Complex Event Processing in Wireless Sensor Networks

Omran Saleh
Faculty of Computer Science and Automation
lImenau University of Technology
limenau, Germany

omran.saleh@tu-ilmenau.de

ABSTRACT

Most of the WSN applications need the number of sensor
nodes deployed to be in order of hundreds, thousands or
more to monitor certain phenomena and capture measure-
ments over a long period of time. The large volume of sensor
networks would generate continuous streams of raw events’
in case of centralized architecture, in which the sensor data
captured by all the sensor nodes is sent to a central entity.

In this paper, we describe the design and implementation
of a system that carries out complex event detection queries
inside wireless sensor nodes. These queries filter and re-
move undesirable events. They can detect complex events
and meaningful information by combining raw events with
logical and temporal relationship, and output this informa-
tion to external monitoring application for further analysis.
This system reduces the amount of data that needs to be
sent to the central entity by avoiding transmitting the raw
data outside the network. Therefore, it can dramatically re-
duce the communication burden between nodes and improve
the lifetime of sensor networks.

We have implemented our approach for the TinyOS Oper-
ating System, for the TelosB and Mica2 platforms. We con-
ducted a performance evaluation of our method comparing
it with a naive method. Results clearly confirm the effec-
tiveness of our approach.

Keywords

Complex Event Processing, Wireless Sensor Networks, In-
network processing, centralized processing, Non-deterministic
Finite state Automata

1. INTRODUCTION

Wireless sensor networks are defined as a distributed and
cooperative network of devices, denoted as sensor nodes that
are densely deployed over a region especially in harsh envi-
ronments to gather data for some phenomena in this mon-

!The terms data, events and tuples are used interchangeably.

25t GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 28.05.2013 - 31.05.2013, Ilmenau, Germany.
Copyright is held by the author/owner(s).

itored region. These nodes can sense the surrounding envi-
ronment and share the information with their neighboring
nodes. They are gaining adoption on an increasing scale
for tracking and monitoring purposes. Furthermore, sensor
nodes are often used in control purposes. They are capable
of performing simple processing.

In the near future, it is prospective that wireless sensor
networks will offer and make conceivable a wide range of
applications and emerge as an important area of comput-
ing. WSN technology is exciting with boundless potential for
various application areas. They are now found in many in-
dustrial and civilian application areas, military and security
applications, environmental monitoring, disaster prevention
and health care applications, etc.

One of the most important issues in the design of WSNs
is energy efficiency. Each node should be as energy effi-
cient as possible. Processing a chunk of information is less
costly than wireless communication; the ratio between them
is commonly supposed to be much smaller than one [19].
There is a significant link between energy efficiency and su-
perfluous data. The sensor node is going to consume unnec-
essary energy for the transmission of superfluous data to the
central entity, which means minimizing the energy efficiency.

Furthermore, traditional WSN software systems do not
apparently aim at efficient processing of continuous data or
event streams. According to previous notions, we are looking
for an approach that makes our system gains high perfor-
mance and power saving via preventing the generation and
transmission of needless data to the central entity. There-
fore, it can dramatically reduce the communication burden
between nodes and improve the lifetime of sensor networks.
This approach takes into account the resource limitations in
terms of computation power, memory, and communication.
Sensor nodes can employ their processing capabilities to per-
form some computations. Therefore, an in-network complex
event processing ? based solution is proposed.

We have proposed to run a complex event processing en-
gine inside the sensor nodes. CEP engine is implemented
to transform the raw data into meaningful and beneficial
events that are to be notified to the users after detecting
them. It is responsible for combining primitive events to
identify higher level complex events. This engine provides
an efficient Non-deterministic Finite state Automata (NFA)
[1] based implementation to lead the evaluation of the com-
plex event queries where the automaton runs as an integral
part of the in-network query plan. It also provides the the-
oretical basis of CEP as well as supports us with particular

2CEP is discussed in reference [15]

operators (conjunction, negation, disjunction and sequence
operators, etc.).

