
Consistency Models for Cloud-based Online Games:
the Storage System’s Perspective

Ziqiang Diao
Otto-von-Guericke University Magdeburg

39106 Magdeburg, Germany
diao@iti.cs.uni-magdeburg.de

ABSTRACT
The existing architecture for massively multiplayer online
role-playing games (MMORPG) based on RDBMS limits
the availability and scalability. With increasing numbers of
players, the storage systems become bottlenecks. Although
a Cloud-based architecture has the ability to solve these spe-
cific issues, the support for data consistency becomes a new
open issue. In this paper, we will analyze the data consis-
tency requirements in MMORPGs from the storage system
point of view, and highlight the drawbacks of Cassandra to
support of game consistency. A timestamp-based solution
will be proposed to address this issue. Accordingly, we will
present data replication strategies, concurrency control, and
system reliability as well.

1. INTRODUCTION
In massively multiplayer online role-playing games (MMORPG)

thousands of players can cooperate with other players in a
virtual game world. To support such a huge game world
following often complex application logic and specific re-
quirements. Additionally, we have to bear the burden of
managing large amounts of data. The root of the issue is
that the existing architectures of MMORPGs use RDBMS
to manage data, which limits the availability and scalability.

Cloud data storage systems are designed for internet ap-
plications, and are complementary to RDBMS. For example,
Cloud systems are able to support system availability and
scalability well, but not data consistency. In order to take
advantages of these two types of storage systems, we have
classified data in MMORPGs into four data sets according
to typical data management requirements (e.g., data consis-
tency, system availability, system scalability, data model, se-
curity, and real-time processing) in [4]: account data, game
data, state data, and log data. Then, we have proposed to
apply multiple data management systems (or services) in one
MMORPG, and manage diverse data sets accordingly. Data
with strong requirements for data consistency and security
(e.g., account data) is still managed by RDBMS, while data

25rd GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 28.05.2013 - 31.05.2011, Ilmenau, Deutschland.
Copyright is held by the author/owner(s).

Client

Gateway Server Chat ServerLogin Server

Cloud Storage System
(State Data)

HDFS/Cassandra
(Game Data and Log Data)Logic Server Map Server

Zone Server

In-Memory DB

Data Access Server

RDBMS as a Service
(Account Data)

Figure 1: Cloud-based Architecture of MMORPGs
[4]

(e.g., log data and state data) that requires scalability and
availability is stored in a Cloud data storage system (Cas-
sandra, in this paper). Figure 1 shows the new architecture.

Unfortunately, there are still some open issues, such as
the support of data consistency. According to the CAP
theorem, in a partition tolerant distributed system (e.g.,
an MMORPG), we have to sacrifice one of the two prop-
erties: consistency or availability [5]. If an online game
does not guarantee availability, players’ requests may fail.
If data is inconsistent, players may get data not conforming
to game logic, which affects their operations. For this rea-
son, we must analyze the data consistency requirements of
MMORPGs so as to find a balance between data consistency
and system availability.

Although there has been some research work focused on
the data consistency model of online games, the researchers
generally discussed it from players’ or servers’ point of view
[15, 9, 11], which actually are only related to data synchro-
nization among players. Another existing research work did
not process diverse data accordingly [3], or just handled this
issue based on a rough classification of data [16]. However,
we believe the only efficient way to solve this issue is to ana-
lyze the consistency requirements of each data set from the
storage system’s perspective. Hence, we organize the rest of
this paper as follows: in Section 2, we highlight data consis-
tency requirements of the four data sets. In Section 3, we
discuss the data consistency issue of our Cloud-based archi-
tecture. We explain our timestamp-based solution in detail
from Section 4 to Section 6. Then, we point out some opti-
mization programs and our future work in Section 7. Finally,



we summarize this paper in Section 8.

2. CONSISTENCY REQUIREMENTS OF DI-
VERSE DATA IN MMORPGS

Due to different application scenarios, the four data sets
have distinct data consistency requirements. For this reason,
we need to apply different consistency models to fulfill them.

