
Towards Elastic Stream Processing: Patterns and
Infrastructure

Kai-Uwe Sattler
Ilmenau University of Technology

Ilmenau, Germany

kus@tu-ilmenau.de

Felix Beier
∗

Ilmenau University of Technology
Ilmenau, Germany

felix.beier@tu-ilmenau.de

ABSTRACT
Distributed, highly-parallel processing frameworks as
Hadoop are deemed to be state-of-the-art for handling big
data today. But they burden application developers with
the task to manually implement program logic using low-
level batch processing APIs. Thus, a movement can be ob-
served that high-level languages are developed which allow
to declaratively model dataflows that are automatically op-
timized and mapped to the batch-processing backends. How-
ever, most of these systems are based on programming mod-
els as MapReduce that provide elasticity and fault-tolerance
in a natural manner since intermediate results are mate-
rialized and, therefore, processes can simply be restarted
and scaled with partitioning input datasets. For continuous
query processing on data streams, these concepts cannot be
applied directly since it must be guaranteed that no data
is lost when nodes fail. Usually, these long running queries
contain operators that maintain state information which de-
pends on the data that has already been processed and hence
they cannot be restarted without information loss. This also
is an issue when streaming tasks should be scaled. Therefore,
integrating elasticity and fault-tolerance in this context is a
challenging task which is subject of this paper. We show how
common patterns from parallel and distributed algorithms
can be applied to tackle these problems and how they are
mapped to the Mesos cluster management system.

1. INTRODUCTION
Processing and analyzing big data is one of todays big

challenges. A popular definition from a Gartner report
names the three ’V’ s – volume, velocity, and variety as the
main characteristics of big data. Among them, velocity refers
to the analytics of dynamic data even in (near) realtime.

Several approaches and techniques have been developed
in the past to process dynamic data. Data stream manage-
ment systems (DSMS) like STREAM, Aurora, IBM Infos-

∗This work is partially funded by an IBM PhD Fellowship.

phere Streams or our own AnduIN engine provide abstrac-
tions to process continuous and possibly infinite streams
of data instead of disk-resident datasets. Typically, this in-
cludes standard (relational) query operators, window-based
operators for computing joins and aggregations as well as
more advanced data analytics and data mining operators
working on portions of the stream, e.g. windows or synopses
of data. Complex Event Processing systems (CEP) partic-
ularly support the identification of event patterns in (tem-
poral) streams of data such as a sequence of specific event
types within a given time interval. Typically, systems of both
classes provide a declarative interface, either in form of SQL-
like query languages like CQL for DSMS, event languages
like SASE, or in the form of dataflow specifications like SPL
in IBM Infosphere Streams.

Recently, several new distributed stream computing plat-
forms have been developed, aiming at providing scalable and
fault-tolerant operation in cluster environments. Examples
are Apache S4 or Storm. In contrast to DSMS or CEP en-
gines theses platforms do not (yet) provide declarative inter-
faces and, therefore, require to program applications instead
of writing queries. Developers of these systems argue that
they provide the same for stream processing what Hadoop
did for batch processing – which raises the hope of a similar
movement towards higher-level languages as we can see with
Pig, Jaql etc. for MapReduce.

However, there are some challenges in scalable and elastic
stream processing which are different from batch processing
with Hadoop. Whereas in Hadoop, input data as well as
intermediate results are materialized on disk and, therefore,

• both, map and reduce tasks can be restarted arbitrarily
in case of failures until the entire job is finished,

• since computation state is saved, the number of nodes
assigned to map and reduce tasks can be simply adjusted
by partitioning input and intermediate results.

This is more difficult when processing dynamic data – even
with platforms as S4 or Storm which to some extent support
a reliable and scalable operation. The main differences are:

(1) Partitioning of streams for data-parallel processing is not
always easily possible, for example in case of window-
or sequence-based operators including CEP operators.
Also, elastic operation by adding new nodes at runtime
of a query requires at least rerouting of data.