Complex event processing over data stream has increas-
ingly become an important field due to the increasing num-
ber of its applications for wireless sensor networks. There
have been various event detection applications proposed in
the WSNs, e.g. for detecting eruptions of volcanoes [18],
forest fires, and for the habitat monitoring of animals [5].
An increasing number of applications in such networks is
confronted with the necessity to process voluminous data
streams in real time fashion.

The rest of the paper is organized as follows: section 2 pro-
vides an overview of the naive approaches for normal data
and complex event processing in WSNs. Related works are
briefly reviewed in section 3. Then we introduce the overall
system architecture in order to perform complex event pro-
cessing in sensor networks in section 4. Section 5 discusses
how to create logical query plans to evaluate sensor portion
queries. Section 6 explains our approach and how queries are
implemented by automata. In section 7, the performance of
our system is evaluated using a particular simulator. Fi-
nally, section 8 presents our concluding remarks and future
works.

2. NAIVE APPROACHES IN WSNS

The ideas behind naive approaches which are definitely
different from our approach lie in the processing of data as
the central architectural concept. For normal sensor data
processing, the centralized approach proceeds in two steps;
the sensor data captured by all the sensor nodes is sent to
the sink node and then routed to the central server (base
station) where it is stored in centralized database. High vol-
ume data are arriving at the server. Subsequently, query
processing takes place on this database by running queries
against stored data. Each query executes one time and re-
turns a set of results.

Another approach which adopts the idea of centralized
architecture is the use of a central data stream management
system (DSMS), which simply takes the sensor data stream
as input source. Sending all sensor readings to DSMS is also
an option for WSN data processing. DSMS is defined as a
system that manages a data stream, executes a continuous
query against a data stream and supports on-line analysis
of rapidly changing data streams [10]. Traditional stream
processing systems such as Aurora [2], NiagraCQ [7], and
AndulN [12] extend the relational query processing to work
with stream data. Generally the select, project, join and
aggregate operations are supported in these stream systems.

The naive approach for Complex Event Processing in
WSNs is similar to the central architectural idea of normal
data processing, but instead of using traditional database
and data stream engine, CEP uses a dedicated engine for
processing complex events such as Esper [8], SASE [11] and
Cayuga [4], in which sensor data or events streams need to
be filtered, aggregated, processed and analyzed to find the
events of interest and identify some patterns among them,
finally take actions if needed.

Reference [11] uses SASE in order to process RFID stream
data for a real-world retail management scenario. Paper [3]
demonstrates the use of Esper engine for object detection
tracking in sensor networks. All the aforementioned engines
use some variant of a NFA model to detect the complex
event. Moreover, there are many CEP engines in the field

of active databases. Most of the models in these engines
are based on fixed data structures such as tree, graph, fi-
nite automaton or petri net. The authors of [6] used a tree
based model. Paper [9] used petri net based model to de-
tect complex events from active database. Reference [17]
used Timed Petri-Net (TPN) to detect complex events from
RFID stream.

3. RELATED WORKS

It is preferable to perform In-Network Processing in-
side sensor network to reduce the transmission cost between
neighboring nodes. This concept is proposed by several sys-
tems such as TinyDB [16], and Cougar [19]. Cougar project
applies a database system concept to sensor networks. It
uses the declarative queries that are similar to SQL to query
sensor nodes. Additionally, sensor data in cougar is consid-
ered like a “virtual” relational database. Cougar places on
each node an additional query layer that lies between the
network and application layers which has the responsibility
of in-network processing. This system generates one plan for
the leader node to perform aggregation and send the data to
a sink node. Another plan is generated for non-leader nodes
to measure the sensors status. The query plans are dissem-
inated to the query layers of all sensor nodes. The query
layer will register the plan inside the sensor node, enable
desired sensors, and return results according to this plan.

TinyDB is an acquisitional query processing system for
sensor networks which maintains a single, infinitely-long vir-
tual database table. It uses an SQL-like interface to ask for
data from the network. In this system, users specify the
data they want and the rate at which the data should be
refreshed, and the underlying system would decide the best
plan to be executed. Several in-network aggregation tech-
niques have been proposed in order to extend the life time
of sensor network such as tree-based aggregation protocols
i.e., directed diffusion.

