VisionWaves: Aligning Business Process Management
and Performance Management to Achieve Business
(Process) Excellence

Marc Kerremans
m.kerremans(@yvisionwaves.com

Abstract. Today’s economic climate means businesses need to be as effective
and efficient as possible, and to make the smartest possible decisions. The way
to achieve this is by integrating Performance Management (PM) and Business
Process Management (BPM) — a combination that is a prerequisite of Intelligent
Business Operations. BPM on its own is not enough, omitting the context of
processes. By adding PM you can achieve closed loop performance
management, where metrics are compared with business objectives and the
results fed back to improve processes and decisions. VisionWaves brings a
business model driven approach to the table coping with these requirements and
allowing Visual and Connected Management. Client experience confirms that
PM and BPM are far more powerful when integrated together than individually.

1 Gaining competitive advantage through better processes and
decisions and the limits of BPM

Given the economic and institutional crises in our globalized economy, the way to
compete is to run your business with maximum efficiency and effectiveness, and to
make the smartest possible decisions. One of the approaches is to focus on “the
integrated business processes and capabilities that together serve customers in ways
that are differentiated from competitors and that create the organization’s formula for
business success” [1]. Does BPM on its own deliver this right kind of efficiency?
Does the balance between efficiency and agility meet business needs? Is the level of
intimacy appropriate for every customer? Let’s look at some examples:

- A customer delivery process can be very efficient (for example, following a
Lean program) — in fact, it may not contain any idle time at all. But
efficiency is not always matched with effectiveness. For example, it may be
that because of marketing campaigns in some regions, there are
configuration problems and stock breakdowns.

- By definition, agility can necessitate some inefficiencies. You need more
than minimal stock levels to keep a manufacturing conveyor belt running;
similarly, economic growth arguably requires some level of frictional
unemployment.

- A call center representative may be confronted with a demanding customer,
and be forced to decide whether to prioritize overall efficiency or service to
this one customer. Does the agent mark the customer as a lead, get off the

mailto:m.kerremans@visionwaves.com

phone, and move on to the next customer, or continue the conversation with
this customer and let others wait? An optimized process won’t help the agent
decide, unless the process also provides information about the individual
customer’s value to the business.

2 Combining BPM and PM

To yield the desired competitive advantage, structured interoperability is required
across the organization’s entire BPM, PM and application environments. This
interoperability must be business-driven, which means that the initiative needs to start
from a broader context than the processes themselves: that of the business
architecture, business model, or value chain.
The alignment of BPM and PM can be seen from two main perspectives:
- Injecting PM into business processes to improve decision-making — i.e.
taking an inside-out view of the of the decision
- Closed loop performance management — i.e. taking an outside-in view of the
decision

2.1 Injecting PM into business processes to improve decision-making

Business rules are often used to inject PM into BPM and hence provide decision
support. This is a valid approach that makes processes more flexible, offers additional
analytic capabilities, and hides much of the complexity that is typical of PM.

However, rules engines alone are not enough. They cannot cope with the typical
scenario of proliferating business models, products, services, channels, customer
segments, and value expectations from different stakeholders. Nor do they provide the
vital ability to understand changing environments and respond to that understanding,
especially when we look at changing sets of goals.

By combining PM with the rule-based approach associated with BPM, you can
monitor the decision-making process from an analytical perspective and adapt readily
to changing goals. Errors in business rules will be detected sooner, and rules can be
changed as necessary, either automatically or manually.

2.2 Closed loop performance management

Most BPM initiatives capture metrics to assess the efficiency of a process. A few
initiatives have shown, though, that more can be done by setting process metrics in
the broader context of a value chain or a business model. It then becomes possible to
understand the impact of a given process on the overall performance of the business:
either on its overall strategic objectives or a specific business campaign. That
understanding can lead to better decision-making at an organizational level.

The results of performance monitoring become even more valuable if they are used
to adjust business processes and objectives. This closed loop performance
management often involves human intervention to improve the way decisions are

made — for example, the call center agent might be instructed to look at a metric of the
customer’s value to the company before deciding how long to spend on the call.

3 The VisionWaves proposition

VisionWaves brings a business model driven approach to the table coping with these
requirements and allowing visual and connected management.

3.1 Visual Management

PERFORMANCE INDICATORS. ~ TCHART -~

Prouctivity

© 2013 VisionWaves B.V. All rights reserved.

Fig. 1. Example of an implemented instance of a business model.

Core to the offering is the VisionWaves business model methodology that delivers a
visual representation of the coherence and dependencies between the constituents of
the business through depicting an easy to understand business model or value creation
model. This visual insight that is missing in most alternatives is one of the key
differentiators of VisionWaves within the enterprise performance management
market. Furthermore this business model is dynamic meaning that it is context aware
and is capable to continuously interact with its environment and its users.

3.2 Connected Management

VisionWaves delivers full visibility of value creation, performance, processes and
risks in integrated, strategically aligned and actionable management cockpits that are
role based and that are generated and maintained by the intelligent framework itself.
Based on the same underlying data everybody will get a role based portal that reflects
actual, executable, connected, and integrated data.

3.3 Model Driven Application Framework

VisionWaves starts with the representation of the ‘business model’ including
customer value, the different distribution channels through which this value is
delivered, products, services, processes, organization, roles, suppliers, contracts and
risks. This meta-model is stored into an object repository and therefore delivers a
model-driven object model.

Next step is the connection of ‘meta’ performance indicators to the elements of the
meta-model that are also stored in the same object repository.

Furthermore to feed real data into the object repository a meta-data model is
configured as well as the (meta) description of how these data are loaded into the
same object repository.

Finally even the presentation layer (dashboards, cockpits) is created and maintained
by the framework.

Perhaps the biggest contribution of this model driven application framework is the
way it handles changes. When there is a change in the external environment or
internal context management objectives, controls and of course reporting has to be
realigned. In this model driven approach this can be done by reconfiguring the models
or any of the model components in real-time, followed by the immediate adaptation of
all related cockpits, dashboards, and reports.

4 Client case study: Bank achieves Operational Intelligence by
combining BPM and PM

4.1 Situation after BPM-only

Previous BPM initiatives resulted in leaner operations and well-documented
processes, but essential business elements were still missing. For example:
- The impact of the change on business results or business value was not clear
- There was a lack of information to support senior management decisions,
and the impact of those decisions on operational execution was hard to
establish
- There was not enough information about current processes for the COO to
know whether a proposed action, such as a new market campaign, was viable
in a particular region
- Performance at each level of the management hierarchy (COO, value chain
owner, process owner, team owner) was measured, but it was not possible to
see how one level impacted another

4.2 Results after implementing VisionWaves

- All management levels, from COO to operational team leaders, now have
performance information about processes, customers, finance and
capabilities to support their decisions

- The impact of performance at one level on another level can be seen, and
there is a daily “performance dialogue” between all hierarchical levels

- This makes it possible to work together to achieve corporate objectives

- A range of information to support business campaigns is now available — it is
easy to assess whether they are viable, and then measure their impact

- Through appropriate use of performance feedback, the bank has closed the
loop between initiating actions, monitoring performance and taking new
actions

© 2013 VisionWaves B.V. All rights reserved.

Fig. 2. Example of a Process Manager Cockpit.

5 Conclusion

Combining BPM and PM allows management and staff to make better and timelier
decisions and the organization becomes more efficient and effective. This will help
achieving business (process) excellence and is a crucial step for any enterprise with its
sights set on Operational Intelligence or Intelligent Business Operations.

References

1. Thomas H. Davenport, Jeanne G. Harris, Competing on Analytics, (Harvard Business School
Press, 2007), p. 187

CPN Tools 4: A Process Modeling Tool
Combining Declarative and Imperative Paradigms

Michael Westergaard!2* and Tijs Slaats®4**

! Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands
2 National Research University Higher School of Economics,
Moscow, 101000, Russia
3 IT University of Copenhagen
Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
4 Exformatics A /S, Lautrupsgade 13, 2100 Copenhagen, Denmark
m.westergaard@tue.nl, tslaats@itu.dk

Abstract. CPN Tools is a tool for modeling, simulating, and analyzing
colored Petri nets. The latest iteration of the tool, CPN Tools 4, extends
this with constraints known from declarative languages such as Declare
and DCR Graphs. Furthermore, this version introduces an explicit pro-
cess perspective, powerful extensibility allowing third parties to extend
the tools capabilities, and a visualization perspective making it possible
to make high-level visualizations of executions directly in the tool.