Account data: is stored on the server side, and is cre-
ated, accessed as well as deleted when players log in to or
log out of a game. It includes player’s private data and
some other sensitive information (e.g., user ID, password,
and recharge records). The inconsistency of account data
might bring troubles to a player as well as the game provider,
or even lead to an economic or legal dispute. Imagine the
following two scenarios: a player has changed the password
successfully. However, when this player log in to the game
again, the new password is not effective; a player has trans-
ferred to the game account, or the player has consumed in
the game, but the account balance is somehow not properly
presented in the game system. Both cases would influence
on the player’s experience, and might result in the customer
or the economic loss of a game company. Hence, we need
to access account data under strong consistency guarantees,
and manage it with transactions. In a distributed database
system, it means that each copy should hold the same view
on the data value.

Game data: such as world appearance, metadata (name,
race, appearance, etc.) of NPC (Non Player Character),
system configuration files, and game rules, is used by play-
ers and game engine in the entire game, which can only be
modified by game developers. Players are not as sensitive to
game data as to account data. For example, the change of
an NPC’s appearance or name, the duration of a bird ani-
mation, and the game interface may not catch the players’
attention and have no influence on players’ operations. As a
result, it seems that strong consistency for game data is not
so necessary. On the other hand, some changes of the game
data must be propagated to all online players synchronously,
for instance, the change of the game world’s appearance, the
power of a weapon or an NPC, game rules as well as scripts,
and the occurrence frequency of an object during the game.
The inconsistency of these data will lead to errors on the
game display and logic, unfair competition among players,
or even a server failure. For this reason, we also need to
treat data consistency of game data seriously. Game data
could be stored on both the server side and the client side,
so we have to deal with it accordingly.

Game data on the client side could only synchronize with
servers when a player logs in to or starts a game. For this
reason, causal consistency is required [8, 13]. In this paper,
it means when player A uses client software or browser to
connect with the game server, the game server will then
transmit the latest game data in the form of data packets
to the client side of player A. In this case, the subsequent
local access by player A is able to return the updated value.
Player B that has not communicated with the game server
will still retain the outdated game data.

Although both client side and server side store the game
data, only the game server maintains the authority of it.
Furthermore, players in different game worlds cannot com-
municate to each other. Therefore, we only need to ensure
that the game data is consistent in one zone server so that

players in the same game world could be treated equally.
It is noteworthy that a zone server accesses data generally
from one data center. Hence, we guarantee strong consis-
tency within one data center, and causal consistency among
data centers. In other words, when game developers modify
the game data, the updated value should be submitted syn-
chronously to all replicas within the same data center, and
then propagated asynchronously across data centers.

State data: for instance, metadata of PCs (Player Char-
acters) and state (e.g., position, task, or inventory) of char-
acters, is modified by players frequently during the game.
The change of state data must be perceived by all relevant
players synchronously, so that players and NPCs can re-
spond correctly and timely. An example for the necessity of
data synchronization is that players cannot tolerate that a
dead character can continue to attack other characters. Note
that players only access data from the in-memory database
during the game. Hence, we need to ensure strong consis-
tency in the in-memory database.

Another point about managing state data is that updated
values must be backed up to the disk-resident database asyn-
chronously. Similarly, game developers also need to take
care of data consistency and durability in the disk-resident
database, for instance, it is intolerable for a player to find
that her/his last game record is lost when she/he starts the
game again. In contrast to that in the in-memory database,
we do not recommend ensuring strong consistency to state
data. The reason is as follows: according to the CAP theo-
rem, a distributed database system can only simultaneously
satisfy two of three the following desirable properties: con-
sistency, availability, and partition tolerance. Certainly, we
hope to satisfy both consistency and availability guarantees.
However, in the case of network partition or under high net-
work latency, we have to sacrifice one of them. Obviously,
we do not want all update operations to be blocked until the
system recovery, which may lead to data loss. Consequently,
the level of data consistency should be reduced. We propose
to ensure read-your-writes consistency guarantee [13]. In
this paper, it describes that once state data of player A has
been persisted in the Cloud, the subsequent read request of
player A will receive the updated values, yet other players
(or the game engine) may only obtain an outdated version of
it. From the storage system’s perspective, as long as a quo-
rum of replicas has been updated successfully, the commit
operation is considered complete. In this case, the storage
system needs to provide a solution to return the up-to-date
data to player A. We will discuss it in the next section.