Paper [13] proposes a framework to detect complex events
in wireless sensor networks by transforming them into sub-
events. In this case, the sub-events can easily be detected
by sensor nodes. Reference [14] splits queries into server and
node queries, where each query can be executed. The final
results from both sides are combined by the results merger.
In [20], symbolic aggregate approximation (SAX) is used to
transform sensor data to symbolic representations. To de-
tect complex events, a distance metric for string comparison
is utilized. These papers are the closer works to our system.

Obviously, there is currently little work into how the idea
of in-network processing can be extended and implemented
to allow more complex event queries to be resolved within
the network.

4. SYSTEM ARCHITECTURE

We have proposed a system architecture in which collected
data at numerous, inexpensive sensor nodes are processed
locally. The resulting information is transmitted to larger,
more capable and more expensive nodes for further analysis
and processing through specific node called sink node.

The architecture has three main parts that need to be
modified or created to make our system better suited to
queries over sensor nodes: 1- Server side: queries will be
originated at server side and then forwarded to the near-
est sink node. Additionally, this side mainly contains an

application that runs on the user’s PC (base station). Its
main purpose is to collect the results stream over the sen-
sor network and display them. Server side application can
offer more functions i.e., further filtering for the collected
data, perform joining on sensor data, extract, save, man-
age, and search the semantic information and apply further
complex event processing on incoming events after process-
ing them locally in sensor nodes. Because sensor data can
be considered as a data stream, we proposed to use a data
stream management system to play a role of server side, for
that we selected AndulN data stream engine. 2- Sink side:
sink node (also known as root or gateway node) is one of the
motes in the network which communicates with the base sta-
tion directly, all the data collected by sensors is forwarded
to a sink node and then to server side. This node will be
in charge of disseminating the query down to all the sensor
nodes in the network that comes from server side. 3- Node
side: in this side, we have made huge changes to the tra-
ditional application which runs on the nodes themselves to
enable database manner queries involving filters, aggregates,
complex event processing operator (engine) and other oper-
ators to be slightly executed within sensor networks. These
changes are done in order to reduce communication costs
and get useful information instead of raw data.

When combining on-sensor portions of the query with the
server side query, most of the pieces of the sensor data query
are in place. This makes our system more advanced.

S. LOGICAL PLAN

Each and every sensor node of a network generates tu-
ples. Every tuple may consist of information about the node
id, and sensor readings. Query plan can specify the tuples
flow between all necessary operators and a precise computa-
tion plan for each sensor node. Figure 1 (lower plan) illus-
trates how our query plan can be employed. It corresponds
to an acyclic directed graph of operators. We assume the
dataflow being upward. At the bottom, there is a homo-
geneous data source which generates data tuples that must
be processed by operators belonging to query plans. Tu-
ples are flowed through intermediate operators composed in
the query graph. The operators perform the actual process-
ing and eventually forward the data to the sink operator
for transmitting the resulting information to the server side
(base station). These operators adopt publish/subscribe
mechanism to transfer tuples from one operator to next op-
erator.

We differ between three different types of operators within
a query graph [12]: 1- Source operator: produces tuples
and transfers them to other operators. 2- Sink operator:
receives incoming tuples from other operators. 3- Inner
operators: receive incoming tuples from source operator,
process them, and transfer the result to sink operator or
other inner operators.

A query plan consists of one source at the bottom of a
logical query graph, several inner operators, and one sink
at the top and the tuples are flowing strictly upward. In
our system, we have extended this plan to give the system
the capability to perform the complex event processing and
detecting by adding new operators. We have separated the
mechanism for detecting complex events from the rest of
normal processing side. We have a particular component
working as an extra operator or engine within the main pro-
cess, as we can see from figure 1 (upper plan). The detection

Proj-
cton /) cp P

(mom
(2)

() (o)
ENED,

Figure 1: Logical query plan

mechanism takes as input primitive events from lower oper-
ators and detects occurrences of composite events which are
used as an output to the rest of the system.