In our demonstration, we show how it is possible to create models in-
corporating declarative and imperative constructs and how to use these
models to generate simulation logs that can be directly imported into
ProM. We show off the new process perspective on top of colored Petri
nets, exemplify the use of the perspective to generate readable Java code
directly from models, and show how the visualization perspective makes
it possible to show the formal underlying model alongside an easier-to-
grasp for non-experts high-level visualization.

Our intended audience comprise current users of CPN Tools interested
in recent developments and practitioners interested in colored Petri nets
and hybrid models. We expect to tailor each demonstration to the wishes
of the audience.

Standard imperative languages are suitable for the description of well-structured
and well-understood processes. On the other hand, processes that are less well-
understood or less well-structured, are often easier modeled using a declarative
approach, where instead of specifying the next task to execute, constraints be-
tween tasks are described. Popular languages for imperative specifications in-
clude BPMN and (colored) Petri nets. Declarative modeling is a more recent

* Support from the Basic Research Program of the National Research University
Higher School of Economics is gratefully acknowledged.
** This research is supported by the Danish Agency for Science, Technology and Inno-
vation through an industrial PhD Grant.

and less matured approach which has so far not found widespread application
in industry yet, however the two declarative languages Declare [6] and DCR
Graphs [2, 3] have been studied extensively in academia over the last decade.
Declarative languages do not explicitly specify flow of control, but instead spec-
ifies constraints between actions; examples of such constraints are init(A), mean-
ing that any execution has to start by executing A, and response(A, B), meaning
that after executing A, B has to be executed at some point. Other constraints
deal with choices and variations of the response constraint.

Hybrid modeling. Recently interest has emerged in hybrid approaches, where
some aspects of a process are specified directly using imperative constructs and
other aspects declaratively. This is useful if part of the process is well-structured
and part is more free, or for going from an abstract, little-understood process,
often modeled more naturally using declarative constraints, to a more concrete
implementation which by nature is often more imperative. One such hybrid
approach is implemented in CPN Tools 4 [5,7]. This approach combines the
places and transitions of colored Petri nets with the constraints of the Declare
and DCR Graphs languages. Fig. 1 shows an example of a mixed declarative and
imperative model. In the upper half of the screen we describe the registration of a
patient using an electronic patient record, which is basically form-filling and well-
suited for an imperative approach. In the bottom half we describe the treatment
of the patient which is strongly knowledge-based, therefore more flexible and
hence modeled using a Declarative approach. While these two aspects could have
been modelled as separate processes (one imperative and the other declarative),
using the hybrid approach allows us to join the two and show how they interact.
Initially, only Receive Patient is required due to the declarative constraint init.
After executing Disinfect Wound, Stitch Wound has to be executed because of a
response between them. Registration and treatment can happen in parallel, but
prescription of antibiotics is dependent on the patient data.

The model can be extended with time information and exercises to obtain
simulation-based performance information. It is also possible to obtain a sim-
ulation log from CPN Tools, which can be imported directly into ProM 6.3
for analysis using a known process. CPN Tools also offers state-space analysis
for ensuring the absence of errors such as dead-locks in the process. For more
information about hybrid modeling, we refer the interested reader to [7].

Domain-specific visualization. While colored Petri net models are graphical,
they are also complex to understand for non-experts. Previously, CPN Tools
supported visualizations of such models by means of an external tool, but with
version 4 such visualizations are internalized, making it possible to show model
and visualization side-by-side without requiring external tools. In Fig. 2, we see
two simple visualizations of the model from Fig. 1. The sequence diagram (left)
shows a single patient interaction and is updated when simulation is conducted.
The visualization is driven purely by the model, and as CPN Tools allows users
full control over the simulation, can be used to demonstrate complex scenarios

in a simple way. The bar chart (Fig. 2 (right)) shows aggregated statistics over
multiple simulations.

[ann SP™N €PN Tools (Version 3.9.0, May 2013) }
¥Tool box

Create init

Daclars Receive 5 pigy| Existing | _(name; allergy)

Hierarchy Patient - Patiant

«m

Monitoring
Net

name

Simulation
State space
Style
View
Development
»Help
» Options
¥ wound-treatment.cpn
Step: 0

Mon

Data
Call

Mark
Size

o M| pp|ms

Break
paint

User
def

Write

in file |

Time: 0
» Options

LL
pc

Coun
Tran

Tran
Enab

Place
Cont

» History
¥Declarations
» Standard priorities
»Standard declarations
¥ colset NAME =
with Alice | Bob;
¥var name : NAME;
¥ colset ALLERGIES =
with nothing | antibiotics;
¥colset NxA =
product NAME * ALLERGIE!-
wvar allergy: ALLERGIES;
» Monitors
New Page

-

N

one | |\~
S

T

Decla

S

(name, allergy)
117 (Alice,antibiotics)

NAME

Stitch
Wound

ntibioticd antibiotics]

FArAr e
Varari

BIBIP

Fig. 1: Overview of CPN Tools with an example hybrid model for a hospital loaded.

Process-partitioned colored Petri nets.

Colored Petri nets allow modelers

a lot of freedom. Most importantly, it is very hard to separate the flow of data

(@00 " CpN Tools (Version 3.9.0, May 2013)
:LZ?; bex Treatment Binder 2
» Options
¥ wound-treatment.cpn) S
Step: 6 Front Dask Dactar's Office| | Treatment Ragm P
Time: 0
» Options Receive
» History
¥ Dedarations
»Standard priorities Ask Name (Bob)
»Standard declarations
»colset NAME Transfer
»var name
¥ colset ALLERGIES
¥ colset NxA Disinfect
»var allergy
MSC .
¥ val msc = MSC createMsC(! lew DagBab, nothing)
v val blue = MSC.craatastyle
vvalrad - MSC.craatastyle() Transfer
v val front = "Front Dask”;
val _ = MSC.addProcesssty
¥ val office = "Doctor’s Office stitch
val 5C
New Page Transfar
Prescribe
init
Receive
Patient =) =

None

O

Disinfect

Stitch Antibiotics Tetanus

1 5. 1 (Allce, antibiotics)++
Aok | name | Goaivoh <1 (Bob,nothing)
Name patient, 373

None

S ——

Fig. 2: Two visualizations of the simple model from Fig. 1. The model itself is just
visible below the visualizations.

from the flow of control, which makes models hard to understand and analyze.
Workflow Nets solved this problem for standard Petri nets, but some of the re-
strictions are too severe for efficient use of the higher-level formalism. Colored
Workflow Nets [1] generalize Workflow Nets to colored Petri nets, but impose
some restrictions that make models unnatural. Instead, CPN Tools implements
Process-partitioned colored Petri nets (PP-CPNs) [4], which allow more flexibil-
ity and more natural models. PP-CPNs explicitly separate the flow of control and
data, separating places into process places, local and shared places (for data),
resource places, and communication (buffer) places.

PP-CPNs allow multiple instances of multiple process types to communi-
cate, and hence supports an artifact-centric modeling style. Of course, classical
Workflow Nets are recognized as PP-CPNs as one would expect. An example
PP-CPN model of a simple producer/consumer system can be seen in Fig. 3
(top). Here, we have two kinds of processes communicating over a buffer place;

[a0 PN €PN Tools (Version 3.9.0, May 2013) }
b Tool box
SEED PCSystem | et | Binder {
A N [>,
» Options _ 5. 0 E* Y
¥ producer-con: \Mliex/‘ B | %
Step: 0
Time: 0 MUTEX % q‘h By |oave
¥ Options
OReal Time
oBinding E 0 @ m
OGlobal BE Waiting Idle
Output di | - .
» Performal P PRODUCEIL (P(1))3+ CcoNsUMERd 1. %E
» Extensior E —=m— 2 1 (REREHeEr
»Daclars Produce P Recaive
YPP-CPN Data Data Data
wDiscove d (cd
»Histary PRODUCERXDATA CONSUMERxD:"lT."cu)++ e
» Declaration . P . e Consume
@l o Q|1 Ci2lr Even
»Monitors 1°P(2) 1 c(3)
PCSystam Producer Cansumer
W Waiting
PRODUCER CONSUMER=DATA CONSUMER
None | Consumer | Producar | Group 1 |
% Producer.java (~/Dropbox/Documents/...cts /People/Tijs/cpntools-4-bpm) - VIM1
' e dis
[S B 1

new Thread(new Consumer(buffer_input.get("C(3)"),
@), /7 int receivedData
"Consumer, C(3)").start(};
new Thread(new Producer(buffer_output, // CONSUME
nextConsumer, // CONSUMERx nextConsumer |
1), /7 int producedData
"Producer, P(1)").start();
GeneratedCode. java
public static class Channels {
Map<String, ObjectOutputStream> buffer;

Channels channals;
int pridducedData;

public static class Locks {
Semaphore mutex = new Semaphore(l, true);

static Locks locks = new Locks();
Producer. java

public Consumer(ObjectInputStream channelbuffer,
int localreceivedData) {
channels = new Channels();
channels.buffer = channelbuffer;
this.receivedData = localreceivedData;

3

public void run() {
int dj

d = ((int) channels.buffer.readObject());
this.receivedData = (d);
if ([odd d1) {
this.receivedData = (@);
} else {
this.receivedData = (@);

}
} while (true);

25% Consumer. java

Fig. 3: A colored Petri net model with an explicit process perspective (top) and (some
of the) generated Java code from the model (bottom).

producers produce items (integers), store them locally, and transmit them. They
use a mutex (a single resource) to prevent race conditions. Initially there are two
producers. Consumers receive data from producers, store it locally and dispatch
depending on the data.