Log data: (e.g., player chat history and operation logs)
is created by players, but used by data analysts for the pur-
pose of data mining. This data will be sorted and cached
on the server side during the game, and then bulk stored
into the database, thereby reducing the conflict rate as well
as the I/O workload, and increasing the total simultaneous
throughput [2]. The management of log data has three fea-
tures: log data will be appended continually, and its value
will not be modified once it is written to the database; The
replication of log data from thousands of players to multiple
nodes will significantly increase the network traffic and even
block the network; Moreover, log data is generally organized
and analyzed after a long time. Data analysts are only con-
cerned about the continuous sequence of the data, rather
than the timeliness of the data. Hence, data inconsistency
is accepted in a period of time. For these three reasons,



Account data Game data State data Log data

Modified by Players Game developers Players Players

Utilized by Players & Game engine Players & Game engine Players & Game engine Data analysts

Stored in Cloud Client side Cloud In-memory DB Cloud Cloud

Data center Across — Single Across Single Across Across

Consistency Strong Causal Strong Causal Strong Read-your-writes Timed

model consistency consistency consistency consistency consistency consistency consistency

Table 1: Consistency requirements

a deadline-based consistency model, such as timed consis-
tency, is more suitable for log data[12, 10]. In this paper,
timed consistency specifically means that update operations
are performed on a quorum of replicas instantaneously at
time t, and then the updated values will be propagated to
all the other replicas within a time bounded by t + 4 [10].
Additionally, to maintain the linear order of the log data,
the new value needs to be sorted with original values before
being appended to a replica. In other words, we execute
a sort-merge join by the timestamp when two replicas are
asynchronous. Under timed consistency guarantee, data an-
alysts can at time t + 4 obtain a continuously sequential
log data until time t.

3. OPPORTUNITIES AND CHALLENGES
In our previous work, we have already presented the ca-

pability of the given Cloud-based architecture to support
the corresponding consistency model for each data set in
MMORPGs [4]. However, we also have pointed out that to
ensure read-your-writes consistency to state data and timed
consistency to log data efficiently in Cassandra is an open
issue. In this section, we aim at discussing it in detail.

Through customizing the quorum of replicas in response to
read and write operations, Cassandra provides tunable con-
sistency, which is an inherent advantage to support MMORPGs
[7, 4]. There are two reasons: first, as long as a write request
receives a quorum of responses, it completes successfully. In
this case, although data in Cassandra is inconsistent, it re-
duces the response time of write operations, and ensures
availability as well as fault tolerance of the system; Addi-
tionally, a read request will be sent to the closest replica,
or routed to a quorum or all replicas according to the con-
sistency requirement of the client. For example, if a write
request is accepted by three (N, N> 0) of all five (M, M>=
N) replicas, at least three replicas (M-N+1) need to respond
to the subsequent read request, so that the up-to-date data
can be returned. At this case, Cassandra can guarantee
read-your-writes consistency or strong consistency. Other-
wise, it can only guarantee timed consistency or eventual
consistency [7, 13]. Due to the support of tunable consis-
tency, Cassandra has the potential to manage state data and
log data of MMORPGs simultaneously, and is more suitable
than some other Cloud storage systems that only provide
either strong or eventual consistency guarantees.

On the other hand, Cassandra fails to implement tun-
able consistency efficiently according to MMORPG require-
ments. For example, M-N+1 replicas of state data have to be
compared so as to guarantee read-your-writes consistency.
However, state data has typically hundreds of attributes,
the transmission and comparison of which affect the read
performance. Opposite to update a quorum of replicas, we

update all replicas while executing write operations. In this
case, data in Cassandra is consistent, and we can obtain
the up-to-date data from the closest replica directly. Un-
fortunately, this replication strategy significantly increases
the network traffic as well as the response time of write op-
erations, and sacrifices system availability. As a result, to
implement read-your-writes consistency efficiently becomes
an open issue.