(2) Stream queries are typically long running queries which
cannot be simply restarted without losing data. Further-
more, because of this, the deployment and resource allo-
cation (placement of queries on nodes, allocating mem-
ory and CPUs) are much more critical.

1

In this paper, we try to answer the question how to bridge
the gap between an easy-to-use, high-level declarative in-
terface for data stream analytics and scalable cluster-based
stream computing platforms in order to address these chal-
lenges. The contribution of this paper is twofold:

• Based on a basic dataflow model for stream queries we de-
scribe patterns for fault-tolerant and scalable query pro-
cessing and discuss constraints of their application.

• We show the implementation and deployment of these pat-
terns using our distributed stream and CEP engine An-
duIN and the Mesos cluster infrastructure by describing
techniques supporting flexible and elastic deployment.

Though, we use the AnduIN system for describing and im-
plementing the concepts, we think the ideas and patterns
are applicable to other platforms, too.

2. RELATED WORK
The relevant work related to this paper can be classified

into the main categories: continuous query processing and
scalable dataflow platforms.

Continuous query processing is usually implemented in
data stream management systems (DSMS). Pioneered by
systems like STREAM, Borealis, and Telegraph, several
approaches and systems have been developed in the last
decade including commercial products such as IBM Info-
Sphere Streams and StreamBase. Typically, these systems
provide a SQL-like query language enhanced by features for
dealing with continuous queries such as sliding windows.

Partitioning, distributed processing, and fault tolerance
have been studied to some extent, e.g., in Borealis [1] by in-
troducing replicated processing nodes as well as several new
tuple types such as punctuation tuples and control tuples
like undo tentative (tuples resulting from processing a sub-
set of the input which can be corrected later) and done tuples
indicating that state reconciliation finished. State reconcil-
iation is the process of stabilizing the output result, e.g.,
by replacing previously tentative results. In this way, this
approach aims at fault-tolerance but not at partitioning.

Another approach in the form of a programming model
has been proposed in [14] as so-called discretized streams (D-
Streams). This idea is based on resilient distributed datasets
which are storage abstractions used for rebuilding lost data.

An approach addressing load balancing issues by par-
titioning while providing fault tolerance for pipelined
dataflows is Telegraph’s FluX [10]. FluX is a dataflow opera-
tor extending the idea of the exchange operator form parallel
query processing. The operator encapsulates state partition-
ing and tuple routing and allows to repartition even stateful
operators while executing the dataflow pipeline.

Scalable dataflow platforms try to extend the applicabil-
ity of the MapReduce paradigm for large-scale parallel batch
processing to pipeline processing and continuous query sup-
port. One example is HOP (Hadoop Online Prototype) [4].
In HOP, map tasks maintain TCP sockets to reducers for
pipelining their output. In addition, pipelining is also sup-
ported between jobs by sending the output of reducers di-
rectly to mappers of a subsequent job. Further, distributed
dataflow systems are Twitter’s Storm and Apache S4. Storm
implements fault detection at task level and guaranteed mes-
sage passing, whereas in S4 messages can be lost. Storm runs
so-called topologies – subsets of these topologies are assigned
to worker processes of a cluster. However, these systems only
offer a simple programming model and, therefore, operators

and topologies have to be implemented in a programming
language like Java or Python. Furthermore, state recovery
and partitioning have to be implemented manually, too.

Optimus [11] is a framework for dynamic rewriting of
execution plans for data-parallel computing, e.g., formu-
lated in DryadLINQ. The framework supports rewriting of
MapReduce programs at runtime, addressing issues like re-
partitioning, fault tolerance, and handling data skew. But
the required algorithms have to be implemented by the user.

3. PATTERNS FOR SCALABLE PROCESS-
ING OF DATA STREAM QUERIES

In the following we assume a simple processing model for
data stream queries: a query is represented by a dataflow
graph which is a common model in literature [9, 11].