An advantage of PP-CPNs is that it is possible to generate them automati-
cally from code and to generate running Java code from such models; an example
of code generated from the model in Fig. 3 (top) is shown in Fig. 3 (bottom).

Maturity, availability, screencast. CPN Tools is a very mature tool and
has been in active use for over 10 years. It enjoyed approximately 5500 down-
loads in the period May 1, 2012-May 1, 2013. It is used in teaching in sev-
eral universities, used by companies, and a large number of case studies in
several fields are available from http://cs.au.dk/cpnets/industrial-use/
and on our own homepage we showcase models from industrial case studies at
http://cpntools.org/documentation/examples/. We are currently conduct-
ing case studies using the new declarative constraints, but these are on-going
and not yet ready for publication. The implementation of the Declare language
is an optimized version of the Declare tool [6].

CPN Tools is open source and available for free for everybody at
http://cpntools.org/. On this page, we also have a comprehensive getting
started guide including screencasts for beginners. In the future, we plan to ex-
tend CPN Tools with timed and process-aware versions of Declare.

References

1. van der Aalst, W.M.P., Jgrgensen, J.B., Lassen, K.B.: Let’s Go All the Way: From
Requirements Via Colored Workflow Nets to a BPEL Implementation of a New Bank
System. In: Proc. of OTM Conferences (1). LNCS, vol. 3760, pp. 22-39. Springer
(2005)

2. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as distributed
dynamic condition response graphs. In: Post-proc.of PLACES 2010 (2010)

3. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response
graphs. In: Proc. of Fundamentals of Software Engineering (FSEN) (April 2011)

4. Kristensen, L.M., Westergaard, M.: Automatic Structure-Based Code Generation
from Coloured Petri Nets: A Proof of Concept. In: Proc. of FMICS. pp. 215-230.
LNCS, Springer (2010)

5. Westergaard, M.: CPN Tools 4: Multi-formalism and Extensibility. In: Proc. of
ATPN. LNCS, vol. 7927, pp. 400-409. Springer (2013)

6. Westergaard, M., Maggi, F.M.: Declare: A Tool Suite for Declarative Workflow
Modeling and Enactment. In: Business Process Management Demonstration Track
(BPMDemos 2011). CEUR Workshop Proceedings, vol. 820. CEUR-WS.org (2011)

7. Westergaard, M., Slaats, T.: Mixing Paradigms for More Comprehensible Models.
In: Proc. of BPM. LNCS, vol. 8094. Springer (2013)

Enacting Complex Data Dependencies from
Activity-Centric Business Process Models

Andreas Meyer!, Luise Pufahl!, Dirk Fahland?, and Mathias Weske'

! Hasso Plattner Institute at the University of Potsdam
{Andreas.Meyer, Luise.Pufahl,Mathias.Weske}@hpi.uni-potsdam.de
2 Eindhoven University of Technology
d.fahland@tue.nl

Abstract. Execution of process models requires a process engine to handle con-
trol flow and data dependencies. While control flow is well supported in available
activity-oriented process engines, data dependencies have to be specified manually
in an error-prone and time-consuming work. In this paper, we present an extension
to the process engine Activiti allowing to automatically extract complex data
dependencies from process models and to enact the respecting models. We also
briefly explain required extensions to BPMN to allow a model-driven approach
for data dependency specification easing the process of data modeling.

Keywords: Process Modeling, Data Modeling, Process Enactment, BPMN, SQL

1 Introduction

Today, organizations use process-oriented systems to automate the enactment of their
business processes. Therefore, processes are often captured in process models focusing
on the activities being performed. These models are executed by process engines as, for
instance, YAWL [1], Activiti [2], jJBPM [6], Bonita [3], AristaFlow [8], and Adept2 [13].
Generally, a process engine has access to a process model repository as shown in Fig. 1.
As soon as a start event of a particular process occurs, the engine creates a new instance
of this process and enacts the control flow as specified by the process model. Thereby,
the process engine is able to allocate specified user tasks to process participants via a
graphical user interface or to invoke an application for execution of service tasks.

For the enactment of tasks, data plays an important role, because data specifies pre-
and postconditions of tasks. A precondition requires the availability of certain data in a
specified state while the postcondition demands certain manipulation of data. In modern
activity-oriented process engines as mentioned above, these and further complex data
dependencies (e.g., creating and updating multiplicity relations between data objects)
have to be implemented manually through a process engineer by specifying the respective
data access statements (see shaded elements in Fig. 1 left); this is an error-prone and
time-consuming work.

In this paper, we explain an approach to model data dependencies in the process
model itself and automatically derive data access statements from the process model as
shown in Fig. 1 right. Process data utilized during activity execution is out of scope in
this paper. We demonstrate the feasibility of this approach using the industry standard

mailto:Andreas.Meyer@hpi.uni-potsdam.de;Luise.Pufahl@hpi.uni-potsdam.de;Mathias.Weske@hpi.uni-potsdam.de
mailto:d.fahland@tue.nl

LA A

Process Designer Process Participant i Process Designer Process Participant
Business Process Graphical Invoked Business Process Graphical Invoked
Modeling User Interface Applications Process Engineer and Data Modeling User Interface Applications
4
v ¢t v t (2] v vy 4 vt v t
Business Business Process
- -
Process Model Process Engine foe Z‘;":e?“‘)::;s Model with Data Process Engine
Repository Repository “
Y
= S—
\Database Database

Fig. 1. Process engine architecture: classical (left) and proposed (right).

for process modeling, the Business Process Model and Notation (BPMN) [12], and the
Activiti process engine [2].

Next, Section 2 shows how to model complex data dependencies in BPMN; Section 3
shows how three simple conservative extensions of the industrial process engine Activiti
suffice to enact complex data dependencies from a BPMN model. We conclude in
Section 4.

2 Modeling Complex Data Dependencies in BPMN

BPMN provides the concept of data objects that are associated to tasks [12]. Roughly,
a task is only enabled when its associated input data objects are in a particular state.
Associated output data objects have to be in a specified state when the task completes.
However, for enactment more information is required.

Figure 2 shows a stan-
dard BPMN model of a sim- onleet o
plified build-to-order pro- il I i I
cess of a computer manufac- ok oid okt ok oid
turer (ignoring annotations
set in italics). In this pro-
cess, an Order that was re-
ceived from a customer is
first Checked and either re-
Jjected or confirmed. If it is
confirmed, task Create com-
ponent list creates several Fig. 2. Build-to-order Process of a Computer Manufacturer
Components to be ordered;
based on these components the order is processed in a subprocess and, when completed,
the Order is sent to the customer.

In BPMN, each data object has a name and a set of attributes of which one describes
the state of a data object. Data flow edges express pre- and postconditions to the different
tasks, e.g., Check order is only enabled if object Order exists in state received in the
current process instance. However, when handling multiple orders in different instances
in parallel, the process model does not express which order is correlated to which process
instance. Likewise, BPMN cannot describe create, read, update, and delete operations

Order
[sent]

pk: o_id

Create
component
list

Inew]

Computer Manufacturer

[Components|
[created]
w
pk: cp_id
fk: oid

on one or more objects of the same kind, possibly in 1:n or m:n relationship to other
data objects. For instance, one cannot express that task Create component list of Fig. 2
creates several new Component objects and associates them to the Order handled in the
process. Such data dependencies would have to be implemented manually.

