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ABSTRACT
Managing movement data efficiently often requires the exploita-
tion of some indexing scheme. Taking into account the kind of
queries issued to the given data, several indexing structures have
been proposed which focus on spatial, temporal or spatio-temporal
data. Since all these approaches consider only raw data of moving
objects, they may be well-suited if the queries of interest contain
concrete trajectories or spatial regions. However, if the query con-
sists only of a qualitative description of a trajectory, e.g. by stating
some properties of the underlying object, sequential scanson the
whole trajectory data are necessary to compute the property, even
if an indexing structure is available.
The present paper presents some results of an ongoing work ona
data structure for Trajectory Indexing using Motion Property In-
formation (TrIMPI). The proposed approach is flexible sinceit al-
lows the user to define application-specific properties of trajecto-
ries which have to be used for indexing. Thereby, we show how
to efficiently answer queries given in terms of such qualitative de-
scriptions. Since the index structure is built on top of ordinary data
structures, it can be implemented in arbitrary database management
systems.
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1. INTRODUCTION AND MOTIVATION
Most index structures for trajectories considered in the literature

(e.g. [8]) concentrate on (time dependent) positional data, e.g. R-
Tree [9] or TPR*-Tree [17]. There are different approaches (e.g.
[1], [12]) exploiting transformation functions on the original data
and thereby reducing the indexing overhead through “light ver-
sions” of the trajectories to be indexed. In these approaches only
stationary data is being handled. In cases where the queriesof in-
terest consist of concrete trajectories or polygons covering them,
such indexing schemata as well as trajectory compression tech-
niques (e.g. [1], [6], [10], [12], [13]) may be well-suited.However,
there are applications [14] where a query may consist only ofa
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qualitative description, e.g.return all trajectories where the under-
lying object slowed down (during any time interval) and after that
it changed its course. Obviously, the motion propertiesslowdown
andcourse alterationas well as their temporal adjustment can be
computed using formal methods. The crucial point is that, even if
an indexing structure is used, the stated properties must becom-
puted for each trajectory and this results in sequential scan(s) on
the whole trajectory data. Time consuming processing of queries
is not acceptable, however, in a scenario where fast reaction on in-
coming data streams is needed. An example of such a situationwith
so-calledtrackscomputed from radar and sonar data as input is the
detection of patterns of skiff movements typical for many piracy
attacks [14]. Atrack comprises the position of an object at a time
moment and can hold additional information e.g. about its current
course and velocity. Gathering the tracks of a single objectover a
time interval yields its trajectory over this interval.
To address the efficiency problem, we propose an indexing scheme
which is not primarily focused on the “time-position data” of tra-
jectories but uses meta information about them instead.
We start with a discussion of related work in Section 2. Section 3
provides some formal definitions on trajectories and their motion
properties. In section 4 we introduce the indexing scheme itself
and illustrate algorithms for querying it. Section 5 summarizes the
present work and outlines our future work.

2. RELATED WORK
In this section we provide a short overview on previous contri-

butions which are related to our approach. We start the section
by reviewing classical indexing structures for moving objects data.
Next to this, we show an approach which is similar in general terms
to the proposed one and finally we review literature related to se-
mantical aspects of moving objects.

2.1 Indexing of Spatial, Temporal and Spatio-
Temporal Data

The moving object databases community has developed several
data structures for indexing movement data. According to [8], these
structures can be roughly categorized as structures indexing only
spatial data, also known asspatial access methods(SAM); index-
ing approaches for temporal data, also known astemporal index
structures; and those which manage both - spatial and temporal
data, also known asspatio-temporal index structures. One of the
first structures developed for SAMs is the well-known R-Tree[9].
Several extensions of R-Trees have been provided over the years,
thus yielding a variety of spatio-temporal index structures. An in-
formal schematic overview on these extensions, including also new
developments as the HTPR*-Tree [7] can be found in [11]. Since
all of the proposed access methods focus mainly on the raw spatio-



temporal data, they are well-suited for queries on history of move-
ment and predicting new positions of moving objects, or for re-
turning most similar trajectories to a given one. If a query consists
only of a qualitative description, however, all the proposed index-
ing structures are of no use.