In such a directed acyclic graph, nodes represent query
operators and edges describe the tuple flow between them.
Query nodes can be arbitrary pipeline operators of a stream
query algebra [2] like filter, projection etc. as well as window-
or synopsis-based operators as sliding window joins and ag-
gregations, but also more complex data analytics operators
including CEP and data mining. Communication between
query operators is performed either directly by invoking op-
erator functions or via buffers/queues. Obviously, this repre-
sents a very generic execution model to which a wide range
of declarative query languages like CQL, dataflow specifi-
cations such as IBM’s SPL, or implementation-oriented ap-
proaches as used in S4 or Storm can be mapped. This model
can be easily extended to the distributed case by inserting
network reader/writer nodes which use appropriate com-
munication protocols and APIs, e.g., TCP/UDP sockets or
more advanced solutions like ZeroMQ.

There are two main reasons for distributing query nodes:
increasing processing reliability by introducing redundancy,
and increasing performance and/or scalability by load distri-
bution. The following patterns support these goals to differ-
ent degrees. In this discussion, we use the term “query task”
as the unit of distribution/scheduling for both, elementary
algebra operators, and for dataflow (sub-)graphs with well-
defined properties (input/output, stateless vs. statefulness).

Pattern 1: Simple standby: For a critical query node N
a standby node S is maintained on a separate compute unit
which is activated if N fails. This requires monitoring of N ,
e.g. by a combination of heartbeats and cluster coordination
service such as ZooKeeper as well as rerouting the input
tuple stream to S. Since in case of a failure the state of N
is lost, this pattern is applicable only for stateless nodes.

Pattern 2: Checkpointing: This pattern is similar to pat-
tern 1 but supports stateful operators. Failover is achieved
by periodically checkpointing the state of the critical node N
to a shared disk and restarting the standby node S from the
checkpoint. Examples of such checkpoints are the content of
sliding windows or hash tables for joins and aggregations.

Pattern 3: Hot standby: If the failover time of pattern
2 is not acceptable, a hot standby approach can be chosen
where redundant query nodes S are kept actively. To achieve
this, the input stream has to be sent to all redundant nodes,
either by using multicast strategies at the network or at the
application level. This pattern works both with stateless and
stateful query operators but requires a special node to elim-
inate duplicate results, e.g., a stream selector node which
forwards the input from only one of multiple streams.

2

N

S

failover

network writer

Figure 1: Simple Standby

N

S

failover

network writer

log

Figure 2: Checkpointing

N

S

failover

multicast writer stream selector

Figure 3: Hot Standby

Pattern 4: Stream partitioning: This pattern exploits
data parallelism by partitioning the input stream. It can be
implemented by a splitter node redirecting each input tuple
to one of the query nodes N1 . . . Nk or by a multicast writer
with an additional partitioning node P1 . . . Pk for filtering
the input stream according to the partitioning scheme. Fi-
nally, the results are merged into a single stream.

Pattern 5: Stream pipelining: In contrast to pattern 4
this pattern exploits task parallelism by splitting a complex
query node N into a sequence of query nodes N1 . . . Nk and
placing them on separate compute units.

Usually, multiple patterns will be applied in order to
achieve certain quality of service (QoS) guarantees as fault
tolerance (patterns 1-3) or elasticity for adapting resource
consumption (patterns 4-5) according to the needs of the
applications. Of course this pattern list does not claim com-
pleteness. There are several others that are applicable under
certain circumstances, e.g., parallelization through aggrega-
tion trees for commutative and associative aggregation op-
erators [9]. Nevertheless, these basic patterns described here
are well-known in distributed and parallel algorithms, and
– with slight modifications – cover various use cases 1.

In the following we will describe how these patterns can
be utilized in a dataflow framework to dynamically restruc-
ture the physical representation of the graph in a continuous
query context that is executed in a cluster infrastructure.
The restructuring is achieved with a simple set of rewriting
rules that are automatically applied on the graph without
the need to manually code them as in existing approaches
[11] while guaranteeing that no state information is lost dur-
ing the restructuring phase. We present the algorithms based
on our AnduINv2 stream processing engine but highlight
that they are also applicable on other frameworks as Dryad
with slight modifications to achieve streaming semantics.