In [9], we have shown that a few simple additional annotations to BPMN data objects
suffice to describe such complex data dependencies with operational semantics directly
in BPMN. First, borrowing an idea from business artifacts [5], we propose that for
each process instance (and each instance of a subprocess) exists exactly one data object
instance driving and orchestrating the execution of the process instance. All other data
objects used in the instance depend on that case object. The case object of Fig. 2 is an
Order as shown by the annotation. Dependencies between data objects are expressed via
primary and foreign key attributes in analogy to databases [14]. Each data object has a
primary key attribute that uniquely distinguishes different instances of this object, e.g.,
Order has the primary key attribute o_id and Component has cp_id. Foreign key attributes
link object instances, e.g., attribute o_id links Components to Orders. The primary key
of the case object implicitly links to the instance identifier of the (sub-)process. Read
and update of data objects are already provided through BPMN’s data flow edges. We
express create or delete through respective annotations in the BPMN data object, e.g.,
Create components list creates several new Components (annotation [new] and multi
instance characteristic |||) and relates them to the current Order.

Most importantly, these annotations have operational semantics. In [9], it is shown
how to derive SQL queries from annotated BPMN data objects that realize the specified
data operations. For example, for object Order in state rejected written by activity
Check order in Fig. 2, the corresponding SQL query is dervied: UPDATE Order SET
state = 'rejected’ WHERE o_id = $ID with $ID representing the identifier
of the (sub-)process the activity belongs to. See [9] for full details.

3 Tool Architecture and Implementation

We implemented the approach of Section 2 to show its feasibility. In the spirit of adding
only few data annotations to BPMN, we made an existing BPMN process engine data-
aware by only few additions to its control structures. As basis, we chose Activiti [2], a
Java-based, lightweight, and open source process engine specifically tailored for a subset
of BPMN. Activiti enacts process models given in the BPMN XML format. Activiti
supports standard BPMN control flow constructs. Data dependencies are not enacted from
the process model, but are specified separately. We adapted the Camunda [4] modeler
to allow the creation of BPMN models with our proposed concepts; we extended the
Activiti engine to enact process models with these concepts.

First, we extended the XML specification by utilizing extension elements, which
the BPMN specification explicitly supports to add new attributes and properties to
existing constructs. We added the case object as additional property to the (sub-)process
construct. The data object was extended with additional properties for primary key
(exactly one), foreign keys (arbitrary number), and the data access type as attribute.
The BPMN parser of Activiti was extended to read BPMN data objects with the new
attributes and properties, and data associations.

Execution Atomic BPMN DB Server
T Operation Activity I B
Execute Behavior

| EEEE—_

loop J

[resultSet.size() == 0]

SELECT ... FROM PRE WHERE ...

BPMN Data Objects resultSet

SR+ S O — L
L

<extension>

</ext'e'n.sion> Control Flow N
and Resource (Activity
. Behavior
SN~
UPDATE POST ...
—_——
|t
.bpmn file Parser Internal Representation T Engine

Fig. 3. Data dependencies are a conservative extension to data format, parser, internal representa-
tion, and execution engine.

The actual execution engine was extended at two points: before invoking the execu-
tion of an activity to check the preconditions of an activity and before completing an
activity to realize the postconditions, both with respect to data objects. At either point,
the engine checks for patterns of data input and output objects and categorizes them.
For instance, in Fig. 2, Order is input and output to Check order in different states. The
engine classifies this as a “conditional update of case object Order”. The data operations
at task Create component list would be classified as “conditional creation of multiple
data objects that depend on the case object (1:n relationship)”. Classification proceeds
from most specific to most general patterns.

When invoking an activity, for each matching precondition pattern a corresponding
SQL select query is generated to read whether the required data objects are available.
The query assumes that for each data object of the process model exists a table holding
all instances of this object and their attributes. If there is an object instance in the right
state, the SQL query returns the corresponding entry and is empty otherwise. The engine
repeatedly queries the database until an entry is returned (i.e., the task is enabled), as
shown in Fig. 3. Then the activity is executed. Upon completion, an SQL insert, update,
or delete query is generated for each matching postcondition pattern, and executed on
the database.

Altogether, we had to extend Activiti at merely 4 points to realize our concept,
as illustrated in Fig. 3: (1) at the XML, (2) at the parser and internal representation,
(3) when checking for enabling of activities, and (4) when completing an activity.
The extensions required just over 1000 lines of code with around 600 lines being
concerned with classifying data access patterns, generating, and executing SQL queries.
The extended engine, a graphical modeling tool, example process models, a screencast,
and a complete setup in a virtual machine are available together with the source code at
http://bpt.hpi.uni-potsdam.de/Public/BPMNData.

4 Conclusion

In this paper, we presented an approach how to automatically enact complex data
dependencies from activity-centric process models. They key concepts required are

http://bpt.hpi.uni-potsdam.de/Public/BPMNData

data objects associated to tasks; a few annotations allow to express relations between
data objects and the particular data operation. Our modeling tool helps to easily specify
the required annotations in a graphical user interface. From these annotations, SQL
queries can be automatically generated and executed from a process engine, covering
all fundamental data access operations: create, read, update, and delete of single data
objects and of related data objects in 1:n and m:n relationship [9]. We have shown on the
process engine Activiti that minimal extensions to existing execution engines suffice to
implement this concept.

Compared to other techniques and engines for enacting data dependencies from
models, our approach is less intrusive. The object-centric modeling paradigm [5, 11]
requires substantial changes to the infrastructure as completely new engines have to
be used. Process engines for this paradigm exist, e.g., PhilharmonicFlows [7] and
Corepro [10], but they are incompatible with activity-centric approaches as it is supported
by BPMN. In this respect, our work fills a critical gap in allowing owners of activity-
centric processes to adapt automated enactment of data dependencies without changing
paradigms and infrastructure.

Acknowledgements. We thank Kimon Batoulis, Sebastian Kruse, Thorben Lindhauer, and Thomas
Stoff for extending the Camunda modeler [4] in the course of their master project to support the
modeling of processes with respect to the concepts described in [9].

References

1. van der Aalst, W.M.P,, ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language.
Information Systems 30(4), 245-275 (2005)

. Activiti: Activiti BPM Platform. https://www.activiti.org/

. Bonitasoft: Bonita Process Engine. https://www.bonitasoft.com/

. Camunda: Camunda BPM platform. https://www.camunda.org/

. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business operations
and processes. IEEE Data Eng. Bull. 32(3), 3-9 (2009)

. JBoss: jBPM Process Engine. https://www. jboss.org/ jbpm/

7. Kiinzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-aware
Process Management. Journal of Software Maintenance and Evolution: Research and Practice
23(4), 205-244 (2011)

8. Lanz, A., Reichert, M., Dadam, P.: Robust and flexible error handling in the aristaflow bpm
suite. In: CAiSE Forum 2010. vol. 72, pp. 174-189. Springer (2011)

9. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and Enacting Complex Data
Dependencies in Business Processes. In: Business Process Management. LNCS, vol. 8094,
pp. 171-186. Springer (2013)

10. Miiller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of large process
structures. In: OTM 2007. LNCS, vol. 4803, pp. 131-149. Springer (2007)

11. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428-445 (2003)

12. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)

13. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems.
ToPNoC 5460, 115-135 (2009)

14. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 4th Edition. McGraw-
Hill Book Company (2001)

(S RS)

[=))

https://www.activiti.org/
https://www.bonitasoft.com/
https://www.camunda.org/
https://www.jboss.org/jbpm/

An Extensible Platform
for Process Model Search and Evaluation

Christian Ress and Matthias Kunze

Hasso Plattner Institute at the University of Potsdam,
christian.ress@student.hpi.uni-potsdam.de,
matthias.kunze@hpi.uni-potsdam.de

Abstract. We present a platform that integrates a number of process
model search techniques and provides a uniform interface for query
formulation and search result presentation, as well as a framework to
evaluate a particular search technique. The platform provides researchers
with a common infrastructure to embed their search technique in form of
a dedicated search engine. The demo explains the features of our platform
and encourages researchers to contribute their search techniques.

