou
Technical University of Crete

Chania, Greece
papapetrou@softnet.tuc.gr

Michael May
Fraunhofer IAIS

St. Augustin, Germany

michael.may@iais.fraunhofer.de

ABSTRACT
The spread of digital signage and its instantaneous adapt-
ability of content challenges out-of-home advertising to con-
duct performance evaluations in an online fashion. This im-
plies a tremendous increase in the granularity of evaluations
as well as a complete new way of data collection, storage and
analysis. In this paper we propose a distributed system for
the large-scale online monitoring of poster performance in-
dicators based on the evaluation of mobility data collected
by smartphones. In order to enable scalability in the or-
der of millions of users and locations, we use a local data
processing paradigm and apply exponential histograms for
an efficient storage of visit statistics over sliding windows.
In addition to an immediate event centralization we also
explore a hierarchical architecture based on a merging tech-
nique for exponential histograms. We provide an evaluation
on the basis of a real-world data set containing more than
300 million GPS points corresponding to the movement ac-
tivity of nearly 3,000 persons. The experiments show the
accuracy and efficiency of our system.

1. INTRODUCTION
Advertising media are under the obligation to provide re-

liable performance indicators for the pricing of advertising
campaigns. For the German out-of-home (OOH) advertis-
ing industry, generating yearly net sales of about 760 million
Euro [2], this has meant to establish a system of geograph-
ically differentiating performance indicators over the past
years1. However, with the spread of digital signage also a

1http://www.agma-mmc.de/media-analyse/plakat.html

fine-grained temporal differentiation will be required in fu-
ture. While current performance indicators inform about
the poster contacts of seven or ten average days (the two
standard durations of poster campaigns in Germany), digi-
tal out-of-home (DOOH) advertising spots have a duration
of only a few seconds. Assuming an evaluation period of
10 seconds, the granularity of the performance indicators
(and consequently of the required input data) increases by
four orders of magnitude. DOOH therefore has to face the
challenge of collecting and analyzing big data. In addition,
digital content has the advantage that it can be instantly
adapted to a changing audience. This adaptation, however,
requires online performance information, which forms the
second challenge of DOOH performance evaluation.

In this paper we propose a distributed system for the
large-scale online monitoring of poster performance indica-
tors based on the evaluation of mobility data collected by
smartphones. We hereby consider two use cases which the
system shall cover. First, we want to be able to perform
online queries which obtain performance measures for the
recent past in a sliding window style. Second, we want to
analyze historic data for various time intervals. The first
type of query allows the online monitoring of poster per-
formance and thus the targeted placement of advertisement
spots. The second type of query can be used for billing pur-
poses or to analyze previously collected data sets (e.g. to
find interesting visit patterns that can then be monitored in
the online system). Although our use cases differ with re-
spect to their system requirements (distributed online pro-
cessing vs. analysis of massive amounts of centralized data),
we want to keep the maintenance effort of the system as low
as possible. Our goal is therefore to set up a scalable system
architecture that allows an efficient re-use of code from the
online scenario for historic data analysis.

The key component of our approach to handle massive
streams of data is to use exponential histograms for data
compression. This data structure has the advantage that
it offers sliding window query capabilities with a guaran-
teed maximum relative error. In addition, exponential his-
tograms can be applied in a distributed setting [12] thus
allowing for scalability when the number of users increases.

Our online system relies on an Android implementation

1

that we have used in previous work [3] to detect visit pat-
terns on mobile phones. For the analysis of historic data we
have set up a Storm environment. In combination with the
Kafka messaging system we are able to perform historic data
analysis in a distributed streaming fashion. In this way we
can apply the same system architecture for online and his-
toric data analysis. We use the Storm/Kafka environment
to perform the experiments in this paper.

We analyze the performance of our system using a real-
world GPS data set containing trajectories of 2,967 persons
containing more than 300 million GPS points over a pe-
riod of one week. We extract visit events from this data
set using 400,988 points of interest (POI) in Germany from
OpenStreetMap (OSM). Our experiments show that the us-
age of exponential histograms results in an average error of
less than 1/10 of the maximum acceptable error while re-
ducing the storage space to an amount as small as 9.7% of
the baseline storage space.

