
A Conceptual Model for the XML Schema Evolution

Overview: Storing, Base-Model-Mapping and Visualization

Thomas Nösinger, Meike Klettke, Andreas Heuer
Database Research Group

University of Rostock, Germany
(tn, meike, ah)@informatik.uni-rostock.de

ABSTRACT
In this article the conceptual model EMX (Entity Model
for XML-Schema) for dealing with the evolution of XML
Schema (XSD) is introduced. The model is a simplified
representation of an XSD, which hides the complexity of
XSD and offers a graphical presentation. For this purpose
a unique mapping is necessary which is presented as well
as further information about the visualization and the log-
ical structure. A small example illustrates the relation-
ships between an XSD and an EMX. Finally, the integration
into a developed research prototype for dealing with the co-
evolution of corresponding XML documents is presented.

1. INTRODUCTION
The eXtensible Markup Language (XML) [2] is one of the

most popular formats for exchanging and storing structured
and semi-structured information in heterogeneous environ-
ments. To assure that well-defined XML documents can be
understood by every participant (e.g. user or application)
it is necessary to introduce a document description, which
contains information about allowed structures, constraints,
data types and so on. XML Schema [4] is one commonly used
standard for dealing with this problem. An XML document
is called valid, if it fulfills all restrictions and conditions of
an associated XML Schema.

XML Schema that have been used for years have to be
modified from time to time. The main reason is that the
requirements for exchanged information can change. To
meet these requirements the schema has to be adapted, for
example if additional elements are added into an existing
content model, the data type of information changed or in-
tegrity constraints are introduced. All in all every possi-
ble structure of an XML Schema definition (XSD) can be
changed. A question occurs: In which way can somebody
make these adaptions without being coerced to understand
and deal with the whole complexity of an XSD? One solu-
tion is the definition of a conceptual model for simplifying
the base-model; in this paper we outline further details of

25th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 28.05.2013 - 31.05.2013, Ilmenau, Germany.
Copyright is held by the author/owner(s).

our conceptual model called EMX (Entity Model for XML-
Schema).

A further issue, not covered in this paper, but important
in the overall context of exchanging information, is the valid-
ity of XML documents [5]. Modifications of XML Schema re-
quire adaptions of all XML documents that are valid against
the former XML Schema (also known as co-evolution).

One unpractical way to handle this problem is to introduce
different versions of an XML Schema, but in this case all
versions have to be stored and every participant of the het-
erogeneous environment has to understand all different doc-
ument descriptions. An alternative solution is the evolution
of the XML Schema, so that just one document description
exists at one time. The above mentioned validity problem
of XML documents is not solved, but with the standardized
description of the adaptions (e.g. a sequence of operations
[8]) and by knowing a conceptual model inclusively the cor-
responding mapping to the base-model (e.g. XSD), it is
possible to derive necessary XML document transformation
steps automatically out of the adaptions [7]. The conceptual
model is an essential prerequisite for the here not in detail
but incidentally handled process of the evolution of XML
Schema.

This paper is organized as follows. Section 2 gives the
necessary background of XML Schema and corresponding
concepts. Section 3 presents our conceptual model by first
giving a formal definition (3.1), followed by the specification
of the unique mapping between EMX and XSD (3.2) and
the logical structure of the EMX (3.3). After introducing
the conceptual model we present an example of an EMX in
section 4. In section 5 we describe the practical use of
EMX in our prototype, which was developed for handle the
co-evolution of XML Schema and XML documents. Finally
in section 6 we draw our conclusions.

2. TECHNICAL BACKGROUND
In this section we present a common notation used in the

rest of the paper. At first we will shortly introduce the
abstract data model (ADM) and element information item
(EII) of XML Schema, before further details concerning dif-
ferent modeling styles are given.