6. IN-NETWORK CEP SYSTEM

Various applications including WSNs require the ability to
handle complex events among apparently unrelated events
and find interesting and/or special patterns. Users want
to be notified immediately as soon as these complex events
are detected. Sensor node devices generate massive sensor
data streams. These streams generate a variety of primitive
events continuously. The continuous events form a sequence
of primitive events, and recognition of the sequence supplies
us a high level event, which the users are interested in.

Sensor event streams have to be automatically filtered,
processed, and transformed into significative information.
In non-centralized architecture, CEP has to be performed
as close to real time as possible (inside the node). The task
of identifying composite events from primitive ones is per-
formed by the Complex Event Processing engine. CEP en-
gine provides the runtime to perform complex event process-
ing where they accept queries provided by the user, match
those queries against continuous event streams, and trigger
an event or an execution when the conditions specified in
the queries have been satisfied. The idea of this concept is
close to Event-Condition-Action (ECA) concept in conven-
tional database systems where an action has to be carried
out in response to an event and one or more conditions are
satisfied.

Each data tuple from the sensor node is viewed as a prim-
itive event and it has to be processed inside the node. We
have proposed an event detection system that specifically
targets applications with limited resources, such in our sys-
tem. There are four phases for complex event processing
in our in-network model: NFA creation, Filtering, Sequence
scan and Response as shown in figure 2.

6.1 NFA Creation Phase

The first phase is NFA creation. NFA’s structure is cre-
ated by the translation from the sequence pattern through
mapping the events to NFA states and edges, where the con-
ditions of the events (generally called event types) are asso-
ciated with edges. For pattern matching over sensor node
streams, NFA is employed to represent the structure of an
event sequence. For a concrete example, consider the query

Phase 1
Primitive NFA Creation

Events

Phase 3

Phase 2 S Phase 4 SGHO
Event Filter equence Response
‘ Scan
-
LJ
B Rules from

define and

.- pattern clauses

{{30,62,21},20}

Figure 2: CEP Phases

n
,
Oy
Figure 3: NFA for SEQ(A a, B+ b, C ¢)

pattern: SEQ(A a, B+ b, C c¢)?. Figure 3 shows the NFA
created for the aforementioned pattern (A, B4, C), where
state SO is the starting state, state S1 is for the successful
detection of an A event, state S2 is for the detection of a B
event after event A, also state S3 is for the detection of a C
event after the B event. State S1 contains a self-loop with
the condition of a B event. State S3 is the accepting state,
reaching this state indicates that the sequence is detected.

6.2 Filtering Phase

The second phase is to filter primitive events at early
stage, generated by sensor nodes. Sensor nodes cannot un-
derstand whether a particular event is necessary or not.
When additional conditions are added to the system, possi-
ble event instances might be pruned at the first stage.

After filtering, timestamp operator will add the occur-
rence time of the event t. A new operator is designed for
adding a timestamp ¢ to the events (tuples) before entering
the complex event processing operator. We can notice that
from figure 1. The timestamp attribute value of an event
t records the reading of a clock in the system in which the
event was created, in this case it can reflect the true order
of the occurrences of primitive events.

6.3 Sequence Scan Phase

The third phase is sequence scan to detect a pattern match.

We have three modes state the way in which events may con-
tribute to scan a sequence: UNRESTRICTED, RECENT
and FIRST. Every mode has a different behavior. The selec-
tion between them depends on the users and the application
domain. These modes have advantages and disadvantages.
We will illustrate them below.

In the UNRESTRICTED mode, each start event e, which
allows a sequence to move from the initial state to the next
state, starts a separate sequence detection. In this case any
event occurrence combination that matches the definition of
the sequence can be considered as an output. By using this
mode, we can get all the possibilities of event combination
which satisfy the sequence. When the sequence is created, it

3Notice: In this paper, we are going to only focus on se-
quence operator SEQ because of the limited number of

pages.