Another drawback is that Cassandra makes all replicas
eventually consistent, which sometimes does not match the
application scenarios of MMORPG, and reduce the efficiency
of the system. The reasons are as follows.

• Unnecessary for State data: state data of a PC is read
by a player from the Cloud storage system only once
during the game. The subsequent write operations do
not depend on values in the Cloud any more. Hence,
after obtaining the up-to-date data from the Cloud,
there is no necessity to ensure that all replicas reach a
consensus on these values.

• Increase network traffic: Cassandra utilizes Read Re-
pair functionality to guarantee eventual consistency
[1]. It means that all replicas have to be compared
in the background while executing a write operation
in order to return the up-to-date data to players, de-
tect the outdated data versions, and fix them. In
MMORPGs, both state data and log data have a large
scale, and are distributed in multiple data centers.
Hence, transmission of these data across replicas will
significantly increase the network traffic and affect the
system performance.

4. A TIMESTAMP-BASED CONSISTENCY
SOLUTION

A common method for solving the consistency problem of
Cloud storage system is to build an extra transaction layer
on top of the system [6, 3, 14]. Similarly, we have proposed
a timestamp-based solution especially for MMORPG, which
is designed based on the features of Cassandra [4]. Cassan-
dra records timestamps in each column, and utilizes it as a
version identification (ID). Therefore, we record the times-
tamps from a global server in both server side and in the
Cloud storage system. When we read state data from the
Cloud, the timestamps recorded on the server side will be
sent with the read request. In this way, we can find out the
most recent data easily. In the following sections, we will
introduce this solution in detail.

4.1 Data Access Server
Data access servers are responsible for data exchange be-

tween the in-memory database and the Cloud storage sys-



Player
In-memory DB

Data access servers
Cloud storage system

Timestamp(TS)&WR

TS → Version ID

(TS)

Write request (WR)

W(1)

Status

W(2)

Status

Snapshot

WR & 
Quit request(QR)

Status

TS & WR

TS→ Version ID

(TS, Logout) Status

Snapshot & QR

Delete state data Delete request

(LMT)

(LMT, Login)

Figure 2: Executions of Write Operations: W(1)
describes a general backup operation; W(2) shows
the process of data persistence when a player quits
the game.

tem. They ensure the consistency of state data, maintain
timestamp tables, and play the role of global counters as
well. In order to balance the workload and prevent server
failures, several data access servers run in one zone server in
parallel. Data access servers need to synchronize their sys-
tem clock with each other automatically. However, a com-
plete synchronization is not required. A time difference less
than the frequency of data backup is acceptable.

An important component in data access servers is the
timestamp table, which stores the ID as well as the last mod-
ified time (LMT) of state data, and the log status (LS). If a
character or an object in the game is active, its value of LS
is “login”. Otherwise, the value of LS is “logout”. We utilize
a hash function to map IDs of state data to distinct times-
tamp tables, which are distributed and partitioned in data
access servers. It is noteworthy that timestamp tables are
partitioned and managed by data access servers in parallel
and data processing is simple, so that accessing timestamp
tables will not become a bottleneck of the game system.

Note that players can only interact with each other in the
same game world, which is managed by one zone server.
Moreover, a player cannot switch the zone server freely.
Therefore, data access servers as well as timestamp tables
across zone servers are independent.

4.2 Data Access
In this subsection, we discuss the data access without con-

sidering data replication and concurrency conflicts.
In Figure 2, we show the storage process of state data in

the new Cloud-based architecture: the in-memory database
takes a consistent snapshot periodically. Though using the
same hash function employed by timestamp tables, each

Player/Game engine
In-memory DB

Data access servers
Cloud storage system

(Logout)

LMT & RR
Check

Version ID(Login)

Read request (RR)

PR(1)

State data

RR

PR(2)
(LMT,Login)

State data RR

State data
State data

RR

GER

State data

State data
State data

RR

(TS,Login)

Figure 3: Executions of Read Operations: PR(1)
shows a general read request from the player; In the
case of PR(2), the backup operation is not yet com-
pleted when the read request arrives; GER presents
the execution of a read operation from the game
engine.