The XML Schema abstract data model consists of different
components or node types1, basically these are: type defi-
nition components (simple and complex types), declaration
components (elements and attributes), model group compo-
nents, constraint components, group definition components

1An XML Schema can be visualized as a directed graph with
different nodes (components); an edge realizes the hierarchy

and annotation components [3]. Additionally the element
information item exists, an XML representation of these
components. The element information item defines which
content and attributes can be used in an XML Schema. Ta-
ble 1 gives an overview about the most important compo-
nents and their concrete representation. The <include>,

ADM Element Information Item
declarations <element>, <attribute>

group-definitions <attributeGroup>
model-groups <all>, <choice>, <sequence>,

<any>, <anyAttribute>
type-definitions <simpleType>,

<complexType>
N.N. <include>, <import>,

<redefine>, <overwrite>
annotations <annotation>
constraints <key>, <unique>, <keyref>,

<assert>, <assertion>
N.N. <schema>

Table 1: XML Schema Information Items

<import>, <redefine> and <overwrite> are not explicitly
given in the abstract data model (N.N. - Not Named), but
they are important components for embedding externally
defined XML Schema (esp. element declarations, attribute
declarations and type definitions). In the rest of the pa-
per, we will summarize them under the node type ”module”.
The <schema> ”is the document (root) element of any W3C
XML Schema. It’s both a container for all the declarations
and definitions of the schema and a place holder for a number
of default values expressed as attributes” [9]. Analyzing the
possibilities of specifying declarations and definitions leads
to four different modeling styles of XML Schema, these are:
Russian Doll, Salami Slice, Venetian Blind and Garden of
Eden [6]. These modeling styles influence mainly the re-
usability of element declarations or defined data types and
also the flexibility of an XML Schema in general. Figure
1 summarizes the modeling styles with their scopes. The

Scope R
u

ss
ia

n
 D

o
ll

Sa
la

m
i S

lic
e

V
en

et
ia

n
 B

lin
d

G
ar

d
en

 o
f

Ed
en

local x x

global x x

local x x

global x x
type definition

element and attribute

declaration

Figure 1: XSD Modeling Styles according to [6]

scope of element and attribute declarations as well as the
scope of type definitions is global iff the corresponding node
is specified as a child of the <schema> and can be referenced
(by knowing e.g. the name and namespace). Locally speci-
fied nodes are in contrast not directly under <schema>, the
re-usability is not given respectively not possible.

An XML Schema in the Garden of Eden style just con-
tains global declarations and definitions. If the requirements

against exchanged information change and the underlying
schema has to be adapted then this modeling style is the
most suitable. The advantage of the Garden of Eden style
is that all components can be easily identified by knowing
the QNAME (qualified name). Furthermore the position of
components within an XML Schema is obvious. A qualified
name is a colon separated string of the target namespace of
the XML Schema followed by the name of the declaration
or definition. The name of a declaration and definition is
a string of the data type NCNAME (non-colonized name),
a string without colons. The Garden of Eden style is the
basic modeling style which is considered in this paper, a
transformation between different styles is possible.2

3. CONCEPTUAL MODEL
In [7] the three layer architecture for dealing with XML

Schema adaptions (i.e. the XML Schema evolution) was
introduced and the correlations between them were men-
tioned. An overview is illustrated in figure 2. The first

EM
X

X
M

L
Sc

h
em

a
X

M
L

EMX

XSD XSD‘

EMX‘

XML XML‘

Operation

Operation

1 - * mapping

Operation

1 - 1 mapping

Figure 2: Three Layer Architecture

layer is our conceptual model EMX (Entity Model for XML-
Schema), a simplified representation of the second layer.
This layer is the XML Schema (XSD), where a unique map-
ping between these layers exists. The mapping is one of the
main aspects of this paper (see section 3.2). The third layer
are XML documents or instances, an ambiguous mapping
between XSD and XML documents exists. It is ambiguous
because of the optionality of structures (e.g. minOccurs =
’0’; use = ’optional’) or content types (e.g. <choice>). The
third layer and the mapping between layer two and three, as
well as the operations for transforming the different layers
are not covered in this paper (parts were published in [7]).

3.1 Formal Definition
The conceptual model EMX is a triplet of nodes (NM),

directed edges between nodes (EM) and features (FM).