1 Introduction & Background

Business process models are a central cornerstone of process-oriented organiza-
tions as they explicitly capture the knowledge to carry out the operations of a
business and are reused for documentation, analysis, automation, and certifica-
tion, among others. Modern companies maintain thousands of process models
for reference and reuse [2], which requires effective capabilities to search among
them. Researchers have proposed an abundance of techniques that focus on text,
structure, or behavior of process models and allow for similarity search, i.e.,
obtaining approximate matches to a complete model, and querying, i.e., searching
precisely by few yet relevant aspects of a model [2].

The majority of these process model search techniques, however, has been
presented only theoretically. Evaluations of their quality and performance has
been conducted under lab conditions, i.e., with a minimalistic implementation
that mainly addresses the query processing, i.e., comparing candidate models with
the query and deciding a match. This is, arguably, due to the effort of providing
a complete process model search infrastructure that includes a user interface
to formulate a query, a process model repository to store, manage, and retrieve
models from, and the visual presentation of search results as a response to the
query. This functionality is shared among all process models search techniques.

To this end, we have developed a prototypical process model search platform
that assumes these tasks and allows for the integration of dedicated search
techniques in form of a search engine plugin architecture. This includes a set of
well-defined APIs that integrate a search engine with our platform. Moreover,
the platform provides a framework to evaluate a search engine with regards
to the quality of a search technique, i.e., the relevance of the provided results,
and, the performance of its implementation. The platform aims to reduce the
time to implement and evaluate a particular search technique, and enables the

2 Christian Ress and Matthias Kunze

comparison of various techniques, as they can now be deployed in the same
runtime environment.

2 Search with your Search Technique

The central concept of our search platform is to enable developers to deploy a
dedicated search engine to the platform and use it to search for process models in
a straight-forward manner. Hence, one of the key features of our search platform
is a presentation layer, which lets users specify search queries using BPMN and
view ranked search results in a similar visual representation, depicted in Fig. [I}

Resuits

Found 1 results in 0.048873 seconds.
Search Algorithm

Querying by #1 r—
Example 0.761 f H_ invoice verification |—€
Similarity Search N
\ —
o

(sequential | o~
aduity shipping @® Similarity Search *+ J+| qualtynotiiaton [+ -
k-value

EOO®®\@

Fig. 1: Screenshot of the web-search interface.

The presentation layer includes a simplistic, web-based process model editor,
that allows formulating queries as regular process models, as this is typical for
similarity search and has been proposed for querying [6], too. The editor itself is
highly extendable, which allows the formulation of queries in languages devised
for search, e.g., BPMN-Q [I]. The input query is provided to the dedicated search
engine that parses it and matches it against stored process models. To this end,
BPMN queries are transformed to Petri nets.

The extensible architecture of the search platform makes it possible to inte-
grate a dedicated search engine, provided it is implemented in Java, by providing
common interfaces through which the search platform can communicate with
the search engine. Currently, we require that search algorithms accept queries
in form of Petri nets, defined using the jBPT Java libraryﬂ and return search
results in a similar format. We resorted to Petri nets, as they provide a common
formalism for a variety of business process modeling languages [7].

Our aim is to provide researchers with an opportunity to experiment with their
algorithms faster and easier, and explore the search results in an environment
that is similar to one that end users expect. We do this by providing an API
through which search algorithms can expose parameters that can be changed
during runtime, and make these parameters accessible in the search interface.
This way, parameters can be configured without modifying source code or static
configurations, and without recompilation. The results of the chance are visible
immediately.

! http://code.google.com/p/jbpt/

http://code.google.com/p/jbpt/

An Extensible Platform for Process Model Search and Evaluation

3 Evaluate your Search Technique

Our platform has originally been devised to integrate a number of dedicated
search techniques in a common infrastructure. However, it turned out that the
very same functionality of a search engine can be used to evaluate the underlying
search technique and its implementation. That is, experiments are typically
carried out by running a well-defined set of queries against a set of candidates,
and assessing quality and performance. Thus, we developed a framework that
allows running predefined experiments against search engines without the need
for a complex evaluation infrastructure.

Simiarty Search

precision recall facore overall search
0.7 0.5633333. . | 06363636, 03333333 searchi
0.6 04615384 | 05217391 | 01538461 .. | search?
0.4 05714285 . 04705882 -0.285714... | searchd
]] il il searchd
5 0.4 03076023 | 0.3478260... -0.153846... | gearchb
0.7 0.6363636... | 0.6866556... 0.3636383.. searchb
N 0.5565656... | 0.7142857... 0.5555555... | searchd
0.7 OFFFTTTT... | 07368421 04444444 gearchi
0.6 1 0.74000040 | 03333333 gearch1l

Fig.2: Screenshot of the interface for precision/recall analysis.

Two methods for evaluating a search technique are provided. Quality judges
on the relevance of matches in a search result with respect to a human assessment
and therefore needs a reference data set. For similarity search, such a dataset has
been introduced in [3]. Performance addresses the resource consumption of the
implementation of a search engine and its scalability with regard to large process
model collections. Hence, performance can be evaluated without a human data
set, using any process model collection.

For this purpose, a number of time measurements and counters are provided
through an API, which can be uses during the execution of a search run by a
dedicated search engine. Features, such as support for laps and persistence of
counters and timers over multiple search requests are available. All measurements
are automatically included in the response of a query, along with statistical
measures such as average, median, quantiles, standard deviation, etc.

To evaluate a search technique, we developed a web-based evaluation interface
that allows choosing among a set of quality and performance evaluation methods,
e.g., computation of precision and recall values and the visualization of precision-
recall curves. With regards to performance measures, trend analyses can be

4 Christian Ress and Matthias Kunze

plotted over a number of search runs for various sizes of the candidate model
collection.

Fig. [2] shows an excerpt of the evaluation interface that allows choosing a
dedicated search engine and compute precision and recall values for each of the
queries. The result is provided in a table for each query, and a visualization shows
the queries in a coordinate system. This allows for fast identification of queries
with significantly good (right upper quadrant) or poor (left lower quadrant)
quality.

4 Architecture

The search platform has been implemented as
a two-tiered web application, consisting of an I

HTMLS5 frontend and a Java backend, depicted in | - Web Interface | -
Fig. Bl The web-search and evaluation interfaces Q M Q M

are implemented as web applications that run in I - Fladorm Senver |
common web browsers and require no installation. .~ — Q Yy _ Q

Search I l Evaluation I

They communicate with the search platform viaa | - L] Vodel J s
JSON API and prove for the interaction with the | | Cache

user. For search, a simplistic process model editor I Query LA Repository
based on the processWave edit01E| is provided to : Procfssor |

formulate the query. Search results are provided | Lsearch Engine| J|

as an ordered list along with quality measures, —— — — —

cf. []. Evaluation offers predefined experiments, Fig. 3: Architecture of Process
i.e., a set of queries and candidates, run against y{ydel Search Platform

a dedicated search engine and visualizes results

in terms of quality and performance. Particular

techniques to match a query with models from the process model repository are
realized in dedicated search engines.

Search and Evaluation interfaces communicate with the platform server. As
an evaluation comprises running reference searches, the platform server does not
distinguish between search and experiment. That is, the experiment framework is
implemented completely client-side. The search platform server integrates different
dedicated search engines. Such an engine comprises at least a query processor
that decides, whether a candidate matches the query and scores relevance. A
custom index enables efficient search. To facilitate the implementation of these
components, the search platform provides shared components that can be accessed
by the components of a search engine, i.e., a model cache that underpins a custom
index and a persistence interface with the repository that manages stored process
models. The model cache increases startup speed as it preserves data that has
been expensively precomputed, when models are loaded.

Through our strict use of a generic JSON API to access the search platform
server it could also be used as a web service for process search and be integrated
with other services or applications.

2 http://processwave.org

http://processwave.org

An Extensible Platform for Process Model Search and Evaluation

5 Maturity & Show Case

The search platform has been implemented as a prototype to elaborate on the
requirements on search engines and their integration with a common platform.
Since dedicated search methods require their own query processor and indexes,
such a platform provides users with a unique search interface that covers various
perspectives of process model search, including similarity search and querying. At
the current state, we have implemented similarity search and querying based on
successor relations, cf. [Bl6]. As matching is conducted on net-based formalisms,
search results are currently presented using their Petri net representations. This
shall be extended in future work. Also, the quality experiments are limited to
human assessment of similarity, cf. [3], as other reference data was not available.

In the demo, we address researchers that are interested in process model
search and may even have proposed a search technique on their own. We will
introduce the platform and its architecture in a brief presentation before turning
to a live demo that comprises two parts.