The remainder of our paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 shows our system
architecture and Section 4 provides the experiments. We
conclude our paper in Section 5.

2. RELATED WORK

2.1 Exponential Histograms
Exponential histograms [1] are a deterministic structure,

proposed to address the basic counting problem, i.e., for
counting the number of true bits in the last N stream ar-
rivals. They belong to a family of methods that break the
sliding window range into smaller windows, called buckets or
basic windows, to enable efficient maintenance of the statis-
tics. Each bucket contains the aggregate statistics, i.e., the
number of arrivals and bucket bounds, for the correspond-
ing sub-range. Buckets that no longer overlap with the slid-
ing window are expired and discarded from the structure.
To compute an aggregate over the whole (or a part of the)
sliding window, the statistics from all buckets overlapping
with the query range are aggregated. For example, for basic
counting, aggregation is a summation of the number of true
bits in the buckets. A possible estimation error can be intro-
duced due to the oldest bucket inside the query range, which
usually has only a partial overlap with the query. Therefore,
the maximum possible estimation error is bounded by the
size of the last bucket.

To reduce the space requirements, exponential histograms
maintain buckets of exponentially increasing sizes. Bucket
boundaries are chosen such that the ratio of the size of each
bucket b with the sum of the sizes of all buckets more recent
than b is upper bounded. In particular, the following invari-
ant is maintained for all buckets j: Cj/(2(1+

∑j−1
i=1 Ci)) ≤ ε

where ε denotes the maximum acceptable relative error and
Cj denotes the size of bucket j (number of true bits ar-
rived in the bucket range), with bucket 1 being the most
recent bucket. Queries are answered by summing the sizes
of all buckets that fully overlap the query range, and half
of the size of the oldest bucket, if it partially overlaps the
query. The estimation error is solely contained in the oldest
bucket, and is therefore bounded by this invariant, resulting
in a maximum relative error of ε.

Recently, Papapetrou et al. [12] showed how an arbitrary
number of exponential histograms EH1, EH2, ..., EHn (each

one corresponding to an individual stream) can be aggre-
gated/merged, in order to produce a single exponential his-
togram EH⊕ that corresponds to the order-preserving union
of the streams. More precisely, let ε denote the maximum er-
ror parameter of the original exponential histograms, and ε′

the parameter of the merging algorithm. The algorithm sup-
ports the creation of an aggregated exponential histogram
with a maximum relative error of (ε + ε′ + ε · ε′). In this
work we use this merging algorithm to reduce the memory
required for storing the exponential histograms of the visit
events coming from various input sources.

2.2 Distributed Evaluation of Visit Events
In previous work we have provided a set of visit quantities

that can be used to define performance measures in OOH
advertisement [8]. In this paper we concentrate on the eval-
uation of gross visits which state the number of total visits
to a certain location and which can be used to estimate the
total contacts to a poster site. In addition, we have pro-
vided a methodology for the privacy-preserving, distributed
collection of visit quantities in previous work [7].

The basic idea of the approach is to decentralize the data
collection and evaluation process of movement data. Instead
of constantly submitting location information of a user to
some central server, the evaluation of visits (or visit pat-
terns) is performed locally on a mobile device (e.g. smart-
phone). The device submits only aggregated and anony-
mized statistics to a central coordinator. In addition, web
anonymization techniques such as onion routing [4] can be
used to prevent that the coordinator reconstructs visit his-
tories from several messages of a person based on the com-
munication protocol. A similar, however analytically less
powerful framework has previously been proposed by Hoh
et al. [6] for the distributed, privacy-preserving monitor-
ing of traffic. However, both papers do not consider the
practical aspect of scaling the proposed method to thou-
sands and potentially millions of users. In fact, considering
movement statistics from our GPS data set, every person
traverses more than 200 street segments per day. If we as-
sume further that each person visits 10 different locations
(e.g. work location, shops, bus stops) per day and 20 mil-
lion persons participate in data collection, about 4.2 billion
events occur every day. In order to cope with this number of
events, sophisticated analysis and storage algorithms as well
as a sophisticated system architecture have to be devised.
The design and performance analysis of such a system is the
scope of our paper.