2.2 Applying Dimensionality Reduction upon
Indexing - the GEMINI Approach

The overall approach we consider in this work is similar to the
GEMINI (GEneric Multimedia INdexIng method) indexing scheme
presented in [6]. This approach was originally proposed fortime
series and has been applied later for other types of data, e.g. for
motion data in [16]. The main idea behind GEMINI is to reduce the
dimensionality of the original data before indexing. Therefor, rep-
resentatives of much lower dimensionality are created for the data
(trajectory or time series) to be indexed by using an appropriate
transform and used for indexing. A crucial result in [6] is that the
authors proved that in order to guarantee no false dismissals [12],
the exploited transform must retain the distance (or similarity) of
the data to be indexed, that is, the distance between representatives
should not exceed the distance of the original time series.
In the mentioned approaches, the authors achieve encouraging re-
sults on querying most similar trajectories (or time series) to a given
one. However, since the representatives of the original data are tra-
jectories or time series, respectively, evaluating a querywhich only
describes a motion behavior would result in the inspection of all
representatives.

2.3 Semantical Properties of Movement
Semantical properties of movement data have been considered in

various works, e.g. in [2], [5], and [15].
The authors of [2] propose a spatio-temporal representation scheme
for moving objects in the area of video data. The considered rep-
resentation scheme distinguishes between spatio-temporal data of
trajectories and their topological information, and also utilizes in-
formation about distances between pairs of objects. The topolog-
ical information itself is defined through a set oftopological re-
lations operatorsexpressing spatial relations between objects over
some time interval, includingfaraway, disjoint, meet, overlap, is-
included-by/includesandsame.
In [5], a comprehensive study on the research that has been carried
out on data mining and visual analysis of movement patterns has
been provided. The authors propose a conceptual framework for
movement behavior of different moving objects. The extracted be-
havior patterns are classified according to a taxonomy.
In [15], the authors provide some aspects related to a semantic view
of trajectories. They show a conceptual approach for how trajectory
behaviors can be described by predicates that involve movement
attributes and/or semantic annotations. The provided approach is
rather informal and considers behavior analysis of moving objects
on a general level.

3. FORMAL BACKGROUND
This section provides the formal notions as well as the definitions

needed throughout the rest of the paper. We start with the term
trajectory and then direct later our attention to motion properties
and patterns.

3.1 Trajectories
In our approach we consider the trajectoryτo of an objecto sim-

ply as a function of time which assigns a position too at any point
in time. Since time plays only a role for the determination oftem-
poral causality between the positions of an object, we abstract from

“real time” and use anytime domaininstead. Atime domainis any
set which is interval scaled and countably infinite. The firstre-
quirement ensures that timestamps can be used for ordering and,
furthermore, that the “delay” between two time assignmentscan
be determined. The second requirement ensures that we have an
infinite number of “time moments” which can be unambiguously
indexed by elements ofN. In the following we denote a time do-
main by T.

Since objects move in a space, we also need a notion for aspa-
tial domain. In the following, let S denote the spatial domain. We
require that S is equipped with an adequate metric, such as the Eu-
clidean distance (e.g. for S= R × R), which allows us to measure
the spatial distance between objects.

Having the notions of time and space we can define formally the
term trajectory.

Definition 1. Let T, S andO denote a time domain, a space do-
main and a set of distinct objects, respectively. Then,the trajectory
τo of an object o∈ O is a functionτo : T→ S.

For brevity, we can also write the trajectory of an objecto ∈ O
in the form (o, t0, s0), (o, t1, s1) . . . for thoset ∈ T whereτo(t) = s is
defined. A single element (o, ti , si) is called thetrack of object o at
time ti .

3.2 Motion Patterns
We consider a motion pattern as a sequence of properties of

trajectories which reveal some characteristics of the behavior of
the underlying moving objects. Such properties may be expressed
through any predicates which are important for the particular anal-
ysis, such asstart, stop, turn, or speedup.

Definition 2. Let T be a time domain,T be the set of trajectories
of an object setO over T, andIT be the set of all closed inter-
vals over T. Amotion propertyonT is a functionp : 2T × IT →

{true, f alse}.

That is, a motion property is fulfilled for a set of trajectories and
a certain time interval if the appropriate predicate is satisfied. To
illustrate this definition, some examples of motion properties are
provided below:

• Appearance: Let t ∈ T. Then we define appear(·, ·) as
follows: appear({τo}, [t, t]) = true ⇔ ∀t′ ∈ T : τo(t′) ,
undefined→ t ≤ t′. That is, an object “appears” only in the
“first” moment it is being observed.