S CXOXOKG)
OO
i OXOX X0)
H'OXOX XC[OX XOXC
OO0 ®OD
KOO0 ®OD
=l O OO®OOO®®
OO0 OOO

Figure 4: Sequence Scan for SEQ (A, B+, D) within
6 Time Unit Using UNRESTRICTED Mode

is waiting for the arrival of events in its starting state. Once
a new instance event e arrives, the sequence scan responds
as follows: 1- It checks whether the type of instance (from
attributes) and occurrence time of e satisfy a transition for
one of the logical existing sequences. If not, the event is
directly rejected. 2- If yes, e is registered in the system (the
registration is done in the sliding window) and the sequence
advances to next state. 3- If e allows for a sequence to move
from the starting state to next state, the engine will create
other logical sequence to process further incoming events
while keeping the original sequence in its current state to
receive new event. Therefore, multiple sequences work on
the events at the same time. 4- Delete some sequences when
their last received items are not within a time limit. It be-
comes impossible for them to proceed to the next state since
the time limits for future transitions have already expired.

Next, we use an example to illustrate how UNRESTRICTED

sequence scan works. Suppose we have the following pat-
tern® SEQ (A, B+, D) and sequence of events (tuples)
presented as [al, b2, a3, c4, c5, b6, d7 ...] within 6 time
unit. Figure 4 shows, step by step, how the aforementioned
events are processed. Once the sequence has reached the
accepting state (F'), the occurrences of SEQ (A, B+, D)
will be established at : {{al, b2, d7 }, {al, b6, d7 },
{a3, b6, d7 }}.

The drawback of this mode is the use of high storage to
accumulate all the events that participate in the combina-
tions in addition to computation overhead for the detection.
It consumes more energy. On other hand, it gives us all the
possibilities of event combination which can be used (e.g.
for further analysis). In our system, we only output one of
these possibilities to reduce transmission cost overhead. All
registered events are stored in a sliding window. Once the
overflow has occurred, the candidate events would be the
newest registered ones from the first sequence. The engine
will continue to replace the events from the first sequence as
long as there is no space. When the initial event (first event
in the first sequence combination) is replaced, the engine
starts the replacement from the second sequence and so on.
The engine applies this replacement policy to ensure that
the system still has several sequences to detect a composite
event, because replacing the initial events would destroy the

4The terms complex event, composite event, pattern and
sequence are used interchangeably.

HK&\ HK:\

{a1; b3; c4;d7}

KEC H\u(h K H\u(

Figure 5: First and Recent Modes

{a2; b3; c5;d7}

whole sequence.

In the FIRST mode, the earliest occurrence of each con-
tributing event type is used to form the composite event
output. Only the first event from a group of events which
have the same type advances the sequence to the next state.
In this mode, we have just one sequence in the system. The
automaton engine will examine every incoming instance e,
whether the type of it and occurrence time of e satisfy a
transition from the current state to next state. If it is, the
sequence will register the event in the current state and ad-
vance to next state. If not, the event is directly rejected.
Suppose we have the following pattern SEQ (A, B+, C+,
D) and sequence of tuples presented as [al, a2, b3, c4, c5,
b6, d7 ...] within 6 time unit. The result as shown in the
upper part of figure 5 .

In the RECENT mode (as the lower part of figure 5 which
has FIRST pattern and the same sequence of tuples), the
most recent event occurrences of contributing event types
are used to form the composite event. In RECENT mode,
once an instance satisfies the condition and timing constraint
to jump from a state to next state, the engine will stay in
the current state unlike FIRST mode. This mode tries to
find the most recent instance from consecutive instances for
that state before moving to next state. When al enters the
engine. It satisfies the condition to move from S0 to S1.
The engine registers it, stays in SO and does not jump to
the next state. Perhaps the new incoming instance is more
recent from the last one in the current state.

The advantages of FIRST and RECENT modes are the
use of less storage to accumulate all the events that partic-
ipate in the combinations. Only a few events will be regis-
tered in the system in addition to low computation overhead
for the detection. They consume less energy. Unlike UNRE-
STRICTED, they do not give all possible matches.