EMX = (NM , EM , FM) (1)

Nodes are separated in simple types (st), complex types (ct),
elements, attribute-groups, groups (e.g. content model), an-
notations, constraints and modules (i.e. externally managed
XML Schemas). Every node has under consideration of the
element information item of a corresponding XSD different
attributes, e.g. an element node has a name, occurrence
values, type information, etc. One of the most important

2A student thesis to address the issue of converting different
modeling styles into each other is in progress at our profes-
sorship; this is not covered in this paper.

attributes of every node is the EID (EMX ID), a unique
identification value for referencing and localization of every
node; an EID is one-to-one in every EMX. The directed
edges are defined between nodes by using the EIDs, i.e. ev-
ery edge is a pair of EID values from a source to a tar-
get. The direction defines the include property, which was
specified under consideration of the possibilities of an XML
Schema. For example if a model-group of the abstract data
model (i.e. an EMX group with ”EID = 1”) contains dif-
ferent elements (e.g. EID = {2,3}), then two edges exist:
(1,2) and (1,3). In section 3.3 further details about allowed
edges are specified (see also figure 5). The additional fea-
tures allow the user-specific setting of the overall process
of co-evolution. It is not only possible to specify default
values but also to configure the general behaviour of opera-
tions (e.g. only capacity-preserving operations are allowed).
Furthermore all XML Schema properties of the element in-
formation item <schema> are included in the additional
features. The additional features are not covered in this
paper.

3.2 Mapping between XSD and EMX
An overview about the components of an XSD has been

given in table 1. In the following section the unique map-
ping between these XSD components and the EMX nodes
introduced in section 3.1 is specified. Table 2 summarizes
the mapping. For every element information item (EII) the

EII EMX Node Visualization

<element> element

<attribute>,
<attributeGroup>

attribute-
group

<all>, <choice>,
<sequence>

group

<any>

<anyAttribute>
<simpleType> st implicit and

specifiable
<complexType> ct implicit and

derived

<include>,
<import>,
<redefine>,
<overwrite>

module

<annotation> annotation

<key>, <unique>,
<keyref>

constraint

<assert> implicit in ct
<assertion> restriction in st
<schema> the EMX itself

Table 2: Mapping and Visualization

corresponding EMX node is given as well as the assigned vi-
sualization. For example an EMX node group represents the
abstract data model (ADM) node model-group (see table 1).
This ADM node is visualized through the EII content mod-
els <all>, <choice> and <sequence>, and the wildcards
<any> and <anyAttribute>. In an EMX the visualization
of a group is the blue ”triangle with a G” in it. Further-
more if a group contains an element wildcard then this is

visualized by adding a ”blue W in a circle”, a similar be-
haviour takes place if an attribute wildcard is given in an
<attributeGroup>.

The type-definitions are not directly visualized in an EMX.
Simple types for example can be specified and afterwards be
referenced by elements or attributes3 by using the EID of the
corresponding EMX node. The complex type is also implic-
itly given, the type will be automatically derived from the
structure of the EMX after finishing the modeling process.
The XML Schema specification 1.1 has introduced different
logical constraints, which are also integrated in the EMX.
These are the EIIs <assert> (for constraints on complex
types) and <assertion>. An <assertion> is under consider-
ation of the specification a facet of a restricted simple type
[4]. The last EII is <schema>, this ”root” is an EMX itself.
This is also the reason why further information or properties
of an XML Schema are stored in the additional features as
mentioned above.

3.3 Logical Structure
After introducing the conceptual model and specifying the

mapping between an EMX and XSD, in the following section
details about the logical structure (i.e. the storing model)
are given. Also details about the valid edges of an EMX are
illustrated. Figure 3 gives an overview about the different
relations used as well as the relationships between them.
The logical structure is the direct consequence of the used

Module

CT

Group

Schema
Element_

Ref

Element

ConstraintPath AnnotationST_List Facet

ST

Attribute
_Gr_Ref

Attribute

Attribute
_Gr

Attribute
_Ref

Wildcard

@ @
@

Assert

Relation has_asame
visualized

in EMX
parent_EID

@ Attribute

@ Element

EMX
node

extern
parent_EID

Figure 3: Logical Structure of an EMX

modeling style Garden of Eden, e.g. elements are either
element declarations or element references. That’s why this
separation is also made in the EMX.