4. QUERY DEPLOYMENT INFRASTRUC-
TURE

Fig. 6 illustrates the dataflow model used in AnduINv2
and how it is mapped to the physical layer of executable
code. While the first prototype of the system aimed at pro-
cessing sensor data as well as in-network processing [12] and
complex event processing (CEP) [8], our current research fo-
cuses on processing techniques for cluster environments. The
AnduINv2 system comprises three components: (1) the run-
time environment containing the implementation of query
operators including a CEP engine as well as operators for
controlling the query execution, (2) a query compiler trans-
lating a dataflow-based query specification given in an XML
file into query tasks, i.e., executable code linked to the run-
time environment, (3) a query scheduler and executor inte-
grated with the Mesos cluster framework that deploys query
tasks for processing them on physical nodes.

1Actually, aggregation trees are just combinations of parti-
tioning and pipelining patterns.

AnduINv2 queries are deployed as separate processes in
Mesos which are just-in-time compiled using the system’s
C++ compiler. This provides an easy mechanism to plug-in
user defined operators and exchange operator implementa-
tions. During deployment, processes are interlinked by query
channels which simply represent an abstraction over network
connections (TCP/UDP sockets, ZeroMQ connections).

Query tasks can be shared among multiple queries when
they share some common (sub)streams or operators as de-
scribed in [3]. Further, a query can be implemented as a set
of tasks which are distributed across multiple nodes in the
cluster. Therefore, the logical query tree is partitioned into
smaller subtrees that are translated separately. We will use
these mechanisms for implementing the elasticity patterns.

4.1 Dataflow Graph Rewriting
dataflows are specified in an XML format which can be

seen as an intermediate representation, allowing to use dif-
ferent frontends such as CQL or graphical tools. A dataflow
specification consists of stream type definitions and operator
definitions with name, type, type-specific parameters as well
as input and output channels. These channels are typed and
are used to interconnect operators to form a graph. The fol-
lowing example shows a simple dataflow specification. (We
omitted the XML notation for better readability).

type name = ”aStreamType” {
column name = ”x”, type = ”int” . . .

}
operator name = ”source”, type = ”reader” {

output name = ”aStream”, type =”aStreamType”
}
operator name = ”myFilter”, type = ”filter” {

input name = ”aStream”
param condition = ”aStream.x < 42”
output name = ”filteredStream”, type = ”aStreamType”

}
operator name = ”sink”, type = ”writer” {

input name = ”filteredStream”
}

Mesos
master

Mesos
slave

Query
executor

Task

Standby
master

deploy

Query

Query
scheduler

Query 1: t1, t2, t3, ...
Query 2: ...
Query 3: ...

<t1, cores, mem, ports, …>
<t2, cores, mem, ports, …>

...

Query
operator

Query task

Query Task

In
pu

t C
ha

nn
el

s

O
utput C

hannels

Task State

Parameters (Meta-Query)

~I(t)

~P (t)

~O(t)

~S(t)

�

⌧i ⌧p

... ...

Tfuture tuples processed tuples

Input Queue Operator States Output Queue
T T

Mesos
slave

Query
executor

Task

Mesos
slave

Query
executor

Task

Mesos
slave

Query
executor

Task

Figure 6: query model

3

multicast
writer

stream
merger

P1 N1

P2 N2

Pk Nk

Figure 4: Partitioning

N1 N2 Nk

Figure 5: Pipelining

Note, that apart from stream input and possible output
no communication operators have to be specified as part
of the query. Such operators are added during rewriting if
necessary. For formulating rewriting rules we use a simple
notation. A dataflow as given above is written as

sink := writer(f := filter(src := reader))

where writer, filter, and reader are operator types and the
optional sink, f, and src names denote operator instances.