1. We demonstrate the search and evaluation capabilities of the platform by
means of example queries, and their results. This includes a discussion of
search result quality metrics and how they support users in understanding a
search result. For evaluation, we show how various measures and diagrams
give insight into the quality and performance of a search technique.

2. In a quick walkthrough tutorial, we explain the requirements of a custom
search engine and which steps are required to integrate it into the platform
by a simple example.

A screencast demonstrating our search and evaluation platform can be found
at: http://vimeo.com/ress/process-search-demo. The platform is publicly
available under the MIT open source license along with a short tutorial on how
to use it and integrate a custom search engine at http://bitbucket.org/ress/
process-search.

References

1. A. Awad. BPMN-Q: A Language to Query Business Processes. In EMISA, volume
119, pages 115-128, 2007.

2. R. Dijkman, M.L. Rosa, and H.A. Reijers. Managing Large Collections of Business
Process Models—Current Techniques and Challenges. Comput Ind, 63(2):91, 2012.

3. R. Dijkman, M. Dumas, B. Dongen, R. Kééarik, & J. Mendling. Similarity of Business
Process Models: Metrics and Evaluation. Inform Syst, 36(2):498 — 516, 2011.

4. M. Guentert, M. Kunze, and M. Weske. Evaluation Measures for Similarity Search
Results in Process Model Repositories. ER ’12, pages 214-227, Springer, 2012.

5. M. Kunze, M. Weidlich, and M. Weske. Behavioral Similarity—A Proper Metric. In
BPM 11, pages 166-181. Springer, 2011.

6. M. Kunze and M. Weske. Local Behavior Similarity. In BPMDS ’1, volume 113 of
LNBIP, pages 107-120. Springer, 2012.

7. N. Lohmann, E. Verbeek, and R. Dijkman. Petri Net Transformations for Busi-
ness Processes—A Survey. In Transactions on Petri Nets and Other Models of
Concurrency I, pages 46—-63. Springer, 2009.

http://vimeo.com/ress/process-search-demo
http://bitbucket.org/ress/process-search
http://bitbucket.org/ress/process-search

Worklr: Supporting and Capturing Business
Processes from Knowledge Workers

David Martinho and Anténio Rito Silva

! Instituto Superior Técnico — UL
? ESW - INESC-ID
davidmartinho,rito.silva@ist.utl.pt

Abstract. Worklr (Workflow enhanced with Live Recommendations) is
a workflow tool that relies on one of the most known user experience
(UX) pattern: the exchange of email messages. In organizations that do
not have workflow systems guiding their business processes, knowledge
workers rely on technologies like telephone, email or fax, to interact and
attain their business process goals. Knowledge workers operate the busi-
ness in a daily basis, and they know how to handle the most complex
business situations. Worklr supports the capture of workers’ knowledge
following a design-by-doing approach. Workers attain business goals by
producing data objects. The convergence of workers’ behavior is fostered
through a recommender system. This novel proposal leverages on data-
driven workflow approaches.

Keywords: Ad-hoc Workflow, Operational Support, Recommender Sys-
tems

1 The Worklr Tool Approach

Our approach to capture knowledge workers’ tacit knowledge is based on an
ad-hoc workflow system which implements conversational acts, and where busi-
ness goals are achieved when a set of data objects is produced [1]. Knowledge
workers are responsible to produce data objects towards the complete genera-
tion of the information required for the process goal achievement. Additionally,
knowledge workers can establish conversational acts to request the production of
data objects by their co-workers. Associated to a request, the initiator may in-
clude some input data objects, and the executor is expected to reply with output
data objects that she produced to fulfill the request. The flow of conversational
acts (i.e. requests), supported by the ad-hoc workflow system, is driven by the
knowledge workers’ knowledge of their own organizational responsibilities and
their co-workers responsibilities: they know who is responsible to produce what.

Consider a Travel Process case where an employee wants to go on a business
travel to Beijing. First, he creates a process instance named Travel Process.
As he initiates such process instance, the employee is automatically assigned to
execute the first request of the process, a.k.a. root request. It is within this root

request, automatically named after the process name, that the employee will
create any necessary sub-requests.

The employee knows that the secretary is responsible to handle his trip, but
before he sends her a sub-request, he creates a set of data objects that he knows
the secretary will need. Therefore, the employee creates a data object labeled
Destination and fills its value with Beijing, two data objects labeled Departure
Date and Returning Date with the values 25/08/2013 and 30/08/2013, respec-
tively, and a data object labeled Motivation where he states that he wants to
attend the BPM2013 conference. For now, these four data objects are defined
as the creation context of the request identified by the request label Travel
ProcesSEl

Having the necessary data objects, the employee is in condition to send a
sub-request to the secretary. To do so, he creates a new sub-request, chooses
the secretary’s queue as destination, names the request Travel Request, adds a
little description to communicate the motivation for that request as a commen-
tary, and selects all the data objects he created before: Destination, Departure
Date, Returning Date and Motivation. As the employee sends the sub-request,
that request is published in the secretary’s work queue.

As one secretary claims the request for execution, she is proclaiming herself
as the executor of that request, being able to see the data objects provided by the
request’s initiator. Having the information provided by the employee, the secre-
tary calls some travel agencies to request some hotel and flight prices. However,
before booking any hotel room or flight, the secretary needs an authorization
from the supervisor. Similarly to the employee, the secretary also knows that the
supervisor needs to know the trip details and the best tender value she got from
the agencies. As such, she creates a data object named Tender and fills it up
with the best price she got from the travel agencies. Afterwards, the secretary
creates a new sub-request, which she addresses to the supervisor’s queue, labels
the request Travel Authorization, writes a comment on what she needs from
the supervisor, and, as input, she selects the data objects labeled Motivation,
Departure Date, Returning Date, Destination and Tender.

In the same way, as the request is sent, it is published in the supervisor’s
queue. As one of the supervisors claims this request for execution, he can see the
data objects that the secretary attached as input of the request. Based in this
data, the supervisor executing the request decides to either authorize or not the
travel. To let the secretary know that she can proceed with the hotel and flight
booking, the supervisor creates a new data object labeled Authorization and
defines its value as Granted. Then, the supervisor is in condition of responding
to the request and let the secretary know of his decision. Notice that the secre-
tary will only see the data object if the supervisor explicitly selects it when he
responds to the request. After the supervisor responds to the request, he cannot
create any sub-request or data objects in that contextﬂ

3 The root request is created automatically and named after the process name
4 Although this requirement appears to be limitative, its for correctness purposes

After the supervisor replies to the Travel Authorization request, the secre-
tary can see the responded data object Authorization along with its Granted
value. Based on that positive value, the secretary calls the travel agency and
books the hotel and flight, obtaining the respective reservation number and
flight ticket number. With this information, she creates two data objects labeled
Hotel Reservation and Flight Number and fills in the respective information.
After this, she is in condition to respond to the original request initiated by
the employee, providing both the Hotel Reservation and Flight Number data
objects.

As the secretary responds to the request, the employee can see the hotel and
flight information contained in the data objects included in the response. Since
he needs no more information, and has no pending or executing sub-requests,
the employee completes the process.

With the process completed, the employee is essentially saying that the pro-
cess attained its goal, which consists in getting the travel approved and both
the hotel and flight information. During the process execution, several data ob-
jects were produced and drove the process instance. Worklr considers all the
created data objects and stores their set of labels, along with their cardinality,
as a business process goal. This means that completing the process depicted in
the example above results in a process goal with the following eight data object
labels:

— 1 x Destination

— 1 x Motivation

— 1 x Departure Date

— 1 x Returning Date

— 1 x Tender

— 1 x Authorization

— 1 x Hotel Reservation
— 1 x Flight Number

Having this process goal is important to guide future business process in-
stances under the same label, i.e. process instances labeled Travel Process.
Worklr knows, that if in the past a particular process goal was attained, it is
likely that same goal will be attained again in a future execution of that kind
of process. Hence, along with other contextual information gathered during the
execution of a business process instance, Worklr uses such business process goal
information and inspects the current state of the process to recommend the cre-
ation of new data objects or sub-requests. Such recommendations are based on
a process goal and the current execution context, i.e. the user’s roles, the labels
of data objects available to the user, and the overall process’ data object labels.

Therefore, apart from providing operational support, Worlr is also capable
of storing previous executions in a structured way, which contain information to
guide future process instances with the same label. Nevertheless, as new business
situations occur (e.g. if the supervisor refuses the authorization), the Worklr
ah-hoc aspect supports that change, i.e. it does not enforce recommendations,

and stores the new attained process goal. That new process goal is taken into
consideration in the following executions of processes labeled Travel Process.