All in all there are 18 relations, which store the content of
an XML Schema and form the base of an EMX. The different
nodes reference each other by using the well known foreign
key constraints of relational databases. This is expressed by
using the directed ”parent EID”arrows, e.g. the EMX nodes
(”rectangle with thick line”) element, st, ct, attribute-group
and modules reference the ”Schema” itself. If declarations
or definitions are externally defined then the ”parent EID”
is the EID of the corresponding module (”blue arrow”). The
”Schema” relation is an EMX respectively the root of an
EMX as already mentioned above.

3The EII <attribute> and <attributeGroup> are the same
in the EMX, an attribute-group is always a container

The ”Annotation” relation can reference every other re-
lation according to the XML Schema specification. Wild-
cards are realized as an element wildcard, which belongs to
a ”Group” (i.e. EII <any>), or they can be attribute wild-
cards which belongs to a ”CT” or ”Attribute Gr” (i.e. EII
<anyAttribute>). Every ”Element” relation (i.e. element
declaration) has either a simple type or a complex type,
and every ”Element Ref” relation has an element declara-
tion. Attributes and attribute-groups are the same in an
EMX, as mentioned above.

Moreover figure 3 illustrates the distinction between visu-
alized (”yellow border”) and not visualized relations. Under
consideration of table 2 six relations are direct visible in
an EMX: constraints, annotations, modules, groups and be-
cause of the Garden of Eden style element references and
attribute-group references. Table 3 summarizes which rela-
tion of figure 3 belongs to which EMX node of table 2.

EMX Node Relation
element Element, Element Ref

attribute-group Attribute, Atttribute Ref,
Attribute Gr,

Attribute Gr Ref
group Group, Wildcard

st ST, ST List, Facet
ct CT

annotation Annotation
constraint Contraint, Path, Assert

module Module

Table 3: EMX Nodes with Logical Structure

The EMX node st (i.e. simple type) has three relations.
These are the relation ”ST”for the most simple types, the re-
lation ”ST List” for set free storing of simple union types and
the relation ”Facet” for storing facets of a simple restriction
type. Constraints are realized through the relation ”Path”
for storing all used XPath statements for the element infor-
mation items (EII) <key>, <unique> and <keyref> and
the relation ”Constraint” for general properties e.g. name,
XML Schema id, visualization information, etc. Further-
more the relation ”Assert” is used for storing logical con-
straints against complex types (i.e. EII <assert>) and sim-
ple types (i.e. EII <assertion>). Figure 4 illustrates the

element

PK EID

 name
 type_EID
 finalV
 defaultV
 fixed
 nillable
 id
 form
 file_ID
 parent_EID

element_ref

PK EID

 ref_EID
 minOccurs
 maxOccurs
 position
 id
 file_ID
 parent_EID
 width
 height
 x_Pos
 y_Pos

FK

FK

FK

FK

FK

FK

Figure 4: Relations of EMX Node element

stored information concerning the EMX node element re-
spectively the relations ”Element” and ”Element Ref”. Both
relations have in common, that every tuple is identified by
using the primary key EID. The EID is one-to-one in ev-
ery EMX as mentioned above. The other attributes are

specified under consideration of the XML Schema specifica-
tion [4], e.g. an element declaration needs a ”name” and a
type (”type EID” as a foreign key) as well as other optional
values like the final (”finalV”), default (”defaultV”), ”fixed”,
”nillable”, XML Schema ”id” or ”form” value. Other EMX
specific attributes are also given, e.g. the ”file ID” and the
”parent EID” (see figure 3). The element references have a
”ref EID”, which is a foreign key to a given element declara-
tion. Moreover attributes of the occurrence (”minOccurs”,
”maxOccurs”), the ”position” in a content model and the
XML Schema ”id” are stored. Element references are visual-
ized in an EMX. That’s why some values about the position
in an EMX are stored, i.e. the coordinates (”x Pos”, ”y Pos”)
and the ”width” and ”height” of an EMX node. The same
position attributes are given in every other visualized EMX
node.