3. SYSTEM ARCHITECTURE
Our architecture consists of two or alternatively three lay-

ers (see Figure 1). The lowest layer holds the user nodes,
which collect the users’ GPS data and extract visit events.
The visit events are forwarded either directly to the central
coordinator (flat setting) or to a layer of intermediate nodes
(hierarchical setting). In the flat setting, the coordinator
aggregates the visit information of each POI in an exponen-
tial histogram. I.e., for each POI an exponential histogram
is maintained that records the visit events for this POI. As
the exponential histogram stores a time aggregate with the
event, queries over time windows can be answered. In the hi-
erarchical setting, the exponential histograms reside already
at the intermediate nodes. In regular time intervals the in-
termediate nodes submit the exponential histograms to the
coordinator, which merges them and answers user queries.

2

Figure 1: System architecture; left: flat setting; right: hierarchical setting

The exponential histograms cannot be applied at the user
level because the number of visit events per user is too small
to make the data structure efficient. The layer of interme-
diate nodes was introduced for horizontal scalability and to
avoid an overload of the coordinator. However, it also serves
a privacy purpose given that the intermediate nodes do not
collude (see [7]). As a user can freely select an intermediate
node when submitting a visit event, no intermediate node
will obtain the whole event history of a single user. The
intermediate nodes submit their data structure in regular
time intervals to the coordinator, which finally merges the
data structures and answers user queries.

As motivated by our use case, our system shall be able
to perform analyses online as well as on historic data. The
above architecture describes the online use case. For his-
toric data analysis we have to substitute the layer of local
nodes. This substitution should still allow to process data in
parallel in order to scale to large amounts of data. In addi-
tion, a streaming environment would be preferable in order
to re-use existing code. Both aspects can be met by using
a distributed streaming processing system as, for example,
Storm2 or S4 [11]. We have ported the Android code of event
detection to run as Storm bolts. The input is streamed into
the system via the Kafka messaging system [9], which allows
to handle each GPS point of the recorded trajectories as in-
dividual message. Thus, with this mechanisms we can scale
the parallel simulation of event detection horizontally in the
cluster. In our experiments described in the next section we
used this technique to emulate the event detection on GPS
traces of 2,967 test persons in an experimental cluster. De-
tected events are sent to the intermediate nodes similar to
the online setting.

4. EXPERIMENTS

4.1 Data Set
For our experiments we use a subset of a large-scale GPS

survey [10] commissioned by the Arbeitsgemeinschaft Media-
Analyse e.V.3, a joint industry committee of German ad-
vertising vendors and customers. The GPS data has been
collected in the year 2011 and contains 2,967 persons with
valid GPS data. The persons are recruited from 31 major

2http://storm-project.net
3http://www.agma-mmc.de

cities in Germany and are asked to carry the GPS devices
for one week.

After clean-up the data set contains 304 million GPS points.
In addition, we extracted 400,988 points of interest (POI)
from OpenStreetMap4 (OSM) [5] marked with the keys shop,
amenity, leisure, tourism, historic, sport, public transport,
railway. We grouped the POI into the following categories:
shop, restaurant, leisure, education, parking and public trans-
port stops. We limited our experiments to those POI be-
cause digital posters are still very expensive and therefore
placed mostly at attractive places as train stations or shop-
ping locations. For each POI category we defined a mini-
mum stay time and a 50x50 meter spatial buffer in order to
extract visit events. Table 1 shows the number of POI ag-
gregated to the six types along with the assumed minimum
stay times. Figure 2 left shows a one-day trajectory of one
test person along with the extracted POI in its surrounding.

POI type # POI min. stay time
shop 89,789 10 min.
restaurant 105,665 15 min.
leisure 69,318 15 min.
education 24,151 15 min.
parking 63,602 5 min.
public transport stop 48,463 5 min.
total 400,988 –

Table 1: Number of POI extracted from OSM and
minimum defined stay time per category

The extraction of visit events is performed by the local
nodes (see Section 3). A visit results from the spatial inter-
section of a trajectory and a geographic location and has to
last a given minimum period of time. For a formal defini-
tion of a visit see [8]. Figure 2 right shows exemplary the
extraction of visit events. The POI are colored according
to their minimum required stay time (green = 5 minutes,
orange = 10 minutes, red = 15 minutes). In the top right
picture one visit occurs in the orange colored POI (where
a dense cluster of GPS points exists). In the bottom right
picture the user passes the POI merely on his way. As the
duration of spatial intersection lies below the minimum stay
time, no visit events are generated. For the extraction of
visits we apply an algorithm from previous work [3], which