During rewriting, graph patterns have to be matched and
constraints are checked. For this purpose, the pseudo-type
any is used as a placeholder for any possible type, and any*
represents a dataflow of arbitrary operator types. The fol-
lowing pattern matches a dataflow subgraph containing a
stateless filter operator (which is the case for any filter):

a2 := any(f := filter(a1 := any*))[stateless(f)]

To apply the patterns, a rewriting rule can be specified:

⇒ a2(stream-selector(failover︸ ︷︷ ︸
@p1

(writer(f(reader︸ ︷︷ ︸
@p∗

(multicast(a1)︸ ︷︷ ︸
@p2

))))))

Besides inserting or replacing operators (such as stream-
selector, failover, and multicast operators in the previous ex-
ample), operator nodes are also annotated with placement
information where pi, pj with i 6= j denote distinct compute
nodes and p∗ denotes an arbitrary number of nodes.

4.2 Failover Handling
With these rewriting rules, internal data management

nodes and different operator implementations can be trans-
parently injected into the query plan without impacting the
application. This allows to re-schedule a query task to an-
other node in case of a failure (pattern 1), use an operator
implementation that automatically integrates snapshotting
(pattern 2), or replicate a task to implement hot standby.

The actual flow of data through query channels during
runtime is controlled by special operator parameters – e.g.,
target IP addresses and ports – that can be adjusted through
a concept we call meta queries (cf. Sect. 4.5). To detect and
react on failures, query tasks are instrumented with moni-
toring interfaces that inform the query scheduler about the
nodes’ health and performance measures as tuple processing
rates. The scheduler then triggers a graph rewriting.

When a rewritten graph needs to be deployed, it has to be
guaranteed that no information of the tuple stream is lost.
To analyze the necessary steps, we reduce a query task to a
finite state machine model (cf. Fig. 6) which is common for
implementing CEP operators [6] but can also be applied for
general dataflow transformations. The query task receives a
stream of input tuples ~I(t), applies its logical operation(s)
λ – e.g., a filter or a join – to generate an output stream
~O(t). (We use vectorial representations here to combine all
channels into a single quantity.) The output might depend

on the task’s state ~S(t), i.e., the state of all internal oper-
ators which can basically include anything that is required
for implementing the operators (e.g., hash tables, or sliding

windows) and are updated with each incoming tuple through
a state transition function τi

2. The meta query extension is
represented by special input channels ~P (t) that modify the
operator state through τp.

To guarantee that a node failure does not lead to an in-
formation loss it is necessary that all results which have not
been consumed by the following target can be reproduced
from the possibly infinite input stream. Therefore, the op-
erator state needs to be snapshotted after each input tuple,
or – if this is too expensive – the input tuples need to be
persisted in order to reproduce this state with just ’replay-
ing’ the input. Which tuples are still required for a possible
replay can be controlled by special tuple messages that are
exchanged between tuple producers and consumers as in the
Borealis system [1]. Note when frameworks as ZeroMQ are
used to implement query channels, reliable message delivery
can be guaranteed without the need to modify operators.

In order to implement fault tolerance with transferring
stateful query tasks to other computing nodes, a simple pro-
tocol as presented in [10] is sufficient:
(1) quiesce all input streams,
(2) replicate the task state to the target node,
(3) redirect the input streams to the target node,
(4) unquiesce all input streams.

4.3 Elasticity Handling
The same algorithm can be used to replace query tasks

with their rewritten versions that compute the same logical
transformation but use different operator implementations
and/or partitioning schemes of the query graph into tasks
for implementing the elasticity patterns 4 and 5.

Rewriting Cost Model: Usually, there are several possi-
bilities for rewriting dataflow graphs. In order to make right
decisions which tasks shall be replaced and how many nodes
should be allocated, a cost model is required taking possi-
ble rewriting benefits into account as well as costs for the
restructuring, e.g., for transferring states or costs for addi-
tional resources from the cluster infrastructure. Discussing
elaborate decision models is not in the focus of this paper
and is left for future work. We outline a rate-based model
that is suitable to find hot spots in dataflows and is used in
related literature [13].