• Speedup: Let t1, t2 ∈ T andt1 < t2. Then speedup(·, ·) is de-
fined as follows: speedup({τo}, [t1, t2]) = true⇔ v(τo, t1) <
v(τo, t2)∧∀t ∈ T : t1 ≤ t ≤ t2→ v(τo, t1) ≤ v(τo, t) ≤ v(τo, t2)
wherev(τo, t) denotes the velocity of the underlying moving
objecto at timet. That is, the predicate speedup is satisfied
for a trajectory and a time interval if and only if the velocity
of the underlying object is increasing in the considered time
interval. Note that the increase may not be strictly mono-
tonic.

• Move away: Let t1, t2 ∈ T and t1 < t2. Then we define:
moveaway({τo1 , τo2}, [t1, t2]) = true⇔ ∀t, t′ ∈ T : t1 ≤ t <
t′ ≤ t2 → dist(τo1 , τo2 , t) < dist(τo1 , τo2 , t

′) where the term
dist(τo1 , τo2 , t) denotes the distance between the underlying
moving objectso1 ando2 at timet. That is, two objects are
moving away from each other for a time interval, if their dis-
tance is increasing during the considered time interval.



Figure 1: Overview of the index structure

Using motion properties, amotion patternof a single trajectory
or a set of trajectories is defined asa sequence of motion properties
ordered by the time intervals in which they are fulfilled. It is impor-
tant to note, that this common definition of a motion pattern allows
multiple occurrences of the same motion property in the sequence.
In order to get a well-defined notion it has to be required thatthe
time intervals in which the motion properties are fulfilled are dis-
joint or that meaningful preferences on the motion properties are
specified in order to allow ordering in case the time intervals over-
lap.

4. TRAJECTORY INDEXING USING MO-
TION PROPERTIES

In this section we explain how the proposed index is being cre-
ated and used. Index creation starts with the determinationof the
motion pattern of each trajectory to be indexed. For this purpose,
the motion predicates specified by the user are computed. There-
sulting motion patterns are indexed with references to the original
trajectories.

The resulting index is schematically depicted in Figure 1. TrIMPI
consists mainly of a data structure holding the raw trajectory data,
and secondary index structures for maintaining motion patterns.
Thereby, we differentiate between indexing single motion proper-
ties and indexing motion patterns.
A query to the index can be stated either through a motion pattern or
through a concrete trajectory. The index is searched for motion pat-
terns containing the given one or the computed one, respectively. In
both cases, the associated trajectories are returned. The following
subsections consider the outlined procedures more precisely.

4.1 Indexing Trajectory Raw Data
Since the focus of TrIMPI is not on querying trajectories by ex-

ample, the index structure for the raw trajectory data can berather
simple. For our implementation, we considered atrajectory record
file as proposed by [3]. This structure (Figure 1) stores trajectories
in records of fixed length. The overall structure of the records is as
follows

IDo next_ptr prev_ptr {track0, . . . , tracknum−1} .

IDo denotes the identifier of the underlying moving object,next_ptr
andprev_ptr are references to the appropriate records holding fur-
ther parts of the trajectory, and{track0, . . . , tracknum−1} is a list of
tracks of a predefined fixed lengthnum. If a recordr i for a tra-
jectory τo gets filled, a new recordr j is created forτo holding its
further tracks. In this case,next_ptrri is set up to point tor j , and
prev_ptrr j is set up to point tor i .
Using a trajectory record file, the data is not completely clustered,
but choosing appropriate record size leads to partial clustering of

the trajectory data in blocks. This has the advantage that extract-
ing the complete trajectory requires only loading as much blocks as
needed for storing a trajectory.