4http://www.openstreetmap.org

3

(a) one-day trajectory of a test person (b) trajectory excerpts showing one POI
visit on top (dense cluster of points) and
two POI passages on bottom

Figure 2: left: one-day trajectory of a test person along with OSM points of interest colored according to
minimum stay time (green/orange/red = 5/10/15 minutes); top right: visit in POI with 10 minute stay time;
bottom right: passages of POI without visiting

visits per POI # POI
1 7,590
2 2,176
3 824
4 458
5 223
6 136
7 101
8 53
9 56

≥ 10 192

Table 2: Frequency of visits per POI

was designed to extract visit patterns from a stream of GPS
positions online on mobile phones.

In total we extracted 23,508 visit events to 11,809 differ-
ent POI for all test persons. This number has been consid-
erably below our expectations. Most likely it results from
two reasons. First, the number of OSM POI are incomplete.
From the online source http://www.haltestellen-suche.de we
know to expect at least 217,000 stations of public transport
in Germany, and also the number of shops in Germany is
considerably above the extracted number of POI. Second,
GPS signals are typically blocked inside of buildings. As we
applied a light-weight event extraction algorithm (that can
run on a mobile device), we may have lost a number of visit
events.

Table 2 shows an overview of the number of visit events
per POI. Most often, only a single visit occurred. This num-
ber is quite reasonable given our low number of visits and
the independent movement behavior of the test persons.

In order to perform experiments also on a large-scale data
set resembling more closely the real-world situation, we repli-
cated the original visit data by a factor of 1,000. We set the

time of each such visit by adding Gaussian noise to the cur-
rent time with µ = 0 and σ = 10,000 seconds.

4.2 Experimental Set-Up
In our experiments we conducted point queries in a slid-

ing window fashion. I.e., we queried the number of events
per POI in the past ∆t seconds. The selected query win-
dows were of length 30, 600, 1800, 3600 or 86400 seconds.
We performed those queries every 10 minutes (in the hier-
archical setting this coincides with the time interval of the
force action). For our observation period of one week this
resulted in nt = 1,008 queries per query window for each of
the np = 11,809 visited POI. In accordance with our max-
imum query interval, we set the sliding window parameter
of the exponential histogram to 86,400 seconds in all experi-
ments. Further, we varied the maximum acceptable relative
error ε to take the values 0.01, 0.02, 0.04, 0.08 and 0.16.
In the hierarchical setting we used 10 intermediate nodes
which submitted their data structures every 600 seconds to
the coordinator.

We measured the error for each experiment using the
mean absolute percentage error (MAPE), which is defined
as follows:

MAPE =

∑np

i=1

∑nt
j

∣∣∣xij−x̂ij

xij

∣∣∣
np · nt

where xij denotes the true number of visit events at POI
i in query window j and x̂ij denotes the number of events
returned from the exponential histogram. In the case of
xij = 0 we added a relative error of zero if our estimate
was correct (x̂ij = 0) and a relative error of ∞ if x̂ij 6= 0.
This latter case, however, did not occur. We performed all
experiments for the flat and hierarchical setting as well as
for the original and multiplied data set.

4

4.3 Results
Figure 3 shows the results for the flat and hierarchical

setting of the multiplied data set. The respective numbers
are provided in Tables 3 and 4. Note that we display only
the results for the multiplied data set because due to the
few visit events in the original data set the error was nearly
always zero there.

In general, the MAPE is very low, lying with one excep-
tion below 1%. For both the flat and hierarchical setting
two trends can be observed. First, the MAPE decreases
with smaller ε. Second, the MAPE decreases with decreas-
ing size of the query window. The first effect is nearly linear
for all query windows and can be expected from the char-
acteristics of exponential histograms. The second is also
expected because the error guarantees are given on the size
of the sliding window, which was fixed to 86,400 seconds.
Accordingly, the error for smaller time intervals has to be
lower. However, the effect is linear to the logarithm of the
query window sizes, i.e. when increasing the query window,
the MAPE increases sublinearly.