The edges of the formal definition of an EMX can be de-
rived by knowing the logical structure and the visualization
of an EMX. Figure 5 illustrates the allowed edges of EMX
nodes. An edge is always a pair of EIDs, from a source

edge(X,Y)

so
u

rc
e

X

el
em

en
t

at
tr

ib
u

te
-g

ro
u

p

gr
o

u
p

ct st an
n

o
ta

ti
o

n

co
n

st
ra

in
t

m
o

d
u

le

sc
h

em
a

target Y

element x x x

attribute-group x x x x

group x x x

ct x x x

st x x x x

annotation x x x x x x x x

constraint x x x

module x
implicitly given

Figure 5: Allowed Edges of EMX Nodes

(”X”) to a target (”Y”). For example it is possible to add
an edge outgoing from an element node to an annotation,
constraint, st or ct. A ”black cross” in the figure defines a
possible edge. If an EMX is visualized then not all EMX
nodes are explicitly given, e.g. the type-definitions of the
abstract data model (i.e. EMX nodes st, ct ; see table 2). In
this case the corresponding ”black cross” has to be moved
along the given ”yellow arrow”, i.e. an edge in an EMX be-
tween a ct (source) and an attribute-group (target) is valid.
If this EMX is visualized, then the attribute-group is shown
as a child of the group which belongs to above mentioned
ct. Some information are just ”implicitly given” in a visu-
alization of an EMX (e.g. simple types). A ”yellow arrow”
which starts and ends in the same field is a hint for an union
of different nodes into one node, e.g. if a group contains a
wildcard then in the visualization only the group node is
visible (extended with the ”blue W”; see table 2).

4. EXAMPLE
In section 3 the conceptual model EMX was introduced.

In the following section an example is given. Figure 6 il-
lustrates an XML Schema in the Garden of Eden modeling
style. An event is specified, which contains a place (”ort”)
and an id (”event-id”). Furthermore the integration of other

Figure 6: XML Schema in Garden of Eden Style

attributes is possible, because of an attribute wildcard in
the respective complex type. The place is a sequence of a
name and a date (”datum”).

All type definitions (NCNAMEs: ”orttype”, ”eventtype”)
and declarations (NCNAMEs: ”event”, ”name”, ”datum”,
”ort” and the attribute ”event-id”) are globally specified.
The target namespace is ”eve”, so the QNAME of e.g. the
complex type definition ”orttype” is ”eve:orttype”. By using
the QNAME every above mentioned definition and decla-
ration can be referenced, so the re-usability of all compo-
nents is given. Furthermore an attribute wildcard is also
specified, i.e. the complex type ”eventtype” contains apart
from the content model sequence and the attribute refer-
ence ”eve:event-id” the element information item <anyAt-
tribute>.

Figure 7 is the corresponding EMX of the above specified
XML Schema. The representation is an obvious simplifica-

Figure 7: EMX to XSD of Figure 6

tion, it just contains eight well arranged EMX nodes. These
are the elements ”event”, ”ort”, ”name” and ”datum”, an an-
notation as a child of ”event”, the groups as a child under
”event” and ”ort”, as well as an attribute-group with wild-
card. The simple types of the element references ”name”
and ”datum” are implicitly given and not visualized. The
complex types can be derived by identifying the elements
which have no specified simple type but groups as a child
(i.e. ”event” and ”ort”).

The edges are under consideration of figure 5 pairs of not
visualized, internally defined EIDs. The source is the side of

the connection without ”black rectangle”, the target is the
other side. For example the given annotation is a child of
the element ”event”and not the other way round; an element
can never be a child of an annotation, neither in the XML
Schema specification nor in the EMX.