4.2 Indexing Motion Patterns
For the maintenance of motion patterns we consider two cases-

single motion properties and sequences of motion properties. Stor-
ing single motion properties allows the efficient finding of trajec-
tories which contain the considered motion property. This is ad-
vantageous if the searched property is not often satisfied. Thus, for
each motion propertyp a “list” DBTp holding all trajectories sat-
isfying this property is maintained. As we shall see in Algorithm
4.3, we have to combine such lists and, thus, a simple unsorted list
would not be very favourable. Therefore, we implement theselists
through B+-Trees (ordered by the trajectory/object identifiers). An
evaluation of union and intersection of two B+-Trees withm andn
leaves can be performed inO(mlog m+n

m )[4].
The search for motion patterns with more than one motion property
can be conducted through the singleDBTp structures. However, if
the query motion pattern is too long, too many intersectionsof the
DBTp structures will happen and the resulting trajectories willhave
to be checked for containing properties that match the givenorder,
as well. To overcome this problem, sequences of motion properties
are stored in an additional B+-Tree structureDBT. The elements of
DBT have the form (p, τo) wherep is a motion pattern, ando ∈ O.
To sort the elements ofDBT, we apply lexicographical ordering.
As a result, sequences with the same prefix are stored consecu-
tively. Thus, storing of motion patterns that are prefixes ofother
motion patterns can be omitted.

4.3 Building the Index
The algorithm for the index creation is quite simple. It consists

primarily of the following steps:

• Determine the motion properties for each trajectoryτo. Con-
sider, if needed, a sliding window or some reduction or seg-
menting technique as proposed in [1], [6], [10], [12], [13],
for example. Generate a listf of the motion properties ofτo,
ordered by their appearance inτo.

• Storeτo into the trajectory record file.

• Apply Algorithm 4.1 to f to generate access keys relevant
for indexing.

• For each generated access key, check whether it is already
contained in the index. If this is not the case, store it in the
index. Link the trajectory record file entry ofτo to the access
key.

Algorithm 4.1 is used to generate index keys of a pattern. An index
key is anysubpattern p′ = (p′j)

m−1
j=0 of a patternp = (pi)n−1

i=0 which is
defined as follows:

• For eachj ≤ m− 1 existsi ≤ n− 1 such thatp′j = pi

• For eachj, k such that 0≤ j < k ≤ m− 1 existi, l such that
0 ≤ i < l ≤ n− 1 andp′j = pi andp′k = pl .

To generate the list of index keys, algorithm 4.1 proceeds itera-
tively. At each iteration of the outer loop (lines 3 to 16) thealgo-
rithm considers a single elementp of the input sequencef . On the
one hand,p is being added as an index key to the (interim) result
(lines 14 and 15) and on the other hand it is being appended as a
suffix to each previously generated index key (inner loop - lines 5
to 13). Algorithm 4.1 utilizes two sets whose elements are lists of



motion properties -supplist andentries. The setsupplist
contains at each iteration the complete set of index keys, includ-
ing those which are prefixes of other patterns. The setentries is
built in each iteration of the inner loop (lines 5 to 13) by appending
the current motion property of the input sequence to any element
of supplist. Thereby, at line 14entries holds only index keys
which are no prefixes of other index keys. Since the resultinglists
of index keys are stored in a B+-Tree by applying a lexicographical
order, sequences of motion properties which are prefixes of other
sequences can be omitted. Therefore, the setentries is returned
as final result (line 17).
Since the given procedure may result in the computation of upto
2k0 different indexing keys for an input sequence withk0 motion
properties, a global constantG is used to limit the maximal length
of index keys. Using an appropriate value forG leads to no draw-
backs for the application. Furthermore, the proposed querying al-
gorithm can handle queries longer thanG.

Algorithm 4.1 Building the indexing keys
Require: f is a sequence of motion properties
Require: G is the maximal length of sequences to be indexed
1 function createIndexKeys( f )
2 supplist← empty set of lists
3 for all a ∈ f do
4 entries← empty set of lists
5 for all l ∈ supplistdo
6 new← empty list
7 if |l| ≤ G then
8 new← l.append(a)
9 else

10 new← l
11 end if
12 entries← entries∪ {new}
13 end for
14 entries← entries∪ {[a]}
15 supplist← entries∪ supplist
16 end for
17 return entries
18 end function

4.4 Searching for Motion Patterns
Since the index is primarily considered to support queries on se-

quences of motion properties, the appropriate algorithm for eval-
uating such queries given in the following is rather simple.In its
“basic” version, query processing is just traversing the index and re-
turning all trajectories referenced by index keys which contain the
queried one (as a subpattern). This procedure is illustrated in algo-
rithm 4.2. There are, however, some special cases which haveto