Rewritings should be done when a query task is detected
that cannot process its incoming tuples with a rate higher
than the arrival rate, e.g., when the computational complex-
ity or the memory consumption is too high and therefore the
task accumulates an increasing backlog. Such a task repre-
sents the critical path in the dataflow, limiting the overall
throughput. For finding these paths, a rate-based optimiza-
tion approach is suitable that scans the dataflows starting
at source nodes and detects such bottlenecks based on moni-
toring information gathered during the execution [13]. After
hot spots have been identified, one or multiple of the follow-
ing methods can be applied for alleviating these bottlenecks.

2Usually, the separation of λ and τ is only conceptual and
both functions are combined.

4

time

value

t1 t2t3 t4 t5 t7t6

t1|{z}
A

t2t3t4t5| {z }
B

t6|{z}
C

t7|{z}
D

t4|{z}
A

t5|{z}
B

t6|{z}
C

t7|{z}
D

t1|{z}
A

t2|{z}
B

t3|{z}
C

(t4t5t6) t7|{z}
D

'ticks''tick'-pattern

A

C
B+

D+

Figure 7: ’tick’-shaped pattern

Task sharing (Pattern 5): When multiple queries share
the same (sub)graph to increase data locality [3] and the
shared graph is on the critical path, this path can be repli-
cated, sharing groups can be repartitioned, and tuples dis-
tributed to all replicas. This is the easiest way to remove
burden from the critical path since inputs of sharing groups
are independent from each other and no special dataflow
transformations need to be performed.

Inter-operator parallelism (Pattern 4): Usually, it is
better to keep dataflow operations on few nodes in order
to avoid costly transfer operations. Hence, initially com-
piled queries will comprise few tasks consisting of large
flow (sub)graphs. However, when the computational com-
plexity exceeds a certain threshold or memory limits for
keeping state information are exceeded, a distributed pro-
cessing pipeline will yield better performance. Large graphs
are partitioned, recompiled, and distributed on additional
nodes in the cluster. Moreover, splitting large costly tasks
into smaller distributed ones increases fault-tolerance since
it will become cheaper to recover from node failures [11].

Intra-operator parallelism (Pattern 4+5): When the
previous patterns not applicable, e.g., when operators are
not shared or the graph has already been split into base
operators, the last possibility to increase parallelism is par-
titioning input streams and processing each partition inde-
pendent from each other with multiple operator instances.
Unfortunately, this pattern is the most difficult to implement
since its applicability depends on the actual operator type.
Partitions in input streams need to be found, distributed to
the operator instances, and their (partial) results have to be
merged afterwards. Further, this pattern is prone to data
skews and, therefore, some sort of load balancing has to be
implemented, e.g., by monitoring the load of each partition
and dynamically re-schedule partitions as proposed in [10].
This concept seamlessly integrates with the graph rewriting
patterns described in this paper but again involves addi-
tional costs for transferring partitions among cluster nodes.

The most challenging problem in this context is finding
suitable partitioning schemes for the operators that shall
be deployed in the framework, especially when they are
not stateless. In the following, we will present a paralleliza-
tion scheme in the complex event processing (CEP) context
which is prominent in stream processing.

The task of CEP is finding complex patterns in a stream
of base patterns. These patterns are defined through cer-
tain properties of incoming tuples, usually described through
predicates and additional correlations of their arrival time.
Mostly, sequences and repetitions are used which can be ex-
pressed with regular expressions [15]. We demonstrate the
parallelization on the ’tick-shaped’ pattern example from [5]
which is illustrated in Fig. 7. In the original publication, the
task for detecting such patterns is originated in stock ex-
change trading, but it could also be applied for burst detec-
tion. A ’tick-shape’ can be expressed by AB+CD+ where:

P +

......

p1p2
p1p3
p2p3p3

p2
p1

P +

...
p4p5
p3p4 p1p2p3

...
p2p3p4

P+

P +

...

p1p2p3
...
...

p1p2
p1p3
p2p3p3

p2
p1

partition

pipeline2

1

P +P °P
p1p2p3

...