The logical structure of the EMX of figure 7 is illustrated
in figure 8. The relations of the EMX nodes are given as well

Schema

EID

1

Element Annotation

EID name parent_EID EID x_Pos y_Pos

2 event 1 10 50 100

3 name 1 Wildcard

4 datum 1 EID

5 ort 1 17

Element_Ref

EID ref_EID x_Pos y_Pos

6 2 75 75 event

7 3 60 175 name

8 4 150 175 datum

9 5 100 125 ort

ST CT

EID mode parent_EID EID

11 built-in 1 13

12 built-in 1 14

Group

EID

15 eventsequence

16 ortsequence

Attribute Attribute_Ref

EID EID

18 19

Attribute_Gr Attribute_Gr_Ref

EID EID x_Pos y_Pos

20 21 185 125

parent_EID

14

14

parent_EID

parent_EID

name

event-id

parent_EID

1

ref_EID

18

1

16

16

15

parent_EID

1

ref_EID parent_EID

1420

100

150

1

1

1

parent_EID

y_Posx_Pos

125

100

parent_EID

orttype

name

eventtype

targetName

gvd2013.xsd eve

TNPrefixxmlns_xs

http://www.w3.org/2001/XMlSchema

12

13

1

minOccurs maxOccurs

1

1

1

type_EID parent_EID

214

11

sequence

14

13

xs:string

xs:date

1

1

1

mode

sequence

name

Figure 8: Logical Structure of Figure 7

as the attributes and corresponding values relevant for the
example. Next to every tuple of the relations ”Element Ref”
and ”Group” small hints which tuples are defined are added
(for increasing the readability). It is obvious that an EID
has to be unique, this is a prerequisite for the logical struc-
ture. An EID is created automatically, a user of the EMX
can neither influence nor manipulate it.

The element references contain information about the oc-
currence (”minOccurs”, ”maxOccurs”), which are not explic-
itly given in the XSD of figure 6. The XML Schema spec-
ification defines default values in such cases. If an element
reference does not specify the occurrence values then the
standard value ”1” is used; an element reference is obliga-
tory. These default values are also added automatically.

The stored names of element declarations are NCNAMEs,
but by knowing the target namespace of the corresponding
schema (i.e. ”eve”) the QNAME can be derived. The name
of a type definition is also the NCNAME, but if e.g. a built-
in type is specified then the name is the QNAME of the
XML Schema specification (”xs:string”, ”xs:date”).

5. PRACTICAL USE OF EMX
The co-evolution of XML documents was already men-

tioned in section 1. At the University of Rostock a research
prototype for dealing with this co-evolution was developed:
CodeX (Conceptual design and evolution for XML Schema)

[5]. The idea behind it is simple and straightforward at the
same time: Take an XML Schema, transform it to the specif-
ically developed conceptual model (EMX - Entity Model for
XML-Schema), change the simplified conceptual model in-
stead of dealing with the whole complexity of XML Schema,
collect these changing information (i.e. the user interaction
with EMX) and use them to create automatically trans-
formation steps for adapting the XML documents (by us-
ing XSLT - Extensible Stylesheet Language Transformations
[1]). The mapping between EMX and XSD is unique, so it is
possible to describe modifications not only on the EMX but
also on the XSD. The transformation and logging language
ELaX (Evolution Language for XML-Schema [8]) is used to
unify the internally collected information as well as intro-
duce an interface for dealing directly with XML Schema.
Figure 9 illustrates the component model of CodeX, firstly
published in [7] but now extended with the ELaX interface.

 CodeX

Knowledge
 base

Model data Evolution spezific data

 Export Import

 GUI

XSD Config XSD Config

Spezification
of operation

Model
mapping

Configuration

XSLTEvolution engine

XML
documents

Update notes &
evolution results

Data supply

Results

Log
Transformation

Visualization

XSD
XML

ELaX

ELaXSchema modifications

Figure 9: Component Model of CodeX [5]

The component model illustrates the different parts for
dealing with the co-evolution. The main parts are an im-
port and export component for collecting and providing data
of e.g. a user (XML Schemas, configuration files, XML doc-
ument collections, XSLT files), a knowledge base for stor-
ing information (model data, evolution specific data and
co-evolution results) and especially the logged ELaX state-
ments (”Log”). The mapping information between XSD and
EMX of table 2 are specified in the ”Model data”component.