When comparing the error between the flat and hierar-
chical setting, the merge operations result in only a small
increase in error.

query
wind.

ε=0.01 ε=0.02 ε=0.04 ε=0.08 ε=0.16

30 s 7E-6% 2E-5% 5E-5% 2E-4% 3E-3%
600 s 2E-4% 3E-3% 0.03% 0.18% 0.44%

1800 s 3E-3% 0.04% 0.12% 0.28% 0.54%
3600 s 0.02% 0.06% 0.15% 0.32% 0.59%

86400 s 0.06% 0.14% 0.28% 0.44% 0.79%

mem. 14.5 MB 8.8 MB 5.5 MB 3.4 MB 2.5 MB

Table 3: Mean absolute percentage error and mem-
ory usage for flat setting

query
wind.

ε=0.01 ε=0.02 ε=0.04 ε=0.08 ε=0.16

30 s 8E-6% 2E-5% 6E-5% 2E-4% 3E-3%
600 s 2E-3% 3E-3% 0.03% 0.18% 0.45%

1800 s 3E-3% 0.04% 0.12% 0.28% 0.64%
3600 s 0.02% 0.06% 0.15% 0.36% 0.75%

86400 s 0.07% 0.16% 0.32% 0.53% 1.03%

mem. 14.5 MB 8.8 MB 5.5 MB 3.4 MB 2.5 MB

Table 4: Mean absolute percentage error and mem-
ory usage for hierarchical setting

In order to set the MAPE in perspective to the number
of visit events, Table 5 shows the average and maximum
number of visits per POI and query interval. The average is
hereby calculated once for all POI and time slots and once
only for those containing at least one event.

The memory usage of the exponential histogram at the
end of the observation period is depicted in the last line in
Tables 3 and 4. Assuming fixed 32-bit counters, it depends
only on ε and the maximum possible count N in the sliding
window of each POI, requiring O(1

ε
logN) space [1]. As

we maintain an exponential histogram for each POI, the
required memory depends also linearly on the number of
(distinct) visited POI which is, however, constant in our
experiments.

query avg. events avg. events max. events
wind. > 0

30 s 0.1 1.6 1,916
600 s 2.0 12.1 2,029

1,800 s 5.9 32.0 2,260
3,600 s 11.8 60.0 3,118

86,400 s 270.3 709.8 36,037

Table 5: Number of average and maximum events
per POI and query window in ground truth

4.4 Discussion
Our experiments show that the resultant error is very low.

For all settings of ε the mean error (MAPE) is less than
1/10 of the maximum acceptable error. This is a very good
result. Especially we can be sure for small total number of
visits that the query results are always correct. For example,
setting ε = 0.01 will result in no errors if less than 100 events
occur per POI. This is an important characteristic because
the visit frequency of POI is right-tailed, containing only
few POI with very high frequencies.

Further the experiments show that our setting scales hor-
izontally. By introducing a layer of 10 intermediate nodes,
the MAPE was on average 7.5% higher and at most 23%
higher than in the flat setting. Both numbers are consid-
erably below the maximum acceptable error as well as the
maximum relative error guaranteed for the join of exponen-
tial histograms.

Finally, to evaluate the memory usage, we can compare
the numbers to the following baseline scenario. Whenever
a visit event occurs, the POI identifier and timestamp are
stored at the coordinator using two 4 Byte integers. As our
sliding window covers only one day, we will assume that we
have to store 1/7 of the total visit events. For the origi-
nal 23,509 events this results in 0.026 MB. For the multi-
plied data set it results in 25.6 MB. The storage amount
for the original events using exponential histograms varied
between 0.54-4.7 MB. In this case we did not save on mem-
ory. However, using the more realistic multiplied data set
with exponential histogram sizes between 2.5-14.5 MB, our
experiments require only 9.7-56.6% of the baseline storage
space depending on the selected ε.

When extrapolating to the envisioned setting of monitor-
ing 20 million persons generating each 210 events per day
on about 6,500,000 distinct POIs in Germany (including
the 6,000,000 distinct street segments), just storing the raw
event data would result in 31.3 GB memory consumption.
This is considerably above the 1.3-7.8 GB required by the
exponential histograms (by just taking into account that our
memory consumption increases linearly with the number of
distinct POIs).