Algorithm 4.2 Basic querying of trajectories with a sequence of
motion properties
Require: s is a sequence of motion properties;|s| ≤ G
Require: DBT is the index containing motion patterns
1 function GetEntriesFromDBT(s)
2 result← {τo | ∃p s.t. s≤ p∧ (p, τo) ∈ DBT}
3 return result
4 end function

be taken into account. The first of them considers query sequences
which are “too short”. As stated in Section 4.2, it can be advan-
tageous to evaluate queries containing only few motion properties
by examination of the index structures for single motion proper-
ties. To be able to define an application specific notion of “short”
queries, we provide besidesG an additional global parameterα for
which holds 1≤ α < G. In algorithm 4.3, which evaluates queries
of patterns of arbitrary length, each pattern of length shorter thanα
is being handled in the described way (lines 3 to 8). It is important

that each trajectory of the interim result has to be checked whether
it matches the queried pattern (lines 9 to 13).
The other special case are queries longer thanG (lines 16 to 24). As
we have seen in algorithm 4.1, in such cases the index keys arecut
to prefixes of lengthG. Thus, the extraction in this case considers
the prefix of lengthG of the query sequence (lines 17) and extracts
the appropriate trajectories (line 18). Since these trajectories may
still not match the query sequence, e.g. by not fulfilling some of the
properties appearing on a position afterG−1 in the input sequence,
an additional check of the trajectories in the interim result is made
(lines 19 to 23).
The last case to consider are query sequences with length between
α andG. In these cases, the indexDBT holding the index keys is
searched through a call to algorithm 4.2 and the result is returned.
Finally, the functionMatch (algorithm 4.4) checks whether a tra-

Algorithm 4.3 Querying trajectories with a sequence of arbitrary
length
Require: s is a sequence of motion properties
Require: G is the maximal length of stored sequences
Require: DBTp is the index of the propertyp
Require: 1 ≤ α < G maximal query length for searching single property indexes
1 function GetEntries(s)
2 result← empty set
3 if |s| < α then
4 result← T
5 for all p ∈ s do
6 suppset← DBTp

7 result← result∩ suppset
8 end for
9 for all τo ∈ resultdo

10 if ! match(τo, s) then
11 result← result\{τo}
12 end if
13 end for
14 else if |s| ≤ G then
15 result← GetEntriesFromDBT(s)
16 else
17 k← s[0..G− 1]
18 result← GetEntriesFromDBT(k)
19 for all τo ∈ resultdo
20 if ! match(τo, s) then
21 result← result\{τo}
22 end if
23 end for
24 end if
25 return result
26 end function

jectory τo fulfills a patterns. For this purpose, the list of motion
properties ofτo is being generated (line 2). Thereafter,s and the
generated pattern ofτo are traversed (lines 5 to 14) so that it can be
checked whether the elements ofs can be found in the trajectory
pattern ofτo in the same order. In this case the functionMatch
returnstrue, otherwise it returnsfalse.

5. CONCLUSIONS AND OUTLOOK
In this paper we provided some first results of an ongoing work

on an indexing structure for trajectories of moving objectscalled
TrIMPI. The focus of TrIMPI lies not on indexing spatio-temporal
data but on the exploitation of motion properties of moving objects.
For this purpose, we provided a formal notion of motion proper-
ties and showed how they form a motion pattern. Furthermore,we
showed how these motion patterns can be used to build a meta in-
dex. Algorithms for querying the index were also provided. In
the next steps, we will finalize the implementation of TrIMPIand
perform tests in the scenario of the automatic detection of piracy at-
tacks mentioned in the Introduction. As a conceptual improvement
of the work provided in this paper, we consider a flexibilisation of



Algorithm 4.4 Checks whether a trajectory matches a motion pat-
tern
Require: τo is a valid trajectory
Require: s is a sequence of motion properties
1 function match(τo, s)
2 motion_properties← compute the list of motion properties ofτo
3 index_s← 0
4 index_props← 0
5 while index_props< motion_properties.lengthdo
6 if motion_properties[index_props] = s[index_s] then
7 index_s← index_s+ 1
8 else
9 index_props← index_props+ 1

10 end if
11 if index_s= s.lengththen
12 return true
13 end if
14 end while
15 return false
16 end function

the definition of motion patterns including arbitrary temporal rela-
tions between motion predicates.
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