Furthermore the CodeX prototype also provides a graph-
ical user interface (”GUI”), a visualization component for
the conceptual model and an evolution engine, in which the
transformations are derived. The visualization component
realizes the visualization of an EMX introduced in table 2.
The ELaX interface for modifying imported XML Schemas
communicates directly with the evolution engine.

6. CONCLUSION
Valid XML documents need e.g. an XML Schema, which

restricts the possibilities and usage of declarations, defini-
tions and structures in general. In a heterogeneous changing
environment (e.g. an information exchange scenario), also
”old” and longtime used XML Schema have to be modified
to meet new requirements and to be up-to-date.

EMX (Entity Model for XML-Schema) as a conceptual
model is a simplified representation of an XSD, which hides
its complexity and offers a graphical presentation. A unique
mapping exists between every in the Garden of Eden style

modeled XSD and an EMX, so it is possible to representa-
tively adapt or modify the conceptual model instead of the
XML Schema.

This article presents the formal definition of an EMX, all
in all there are different nodes, which are connected by di-
rected edges. Thereby the abstract data model and element
information item of the XML Schema specification were con-
sidered, also the allowed edges are specified according to
the specification. In general the most important compo-
nents of an XSD are represented in an EMX, e.g. elements,
attributes, simple types, complex types, annotations, con-
strains, model groups and group definitions. Furthermore
the logical structure is presented, which defines not only the
underlying storing relations but also the relationships be-
tween them. The visualization of an EMX is also defined:
outgoing from 18 relations in the logical structure, there are
eight EMX nodes in the conceptual model, from which six
are visualized.

Our conceptual model is an essential prerequisite for the
prototype CodeX (Conceptual design and evolution for XML
Schema) as well as for the above mentioned co-evolution. A
remaining step is the finalization of the implementation in
CodeX. After this work an evaluation of the usability of the
conceptual model is planned. Nevertheless we are confident,
that the usage is straightforward and the simplification of
EMX in comparison to deal with the whole complexity of
an XML Schema itself is huge.

7. REFERENCES
[1] XSL Transformations (XSLT) Version 2.0.

http://www.w3.org/TR/2007/REC-xslt20-20070123/,
January 2007. Online; accessed 26-March-2013.

[2] Extensible Markup Language (XML) 1.0 (Fifth
Edition).
http://www.w3.org/TR/2008/REC-xml-20081126/,
November 2008. Online; accessed 26-March-2013.

[3] XQuery 1.0 and XPath 2.0 Data Model (XDM)
(Second Edition). http://www.w3.org/TR/2010/
REC-xpath-datamodel-20101214/, December 2010.
Online; accessed 26-March-2013.

[4] W3C XML Schema Definition Language (XSD) 1.1
Part 1: Structures. http://www.w3.org/TR/2012/
REC-xmlschema11-1-20120405/, April 2012. Online;
accessed 26-March-2013.

[5] M. Klettke. Conceptual XML Schema Evolution - the
CoDEX Approach for Design and Redesign. In BTW
Workshops, pages 53–63, 2007.

[6] E. Maler. Schema design rules for ubl...and maybe for
you. In XML 2002 Proceedings by deepX, 2002.

[7] T. Nösinger, M. Klettke, and A. Heuer. Evolution von
XML-Schemata auf konzeptioneller Ebene - Übersicht:
Der CodeX-Ansatz zur Lösung des Gültigkeitsproblems.
In Grundlagen von Datenbanken, pages 29–34, 2012.

[8] T. Nösinger, M. Klettke, and A. Heuer. Automatisierte
Modelladaptionen durch Evolution - (R)ELaX in the
Garden of Eden. Technical Report CS-01-13, Institut
für Informatik, Universität Rostock, Rostock, Germany,
Jan. 2013. Published as technical report CS-01-13
under ISSN 0944-5900.

[9] E. van der Vlist. XML Schema. O’Reilly & Associates,
Inc., 2002.