6.4 Response Phase

Once an accepting state F' is reached by the engine, the
engine should immediately output the event sequence. This
phase is responsible for preparing the output sequence to
pass it to the sink operator. The output sequence depends
on the mode of the scan. This phase will start to create
the response by reading the sliding window contents. In
case of FIRST and RECENT modes, the sliding window
contains only the events which contribute in sequence de-
tection. In UNRESTRICTED mode, the engine randomly
selects a combination of events which matches the pattern
in order to reduce transmission cost.

7. EVALUATION

We have completed an initial in-network complex event
processing implementation. All the source code, implement-

8
2

I
g8

| ProcessingEnergy
Consumption

=—#—CENTRALIZED

g
]

== UNRESTRICTED

n
2

RECENT

8
8

= FIRST

Total Energy Consumption mJ

w
o
5]

o

SEQ1 SEQ 2 SEQ 3 SEQS
Sequence Length

Figure 6: Total Energy Consumption

ing the in-network complex event processing techniques as
well as base station functionality, is written in TinyOS. Our
code runs successfully on both real motes and the TinyOS
Avrora simulator. The aim of the proposed work is to com-
pare the performance of our system, in-network processor
which includes complex event engine in comparison with
centralized approach in wireless sensor networks and to as-
sess the suitability of our approach in an environment where
resources are limited. The comparison would be done in
terms of energy efficiency (amount of energy consumed) and
the number of messages transmitted per particular interval,
in the entire network. The experiment was run for varying
the SEQ length. We started with length 2 then 3 and finally
5. Simulations were run for 60 seconds with one event per
second. The performance for different SEQ lengths and dif-
ferent modes with a network of 75 nodes is shown in figure 6.
The centralized architecture led to higher energy consump-
tion because sensor nodes transmitted events to the sink
node at regular periods. In our system, we used in-network
complex event processing to decrease the number of trans-
missions of needless events at each sensor node. What we
can notice from figure 6 is summarized as: 1- By increasing
the SEQ length in our approach, the RAM size is increased
while energy consumption is reduced. The reason is: the
transmission will not occur until the sequence reaches the
accepting state, few events (tuples) will be relatively satis-
fied. Hence, the number of transmissions after detections
will be decreased. 2- FIRST is a little bit better than RE-
CENT, and both of them are better than UNRESTRICTED
in energy consumption. The gap between them is resulting
from processing energy consumption, that is because UN-
RESTRICTED needs more processing power while the other
needs less, as shown in figure 6.

Figure 7 shows the radio energy consumption for each
sensor node and the total number of messages when SEQ
length was 3. The nodes in the centralized architecture sent
more messages than our approach (nearly three times more).
Hence, it consumed more radio energy. Additionally, the
gateway nodes consumed more radio energy due to receiv-
ing and processing the messages from other sensor nodes.
In a 25 nodes network, the centralized approach consumed
energy nearly 4203mJ in sink side, while our approach con-
sumed around 2811mJ. Thus, our system conserved nearly
1392mJ (33% of the centralized approach) of the energy. In
our architecture, the number of transmissions was reduced.
Therefore, the radio energy consumption is reduced not only
at the sensor nodes but also at the sink nodes.

8. CONCLUSIONS

as00 1 CENTRALIZED

2500 | CENTRALIZED W Radio Energy

Values

i Message Count

Sensor Sink

Figure 7: Energy Consumption vs. Radio Message

Sensor networks provide a considerably challenging pro-
gramming and computing environment. They require ad-
vanced paradigms for software design, due to their character-
istics such as limited computational power, limited memory
and battery power which WSNs suffer from. In this paper,
we presented our system, an in-network complex event pro-
cessing, a system that efficiently carries out complex event
queries inside network nodes.

We have proposed an engine to allow the system to de-
tect complex events and valuable information from primitive
events.

We developed a query plan based approach to implement
the system. We provided the architecture to collect the
events from sensor network, this architecture includes three
sides; sensor side to perform in-network complex event pro-
cessing, sink side to deliver the events from the network to
AndulN server side which has the responsibility to display
them and perform further analysis.