1.1 Features

The tool is in its first prototype stage, and its source code is not available yet
due to intellectual property restrictions inherent to the PhD status of one of the
authors.

The following list highlights a set of core functionalities of the Worklr appli-
cation, regarding operational support:

— Create new business process instances.

— Create data objects within the execution of a request.

— Edit data objects created within the execution of a request.

— Create sub-requests and publish them into user and role queues.

— Claim requests received in the Inbox for execution.

— Communicate with the initiator of the executing request.

— Communicate with the executor of the sub-request.

— Cancel pending and executing sub-requests.

— List all sub-requests initiated and see their respective status (pending, exe-
cuting, completed, canceled).

— Provide data objects as input of sub-requests.

— Respond to executing requests, specifying which data objects should be in-
cluded in the response.

— Complete business process instances.

Apart from operational support, Worklr saves executions in the form of re-
quest templates, which are entities that abstract the different completed requests
by storing some contextual information. A request template is therefore com-
posed by:

an initiator role context, which is essentially the set of organizational roles

played by the initiators of that kind of request.

— an input data context, which is the set of data object labels, and respective
cardinality, of the data objects provided as input in that kind of request.

— a creation data context, which is also a set of data object labels, and respec-
tive cardinality, created in that kind of request.

— an output data context, which, analogously, is the set of data object labels,

and respective cardinality, responded in that kind of request.

Along with all the business process goals attained under a particular process
label, e.g. Travel Process, the Worklr tool provides a recommender system that
analyses the context of execution of the current user, and computes a set of rec-
ommendations of both the labels of the data objects that should be created, and
the labels of the sub-requests that can also be created. To each recommendation
is associated a score, as discussed in [2], from which the list of recommendations
is ordered accordingly.

Hence, the list of Worklr features is extended by this recommender system,
and the tool can also:

— Provide sub-request recommendations based on the current execution con-
text.

— Provide data creation recommendations based on the current execution con-
text.

As users perceive recommendations as useful, they are re-using the labels
and behavior from other organizational parties playing a similar set of roles.
Additionally, although the number of process, request and data object instances
increase as more cases are handled, if recommendations are followed, the number
of request templates and data object templates converges and recommendations
become more accurate.

1.2 Experiment

As shown in the screencast of the tooEl, Worklr is in a functional state enough
to conduct an experiment. In [3], we discuss the results of an experiment that
we recently conducted, where we gathered some important feedback.

In the experiment, we had 13 participants and 1 confederate. The confed-
erate would initiate new process instances and the root request, while the 13
participants were distributed across 4 distinct organizational roles that should
cooperate to attain a particular business process goal. The business process used
in the experiment was similar to the one exemplified here, but with more business
rules.

A last comment on the experiment: we gathered some important results from
the tool as we perceive some convergence in the use of labels by different par-
ticipants. In the cold-start of the experiment, users would use different labels to
identify requests and data objects, but after 16 business process instances, we
identified some interesting convergence results.

Acknowledgement

This work was supported by national funds through FCT — Fundacao para a
Ciéncia e a Tecnologia, under project PEst-OE/EEI/LA0021/2013.

References

1. Martinho, D., Silva, A.: Non-intrusive capture of business processes using social
software. In: BPM Workshops, pp. 207-218. Springer (2012)

2. Martinho, D., Silva, A.: A recommendation algorithm to capture end-users’ tacit
knowledge. Business Process Management 7481, 216-222 (2012)

3. Martinho, D., Silva, A.R.: An experiment on capturing business process from knowl-
edge workers, submitted to the BPMS2 Workshop at BPM2013

% http://vimeo.com/user4862900/worklr-demo-bpm?2013| - Password: BPM2013

http://vimeo.com/user4862900/worklr-demo-bpm2013

Declarative Process Mining
with the Declare Component of ProM

Fabrizio Maria Maggi*

University of Tartu, Estonia
f.m.maggiQut.ee

Abstract. Traditional process mining techniques mainly work with pro-
cedural modeling languages (like Petri nets) where all possible orderings
of events must be specified explicitly. However, using procedural pro-
cess models for describing processes working in turbulent environments
and characterized by a lot of variability (like healthcare processes) is
extremely difficult. Indeed, these processes involve several possible exe-
cution paths and representing all of them explicitly makes the process
models quickly unreadable. Using declarative process models (like De-
clare) ensures flexibility in the process description. Even processes that
work in environments where participants have more autonomy and are,
therefore, more unpredictable can be represented as compact sets of rules.
In the process mining tool ProM, there are several plug-ins that can
be used for different types of analysis based on Declare ranging from
the discovery of Declare models, to conformance checking, to the online
monitoring of running process instances.

1 Introduction

Process discovery, conformance checking and process model enhancement are
the three basic forms of process mining [9]. In particular, process discovery aims
at producing a process model based on example executions in an event log and
without using any a-priori information. Conformance checking pertains to the
analysis of the process behavior as recorded in an event log with respect to
an existing reference model. Process model enhancement aims at enriching and
extending existing process models with information retrieved from logs, e.g., a
process model can be extended with performance-related information such as
flow time and waiting time.

In the last years, several works have been focused on process mining tech-
niques based on declarative process models [2-4,6-8]. These techniques are very
suitable for processes characterized by high complexity and variability due to
the turbulence and the changeability of their execution environments. The di-
chotomy procedural versus declarative can be seen as a guideline when choosing

* The author would like to thank R.P. Jagadeesh Chandra Bose, Andrea Burattin,
Massimiliano de Leoni and Luciano Garcia-Bafiuelos for their collaboration in the
implementation of the plug-ins presented in this paper.

Fig. 1. Screenshot from the Declare Maps Miner.

the most suitable language to represent models in process mining algorithms:
process mining techniques based on procedural languages can be used for pre-
dictable processes working in stable environments, whereas techniques based on
declarative languages can be used for unpredictable, variable processes working
in turbulent environments.

The plug-ins presented in this paper use the Declare notation [10]. Declare
is a declarative language that combines a formal semantics grounded in Linear
Temporal Logic (LTL) on finite traces. A Declare model consists of a set of con-
straints which, in turn, are based on templates. Templates are abstract entities
that define parameterized classes of properties and constraints are their concrete
instantiations.

In this paper, we illustrate how the presented plug-ins work by showing their
application in the context of the BPI Challenge 2011 [1] that records the treat-
ment of patients diagnosed with cancer from a large Dutch hospital. This demon-
strates that they are viable to handle event logs of real-life size.

2 Plug-ins Description

Through the Declare Maps Miner, it is possible to generate from scratch a set of
Declare constraints representing the actual behavior of a process as recorded in
an event log. The user selects from a list of Declare templates the ones to be used
for the discovery task, i.e., the mined model will contain only constraints that
are instantiations of the selected templates. In addition, the user can provide the
plug-in with some a-priori knowledge (if it is available), to guide the discovery
task. For example, the user can decide to limit the possible constraints to dis-
cover. This allows her to generate only constraints that are the most interesting
from the domain point of view, thus reducing the complexity of the resulting
models.

There are two mechanisms for limiting the possible constraints to discover.
First, it is possible to ignore constraints between event types (such as start and

complete) of the same activity.! Secondly, the user can provide different groups
of activities (each group can be loaded in the form of a list of activities in a text
file) and specify if only intra-group or inter-group constraints should be consid-
ered. Intra-group constraints refer to the class of constraints where the activities
involved all emanate from a single group. In many scenarios, analysts would be
interested in finding constraints between activities pertaining to a functionality,
to a particular department in an organization, etc. For example, in a hospital
event log, an analyst would be interested in finding relationships/constraints be-
tween the various administration activities. Inter-group constraints refer to the
class of constraints where the activities involved belong to two different groups.
For example, in a hospital log, an analyst would be interested in constraints
between activities involved in surgery and therapy.

The user can also specify thresholds for parameters minimum support and
alpha. Parameter minimum support allows her to select the percentage of traces
in which a constraint must be satisfied to be discovered (and to filter out noisy
traces). Parameter alpha can be used ignore constraints that are trivially true in
the discovery task. For example, constraint response(A,B), specifying that if A
occurs, then eventually B follows, is trivially true in process instances in which
A does not occur at all.