data access server obtains the corresponding state data from
the snapshot periodically. In order to reduce the I/O work-
load of the Cloud, a data access server generates one message
including all its responsible state data as well as a new times-
tamp TS, and then sends it to the Cloud storage system. In
the Cloud, this message is divided based on the ID of state
data into several messages, each of which still includes TS.
In this way, the update failure of one state data won’t block
the submission of other state data. Then, these messages
are routed to appropriate nodes. When a node receives a
message, it writes changes immediately into the commit log,
updates data, and records TS as version ID in each column.
If an update is successful and TS is higher than the exist-
ing LMT of this state data, then the data access server uses
TS to replace the LMT. Note that if a player has quit the
game and the state data of the relevant PC has backed up
into the Cloud storage system, the LS of this PC needs to
be modified form “login” to “logout”, and the relevant state
data in the in-memory database needs to be deleted.

Data access servers obtain log data not from the in-memory
database, but from the client side. Log data also updates in
batch, and gets timestamp from a data access server. When
a node in the Cloud receives log data, it inserts log data into
its value list according to the timestamp. However, times-
tamp tables are not modified when the update is complete.

Figure 3 presents executions of read operations. When a
player starts the game, a data access server firstly obtains
the LS information from the timestamp table. If the value
is “login”, that means the previous backup operation is not



completed and the state data is still stored in the in-memory
database. In this case, the player gets the state date from
the in-memory database directly, and the data access server
needs to generate a new timestamp to replace the LMT of
the relevant state data; if the value is “logout”, the data
access server then gets the LMT, and sends it with a read
request to the Cloud storage system. When the relevant
node receives the request, it compares the LMT with its
local version ID. If they match, the replica responds the
read request immediately. If not match, this read request
will be sent to other replicas (we will discuss it in detail
in the section 5). When the data access server receives the
state data, it sends it to the in-memory database as well as
the relevant client sides, and modifies the LS from “logout”
to “login” in the timestamp table. Note that state data may
also be read by the game engine for the purpose of statistics.
In this case, the up-to-date data is not necessary, so that we
do not need to compare the LMT with the Version ID.

Data analysts read data also through data access servers.
If a read request contains a timestamp T, the cloud stor-
age system only returns log data until T-4 because it only
guarantees log data timed consistency.

4.3 Concurrency Control
Concurrency conflicts appear rarely in the storage layer

of MMORPGs: the probability of read-write conflicts is low
because only state data with a specific version ID (the same
as its LMT) will be read by players during the game, and a
read request to log data does not return the up-to-date data.
Certain data is periodically updated by only one data access
server simultaneously. Therefore, write-write conflicts occur
only when the per-update is not completed for some reason,
for example, serious network latency, or a node failure. For-
tunately, we can solve these conflicts easily by comparing
timestamps. If two processes attempt to update the same
state data, the process with higher timestamp wins, and an-
other process should be canceled because it is out of date. If
two processes intend to update the same log data, the pro-
cess with lower timestamp wins, and another process enters
the wait queue. The reason is that values contained in both
processes must be stored in correct order.

5. DATA REPLICATION
Data in the Cloud typically has multiple replicas for the

purpose of increasing data reliability as well as system avail-
ability, and balancing the node workload. On the other
hand, data replication increases the response time and the
network traffic as well, which cannot be handled well by
Cassandra. For most of this section, we focus on resolving
this contradiction according to access features of state data
and log data.

5.1 Replication Strategies
Although state data is backed up periodically into the

Cloud, only the last updated values will be read when play-
ers start the game again. It is noteworthy that the data
loss in the server layer occurs infrequently. Therefore, we
propose to synchronize only a quorum of replicas during the
game, so that an update can complete effectively and won’t
block the subsequent updates. In addition, players usually
start a game again after a period of time, so the system has
enough time to store state data. For this reason, we propose
to update all replicas synchronously when players quit the

game. As a result, the subsequent read operation can obtain
the updated values quickly.