We demonstrated the effectiveness of our system in a de-
tailed performance study. Results obtained from a compari-
son between centralized approach and our approach confirms
that our in-network complex event processing in small-scale
and large-scale sensor networks has shown to increase the
lifetime of the network. We plan to continue our research
to build distributed in-network complex event processing, in
which each sensor node has a different complex event pro-
cessing plan and can communicate directly between them to
detect complex events.

9. REFERENCES

[1] Nondeterministic finite automaton.
http://en.wikipedia.org/wiki/Nondeterministic_
finite_automaton.

[2] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, C. Erwin, E. Galvez, M. Hatoun, J.-h.
Hwang, A. Maskey, A. Rasin, A. Singer,

M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and
S. Zdonik. Aurora: a data stream management system.
In ACM SIGMOD Conference, page 666, 2003.

[3] R. Bhargavi, V. Vaidehi, P. T. V. Bhuvaneswari,

P. Balamuralidhar, and M. G. Chandra. Complex

event processing for object tracking and intrusion

detection in wireless sensor networks. In ICARCYV,
pages 848-853. IEEE, 2010.

[4] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher,
B. Panda, M. Riedewald, M. Thatte, and W. White.
Cayuga: a high-performance event processing engine.

[5]

(6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

In ACM SIGMOD, pages 1100-1102, New York, NY,
USA, 2007. ACM.

A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton,
and J. Zhao. Habitat monitoring: application driver
for wireless communications technology. SIGCOMM
Comput. Commun. Rev., 31(2 supplement):20-41,
Apr. 2001.

S. Chakravarthy, V. Krishnaprasad, E. Anwar, and
S.-K. Kim. Composite events for active databases:
semantics, contexts and detection. In Proceedings of
the 20th International Conference on Very Large Data
Bases, VLDB 94, pages 606—617, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers Inc.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: a scalable continuous query system for
Internet databases. In ACM SIGMOD, pages 379-390,
New York, NY, USA, 2000. ACM.

EsperTech. Event stream intelligence: Esper &
NEsper. http://wuw.esper.codehaus.org/.

S. Gatziu and K. R. Dittrich. Events in an active
object-oriented database system, 1993.

V. Goebel and T. Plagemann. Data stream
management systems - a technology for network
monitoring and traffic analysis? In ConTEL 2005,
volume 2, pages 685-686, June 2005.

D. Gyllstrom, E. Wu, H. Chae, Y. Diao, P. Stahlberg,
and G. Anderson. SASE: complex event processing
over streams (Demo). In CIDR, pages 407-411, 2007.
D. Klan, M. Karnstedt, K. Hose, L. Ribe-Baumann,
and K. Sattler. Stream engines meet wireless sensor
networks: cost-based planning and processing of
complex queries in AndulN, distributed and parallel
databases. Distributed and Parallel Databases,
29(1):151-183, Jan. 2011.

Y. Lai, W. Zeng, Z. Lin, and G. Li. LAMF: framework
for complex event processing in wireless sensor
networks. In 2nd International Conference on
(ICISE), pages 2155-2158, Dec. 2010.

P. Li and W. Bingwen. Design of complex event
processing system for wireless sensor networks. In
NSWCTC, volume 1, pages 354-357, Apr. 2010.

D. C. Luckham. The power of events. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
2001.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1):122-173, Mar. 2005.

J. Xingyi, L. Xiaodong, K. Ning, and Y. Baoping.
Efficient complex event processing over RFID data
stream. In IEEE/ACIS, pages 75-81, May 2008.

X. Yang, H. B. Lim, T. M. Ozsu, and K. L. Tan.
In-network execution of monitoring queries in sensor
networks. In ACM SIGMOD, pages 521-532, New
York, NY, USA, 2007. ACM.

Y. Yao and J. Gehrke. The cougar approach to
in-network query processing in sensor networks.
SIGMOD Rec., 31(3):9-18, Sept. 2002.

M. Zoumboulakis and G. Roussos. Escalation:
complex event detection in wireless sensor networks.
In EuroSSC, pages 270-285, 2007.