...
p1p2

...
p1p3p2

...

p1

Figure 8: rewriting repetition operator

A matches any incoming tuple

B+ matches all following tuples with decreasing value

C matches the first tuple with increasing value after B
but with a value less than the previous one of A

D+ matches following tuples with increasing values > A

For parallelization, we focus on the +-operator since it
is challenging for three reasons: First, like a join, it can
produce multiple output tuples per input tuple. Second, it
needs to store state information for extending existing pat-
terns to longer ones. Since each tuple is possibly multiplying
the number of results it is likely that – due to memory con-
straints – such operators will become critical in the dataflow
graph. Third, in most cases the behavior of the stream is not
predictable, rendering static allocations infeasible.

Fig. 8 illustrates how the operator can be distributed dy-
namically to multiple nodes with simply applying graph pat-
terns 4 and 5. The P+-operator comprises two parts: a pat-
tern matcher P , and a +-operator which maintains all previ-
ously matched patterns as state and concatenates them with
subsequent matches. The output of + is the output for the
entire operator and serves as input for + again to construct
longer matches. On memory overflow, the operator state can
be partitioned and distributed to multiple instances where
all instances receive the original input stream. Two different
behaviors of the operator are required to avoid duplicates.
The first instance processes the input directly, i.e., all match-
ing tuples serve as new patterns of length 1. Those matches
must not be reproduced by other instances that simply serve
as targets for overflowing patterns that do not fit into the
local state but are independent from each other and hence
can be processed on separate nodes. When the complexity
of the matching algorithm P is critical, elasticity can also be
achieved with implementing a pipeline. It exploits the fact
that P+ can be expressed through P∨(PP+), i.e., a pipeline
of arbitrary length is constructed for matching incoming tu-
ples in parallel, emitting them as output, and forwarding
them to the next stage for extension.

Since such parallelization schemes depend on operator se-
mantics, the framework provides them to automatically scale
up and down required resources for built-in operators. For
all user defined functions which are treated as black boxes
by AnduINv2, the parallelization needs to be implemented
by the user as in [11] or are provided through libraries that
are linked as plugin to the execution environment.

4.4 Mesos Integration
Mesos [7] is a cluster management software for resource

isolation and sharing. In Mesos, a master daemon (possi-
bly supported by additional standby masters) manages a
set of slaves nodes. An application (called framework) runs

5

tasks on these slaves which is initiated by so-called execu-
tors. Scheduling and resource assignments are managed by
an application-specific scheduler. In order to support stream
queries we implemented our own framework (cf. Fig. 6),
providing an executor for running query executables (query
tasks) on slave nodes and a query scheduler which gets re-
source offers from the Mesos master (available cores, mem-
ory, and network ports) and requests for executing AnduIN
queries. Each query deployment request is described by a
unique ID, the executable, and a specification of resource
requirements, i.e., CPU cores, memory, and a list of query
channels which have to be mapped to network ports. This
specification is used by the scheduler to choose a slave node
providing the requested resources for execution. Currently,
only a simple strategy is implemented selecting the first offer
providing the requested resources – more advanced strate-
gies are subject of future work. If the scheduler has chosen
an appropriate node, the request is forwarded to the corre-
sponding executor. The scheduler assigns physical network
ports to query channels and tracks these assignments to be
able to connect subsequent queries referring to the same
logical channel. In this way, a query implemented by one or
more tasks can be deployed to one or more cluster nodes.

4.5 Meta Queries
Though, Mesos provides mechanisms to deploy processes,

it does not support elastic operation for stream queries. In
Hadoop, it is the task of the job tracker to partition the work
across a set of map and reduce tasks. In case of data streams
the situation is a bit different, because we cannot simply
stop and continue/restart queries without loosing data. The
only way to achieve elasticity is to change query behavior at
runtime. Therefore, we introduce the idea of meta queries: in
each (adjustable) query task an additional query is running
on a control stream consisting of tuples of the form:

〈query id, operator id, parameter, value〉

The control stream is produced by the query scheduler
which monitors resource utilization and implements strate-
gies for dynamic reallocation. Meta queries are particular
useful for implementing the patterns described in Sect. 3.
For instance, for failover without publish-subscribe (pattern
1 and 2), the network writer has to be informed about the
network address of the newly activated standby node S. For
this purpose, the network writer provides a parameter target-
addr for the target address. A control stream tuple like

〈query#42,writer#2, target-addr, ”tcp://node2:6666”〉

received by the query task triggers sending the tuple stream
to the standby node node2. Similarly, for implementing pat-
tern 3, the stream selector node can be informed about
switching to the stream produced by query node S.