While using our replication strategies, a replica may con-
tain outdated data when it receives a read request. Though
comparing LMT held by the read request with the Version
ID in a replica, this case can be detected easily. Contrary to
the existing approach of Cassandra (compares M-N+1 repli-
cas and utilizes Read Repair), only the read request will be
sent to other replicas until the lasted values was found. In
this way, the network traffic will not be increased signifi-
cantly, and the up-to-date data can also be found easily.
However, if the read request comes from the game engine,
the replica will respond immediately. These strategies en-
sure that this Cloud-based architecture can manage state
data under read-your-writes consistency guarantees.

Similar to state data, a write request to log data is also
accepted by a quorum of replicas at first. However, the
updated values then must be propagated to other replicas
asynchronously when the Cloud storage system is not busy,
and arranged in order of timestamp within a predetermined
time (4), which can be done with the help of Anti-Entropy
functionality in Cassandra [1]. In this way, this Cloud stor-
age system guarantees log data timed consistency.

5.2 Version Conflict Reconciliation
When the Cloud storage system detected a version conflict

between two replicas: if it is state data, the replica with
higher version ID wins, and values of another replica will be
replaced by new values; if it is log data, these two replicas
perform a sort-merge join by timestamps for the purpose of
synchronization.

6. SYSTEM RELIABILITY
Our Cloud-based architecture for MMORPGs requires a

mutual cooperation of multiple components. Unfortunately,
each component has the possibility of failure. In the follow-
ing, we discuss measures to deal with different failures.

Cloud storage system failure: the new architecture for
MMORPGs is built based on Cassandra, which has the abil-
ity to deal with its own failure. For example, Cassandra ap-
plies comment logs to recover nodes. It is noteworthy that
by using our timestamp-based solution, when a failed node
comes back up, it could be regarded as an asynchronous
node. Therefore, the node recovery as well as response to
write and read requests can perform simultaneously.

In-memory database failure: similarly, we can also apply
comment logs to handle this kind of failure so that there
is no data loss. However, writing logs affects the real-time
response. Moreover, logs are useless when changes are per-
sisted in the Cloud. Hence, we have to find a solution in our
future work.

Data access server failure: If all data access servers crash,
the game can still keep running, whereas data cannot be
backed up to the Cloud until servers restart, and only play-
ers already in the game can continue to play; Data access
servers have the same functionality and their system clocks
are relatively synchronized, so if one server is down, any
other servers can replace it.

Timestamp table failure: We utilize the primary/secondary
model and the synchronous replication mechanism to main-
tain the reliability of timestamp tables. In the case of all
replicas failure, we have to apply the original feature of Cas-
sandra to obtain the up-to-date data. In other words, M-



N+1 replicas need to be compared. In this way, we can
rebuild timestamp tables as well.

7. OPTIMIZATION AND FUTURE WORK
When a data access server updates state data in the Cloud,

it propagates a snapshot of state data to multiple replicas.
Note that state data has hundreds of attributes, so the trans-
mission of a large volume of state data may block the net-
work. Therefore, we proposed two optimization strategies
in our previous work [4]: if only some less important at-
tributes of the state (e.g., the position or orientation of a
character) are modified, the backup can be skipped; Only
the timestamp, ID, and the modified values are sent as mes-
sages to the Cloud. However, in order to achieve the second
optimization strategy, our proposed data access approach,
data replication strategies, and concurrency control mech-
anism have to be changed. For example, even during the
game, updated values must be accepted by all replicas, so
that the subsequent read request does not need to compare
M-N+1 replicas. We will detail the adjustment program in
our future work.

It is noteworthy that a data access server stores a times-
tamp repeatedly into the timestamp table, which increases
the workload. A possible optimization program is as fol-
lows: If a batch write is successful, data access server caches
the timestamp (TS) of this write request. Accordingly, in
the timestamp table, we add a new column to each row to
maintain a pointer. If a row is active (the value of LS is
“login”), the pointer refers to the memory location of TS; if
not, it refers to its own LMT. When a row becomes inactive,
it uses TS to replace its LMT. In this way, the workload of
a timestamp table will reduce significantly. However, LMT
and Version ID of state data may be inconsistent due to the
failure of the Cloud storage system or the data access server.