Considering our entire approach including exponential his-
tograms and local evaluation, the storage reduction is even
much higher compared to a naive centralized setting where
the users submit a GPS position every second to some cen-
tral coordinator.

Also note that inserting into and querying an exponential
histogram almost takes constant time far below a microsec-
ond, which is much faster than searching an event database
of raw events.

5

Figure 3: Mean average percentage error and memory usage for different maximum relative errors (ε) and
query window sizes; left: without intermediate nodes; right: hierarchy with 10 intermediate nodes

5. CONCLUSIONS
In this paper we propose a distributed system for the

large-scale online monitoring of poster performance indica-
tors based on the evaluation of mobility data. Our system
relies on the collection and local processing of mobility data
via smartphones and uses exponential histograms for the
efficient storage and querying of visit statistics in a sliding
window fashion. Our experiments on a multiplied real-world
data set with nearly 3,000 persons show that the usage of ex-
ponential histograms results in an average error of less than
1/10 of the maximum acceptable error while reducing the
storage space to an amount as small as 9.7% of the baseline
storage space.

6. ACKNOWLEDGMENTS
We thank our colleague Sebastian Bothe for supporting

us to run the cluster-based version of the experiments and
the Arbeitsgemeinschaft Media-Analyse e.V. for granting
the use of the GPS data set. The research leading to these
results has received funding from the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) under grant
agreement no. 255951 (LIFT).

7. REFERENCES
[1] M. Datar, A. Gionis, P. Indyk, and R. Motwani.

Maintaining stream statistics over sliding windows.
SIAM J. Comput., 31(6):1794–1813, 2002.

[2] Fachverband Außenwerbung e.V.
Netto-Werbeeinnahmen erfassbarer Werbeträger in
Deutschland, 2002-2010 (Net turnover of confirmable
advertising media in Gemany, 2000-2010), 2011.
http://www.faw-ev.de/media/download/
marktdaten/4_Nettoumsaetze_aller_
Werbemedien_ab_2002.pdf.

[3] S. Florescu, C. Körner, M. Mock, and M. May.
Efficient mobility pattern stream matching on mobile
devices. In Proc. of the Ubiquitous Data Mining
Workshop (UDM 2012), pages 23–27, 2012.

[4] D. Goldschlag, M. Reed, and P. Syverson. Onion
routing for anonymous and private internet
connections. Comm. of the ACM, 42:39–41, 1999.

[5] M. M. Haklay and P. Weber. OpenStreetMap:
User-Generated Street Maps. IEEE Pervasive
Computing, 7(4):12–18, 2008.

[6] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work,
J.-C. Herrera, A. M. Bayen, M. Annavaram, and
Q. Jacobson. Virtual trip lines for distributed
privacy-preserving traffic monitoring. In Proc. of the
6th Int. Conf. on Mobile Systems, Applications, and
Services (MobiSys’08), pages 15–28. ACM, 2008.

[7] C. Kopp, M. Mock, and M. May. Privacy-preserving
distributed monitoring of visit quantities. In
SIGSPATIAL 2012 Int. Conf. on Advances in
Geographic Information Systems(SIGSPATIAL/GIS),
pages 438–441, 2012.

[8] C. Körner. Modeling Visit Potential of Geographic
Locations Based on Mobility Data. PhD thesis,
University of Bonn, 2012.

[9] J. Kreps, N. Narkhede, and J. Rao. Kafka: A
distributed messaging system for log processing. In
Proceedings of 6th International Workshop on
Networking Meets Databases (NetDB), Greece, 2011.

[10] Media-Micro-Census GmbH. ma 2012 Plakat -
Methoden-Steckbrief zur Berichterstattung, 2012.
http://www.agma-mmc.de/publikationen/
methodische-berichte/methoden-steckbriefe.
html?eID=dam_frontend_push\&docID=179Z.

[11] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In
Proceedings of the 2010 IEEE Int. Conf. on Data
Mining Workshops, ICDMW ’10, pages 170–177,
Washington, DC, USA, 2010. IEEE Computer Society.

[12] O. Papapetrou, M. N. Garofalakis, and
A. Deligiannakis. Sketch-based querying of distributed
sliding-window data streams. PVLDB,
5(10):992–1003, 2012.

6