For partitioning patterns like pattern 4 it is either required
to modify the tuple distribution strategy of multicast writers
or to adjust partitioning predicates Pi in Fig. 3. Both can be
easily implemented by sending appropriate control tuples.

5. CONCLUSION AND FUTURE WORK
We presented basic concepts how fault-tolerance and elas-

ticity can be achieved in the context of continuous query
processing by combining techniques that have proven appli-
cability in other scenarios. These approaches are currently

being integrated into AnduINv2, but can be applied in other
platforms, too. Our main questions we would like to answer
with future experiments are:

1) Which cost models are valid for online graph rewriting?
2) How can resource requirements for a query be estimated

before actually executing it?
3) How can certain QoS guarantees be given to applications?
4) Can elastic stream processing benefit from heterogeneous

clusters nodes?

While the first questions intent to pave the way for a
streaming-as-a-service infrastructure, answering the last one
is needed to keep up with current hardware development
trends. We believe that parallel and specialized processors
as many-core CPUs, GPUs, or FPGAs will find their way
into future computing centers to provide the most efficient
computing platforms for dedicated tasks – an important as-
pect to tackle the big data challenge.

6. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, et al. The Design of

the Borealis Stream Processing Engine. In CIDR ’05, 2005.
[2] A. Arasu, S. Babu, and J. Widom. CQL: A language for

continuous queries over streams and relations. In Database
Programming Languages. Springer, 2004.

[3] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ:
a scalable continuous query system for Internet databases.
SIGMOD Rec., 29:379–390, 2000.

[4] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce online. In NSDI,
pages 21–21, 2010.

[5] N. Dindar, P. M. Fischer, M. Soner, and N. Tatbul.
Efficiently correlating complex events over live and archived
data streams. In DEBS ’11. ACM, 2011.

[6] M. Eckert, F. Bry, S. Brodt, O. Poppe, and S. Hausmann.
A CEP Babelfish: Languages for Complex Event Processing
and Querying Surveyed. In Reasoning in Event-Based
Distributed Systems. Springer, 2011.

[7] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A
platform for fine-grained resource sharing in the data
center. In NSDI, pages 22–22, 2011.

[8] S. Hirte, E. Schubert, A. Seifert, S. Baumann, D. Klan, and
K. Sattler. Data3 - A Kinect Interface for OLAP using
Complex Event Processing. In ICDE, 2012.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequential
building blocks. SIGOPS, 41:59–72, 2007.

[10] M. S. Joseph, J. M. Hellerstein, S. Ch, and M. J. Franklin.
Flux: An Adaptive Partitioning Operator for Continuous
Query Systems. In ICDE, 2002.

[11] Q. Ke, M. Isard, and Y. Yu. Optimus: a dynamic rewriting
framework for data-parallel execution plans. In EuroSys,
pages 15–28, 2013.

[12] D. Klan, M. Karnstedt, K. Hose, L. Ribe-Baumann, and
K. Sattler. Stream engines meet wireless sensor networks:
cost-based planning and processing of complex queries in
AnduIN. Distrib. and Parallel Databases, 29:151–183, 2011.

[13] S. D. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
SIGMOD ’02. ACM, 2002.

[14] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized streams: an efficient and fault-tolerant model
for stream processing on large clusters. In HotCloud ’12.
USENIX Association, 2012.

[15] F. Zemke, A. Witkowski, M. Cherniak, and L. Colby.
Pattern matching in sequences of rows. Technical report,
ANSI Standard Proposal, 2007.

6