8. CONCLUSIONS
Our Cloud-based architecture of MMORPGs can cope

with data management requirements regarding availability
and scalability successfully, while supporting data consis-
tency becomes an open issue. In this paper, we detailed our
timestamp-based solution in theory, which will guide the
implementation work in the future. We analyzed the data
consistency requirements of each data set from the storage
system’s perspective, and studied methods of Cassandra to
guarantee tunable consistency. We found that Cassandra
cannot ensure read-your-writes consistency for state data
and timed consistency for log data efficiently. Hence, we
proposed a timestamp-based solution to improve it, and ex-
plained our idea for concurrency control, data replication
strategies, and fault handling in detail. In our future work,
we will implement our proposals and the optimization strate-
gies.

9. ACKNOWLEDGEMENTS
Thanks to Eike Schallehn for his comments.

10. REFERENCES
[1] Apache. Cassandra, January 2013.

http://cassandra.apache.org/.

[2] J. Baker, C. Bond, J. C. Corbett, J. Furman,
A. Khorlin, J. Larson, J.-M. Lt’eon, Y. Li, A. Lloyd,

and V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In
Conference on Innovative Data Systems
Research(CIDR), pages 223–234, Asilomar, California,
USA, 2011.

[3] S. Das, D. Agrawal, and A. E. Abbadi. G-store: a
scalable data store for transactional multi key access in
the cloud. In Symposium on Cloud Computing(SoCC),
pages 163–174, Indianapolis, Indiana, USA, 2010.

[4] Z. Diao and E. Schallehn. Cloud Data Management
for Online Games : Potentials and Open Issues. In
Data Management in the Cloud (DMC), Magdeburg,
Germany, 2013. Accepted for publication.

[5] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. ACM Special Interest Group on
Algorithms and Computation Theory (SIGACT),
33(2):51–59, 2002.

[6] F. Gropengieß er, S. Baumann, and K.-U. Sattler.
Cloudy transactions cooperative xml authoring on
amazon s3. In Datenbanksysteme für Business,
Technologie und Web (BTW), pages 307–326,
Kaiserslautern, Germany, 2011.

[7] A. Lakshman. Cassandra - A Decentralized Structured
Storage System. Operating Systems Review,
44(2):35–40, 2010.

[8] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[9] F. W. Li, L. W. Li, and R. W. Lau. Supporting
continuous consistency in multiplayer online games. In
12. ACM Multimedia 2004, pages 388–391, New York,
New York, USA, 2004.

[10] H. Liu, M. Bowman, and F. Chang. Survey of state
melding in virtual worlds. ACM Computing Surveys,
44(4):1–25, 2012.

[11] W. Palant, C. Griwodz, and P. l. Halvorsen.
Consistency requirements in multiplayer online games.
In Proceedings of the 5th Workshop on Network and
System Support for Games, NETGAMES 2006,
page 51, Singapore, 2006.

[12] F. J. Torres-Rojas, M. Ahamad, and M. Raynal.
Timed consistency for shared distributed objects. In
Proceedings of the eighteenth annual ACM symposium
on Principles of distributed computing - PODC ’99,
pages 163–172, Atlanta, Georgia, USA, 1999.

[13] W. Vogels. Eventually consistent. ACM Queue,
6(6):14–19, 2008.

[14] Z. Wei, G. Pierre, and C.-H. Chi. Scalable
Transactions for Web Applications in the Cloud. In
15th International Euro-Par Conference, pages
442–453, Delft, The Netherlands, 2009.

[15] K. Zhang and B. Kemme. Transaction Models for
Massively Multiplayer Online Games. In 30th IEEE
Symposium on Reliable Distributed Systems (SRDS
2011), pages 31–40, Madrid, Spain, 2011.

[16] K. Zhang, B. Kemme, and A. Denault. Persistence in
massively multiplayer online games. In Proceedings of
the 7th ACM SIGCOMM Workshop on Network and
System Support for Games, NETGAMES 2008, pages
53–58, Worcester, Massachusetts, USA, 2008.