Fig. 12 shows the output produced by the Declare Maps Miner. The discovery
results are presented to the user as interactive maps and give different informa-
tion about the process. Activities (shown as rectangles) are colored based on
their frequency (from white indicating low frequency to yellow indicating high
frequency). The user can highlight, in the discovered maps, the Declare con-
straints (shown as arcs between activities) that are more relevant (based on
different metrics) or prune out the ones that are less interesting, redundant or
deriving from noise in the log. The maps produced by the Declare Maps Miner
also show delays, latencies, time distances between activities and several statis-
tics related to the temporal dimension of the process.

If an existing Declare model is already available, it is possible to repair it
based on the information retrieved from a log (plug-in: Repair a Declare Model).
The user can decide which aspects must be kept in the original set of rules
and which ones can be discarded. For example, the user can decide to keep
only certain types of constraints or constraints involving certain activities. It is
possible to just remove less interesting or redundant rules or to strengthen (if
possible) the constraints included in the original set. Starting from a Declare
model and from a log, the Declare model can be extended with time information
(plug-in: Extend a Declare Model with Time Information). Through the Data-
Aware Declare Miner, it is also possible to discover constraints enriched with
data conditions.

! The miner is able to deal with non-atomic activities and to discover constraints
involving different parts of the activities’ lifecycle.

2 For space reasons, the quality of the screenshots here presented is not the best.
However, all the figures included in this paper are available at http://math.ut.ee/
~fabrizio/BPMdemo13/demo/FiguresDemo2013.zip

ProM 6

Diagnosis Results

from EnglishBP|Ch4ETET wiQdde @ > @ G

Fig. 3. Screenshot from the Declare Analyzer.

The Declare Replayer and the Declare Diagnoser (Declare Checker pack-
age) can be used to check the conformance of the actual behavior of a process
as recorded in an event log with respect to a reference Declare model. The
Declare Replayer generates a set of alignments between the log and the De-
clare model, i.e., information about what must be changed in the log traces to
make them perfectly compliant with the model. The Declare Diagnoser projects
the results obtained through the Declare Replayer onto the reference model (as
shown in Fig. 2). This projection produces a map in which the critical activi-
ties/constraints of the reference model are highlighted. In particular, activities
are colored from red to green according to the number of moves they are in-
volved in, i.e., according to how many times they were in the wrong place in the
log or missing when required. Constraints are colored from red to green based
on the number of moves that are needed to make the log compliant to them.
Through the Declare Analyzer (Fig. 3), the user can pinpoint where the process
execution deviates from the reference Declare model and quantify the degree
of conformance of the process behavior through several metrics, e.g., fulfillment
ratio and violation ratio.

For completeness, we mention that, with Mobucon LTL (a provider of the
operational support service in ProM), it is also possible to monitor a running

process with respect to a reference Declare model and get information about its
compliance at runtime. However, this functionality has already been presented
in [11].

3 Summary

The plug-ins belonging to the Declare component of ProM are advanced pro-
totypes and, as demonstrated through their application to the log provided
for the BPI challenge 2011, are able to handle logs of real-life size. The De-
clare Maps Miner and Mobucon LTL have been used in the Poseidon project
(http://www.esi.nl/short/poseidon/) to monitor sea vessels. In particular,
in [5], we show how it is possible to construct Declare models from real-life
historical data and monitor live data with respect to the mined model.

We consider the set of ProM plug-ins presented here stable enough for eval-
uating the declarative approach in real-life case studies. Binaries and source
code can be obtained from the ProM repository (https://svn.win.tue.nl/
repos/prom) and a release of each plug-in including the functionalities de-
scribed in this paper is included in the nightly build version of ProM (www.
processmining.org). A screencast of this demo can be found at http://math.
ut.ee/~fabrizio/BPMdemo13/demo/demo.html. A flyer with a summary of the
functionalities described in this paper is available at http://math.ut.ee/
~fabrizio/BPMdemo13/demo/DeclareFlyer.pdf.

References

1. 3TU Data Center. BPI Challenge 2011 Event Log, 2011.
doi:10.4121 /uuid:d9769f3d-0ab0-4fb8-803b-0d 1120ffcf54.

2. A. Burattin, F.M. Maggi, W.M.P. van der Aalst, and A. Sperduti. Techniques for
a Posteriori Analysis of Declarative Processes. In EDOC 2012.

3. Massimiliano Leoni, Fabrizio Maria Maggi, and WilM.P. Aalst. Aligning event logs
and declarative process models for conformance checking. In BPM 2012.

4. F. M. Maggi, M. Westergaard, M. Montali, and W. M. P. van der Aalst. Runtime
verification of LTL-based declarative process models. In RV 2011.

5. Fabrizio M. Maggi, Arjan J. Mooij, and Wil M. P. van der Aalst. Analyzing Vessel
Behavior using Process Mining, chapter Poseidon book.

6. F.M. Maggi, J.C. Bose, and W.M.P. van der Aalst. Efficient discovery of under-
standable declarative models from event logs. In CAiSE 2012.

7. F.M. Maggi, R.P.J.C. Bose, and W.M.P. van der Aalst. A knowledge-based inte-
grated approach for discovering and repairing declare maps. In CAiSE 2013.

8. F.M. Maggi, M. Montali, M. Westergaard, and W.M.P. van der Aalst. Monitoring
business constraints with linear temporal logic: An approach based on colored
automata. In BPM 2011.

9. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, 2011.

10. W.M.P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative Workflows:
Balancing Between Flexibility and Support. Computer Science - RED.

11. Michael Westergaard and Fabrizio Maria Maggi. Declare: A tool suite for declar-
ative workflow modeling and enactment. In BPM (Demos), 2011.

Leveraging Super-Scalarity and Parallelism to Provide
Fast Declare Mining without Restrictions

Michael Westergaard!:?* and Christian Stahl*

! Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

2 National Research University Higher School of Economics, Moscow, 101000, Russia
m.westergaard@tue.nl, c.stahl@tue.nl

Abstract. UnconstrainedMiner is a tool for fast and accurate mining Declare
constraints from models without imposing any assumptions about the model. De-
clare models impose constraints instead of explicitly stating event orders. Con-
straints can impose various choices and ordering of events; constraints typically
have understandable names, but for details, refer to [5]. Current state-of-the-art
mining tends to fail due to a computational explosion, and employ filtering to
reduce this. Our tool is not intended to provide user-readable models, but in-
stead to provide all constraints satisfied by a model. This allows post-processing
to weed out uninteresting constraints, potentially obtaining better resulting mod-
els than making filtering beforehand out of necessity. Any post-processing (and
complexity-reducing filtering) possible with existing miners is also possible with
the UnconstrainedMiner; our miner just allows more intelligent post-processing
due to having more information available, such as interactive filtering of models.
In our demonstration, we show how the new miner can handle large event logs in
short time, and how the resulting output can be imported into Excel for further
processing. Our intended audience is researchers interested in Declare mining and
users interested in abstract characterization of relationships between events. We
explicitly do not target end-users who wish to see a Declare model for a particular
log (but we are happy to demonstrate the miner on other concrete data).

Processes that are not perfectly understood or have little structure, are often easier mod-
eled using a declarative rather than a classical imperative approach. In a declarative ap-
proach, constraints between tasks are described rather than for each task specifying the
next task to execute. Declarative modeling is a more recent and less matured approach,
which has so far not found widespread application in industry yet. Declare [7] is an
emerging language studied in academia over the last decade.

Existing miners. Typically the complexity of checking a constraintis O (m - (}) - k!),
where m is the number of traces in the log, n is the number of different events in the
entire log, and k is the number of parameters to the constraint (number of ways to as-
sign n events to k ordered parameters — ,, P, = (2) - k! — times the number of traces k).

* Support from the Basic Research Program of the National Research University Higher School
of Economics is gratefully acknowledged.

For the BPI challenge log from 20123 [1] the parameters are m = 13,087 and n = 24,
yielding from 314,088 (k = 1) to 66,749,981,760 (k = 5) checks. ProM 6 has a
Declare miner which systematically checks each constraint and returns a model com-
prising constraints satisfied for a certain percentage of traces. Due to the complexity,
this miner employs a couple of tricks, including forcing users to pick among interest-
ing constraints [3], employing a priori reduction to avoid considering rarely occurring
events [3], and considering the relationships between constraints to avoid mining some
constraints [4]. Even so, the ProM Declare miner did not mine a single constraint such
as succession in 24 hours.

The assumption that rarely occurring
events need not be checked is crucially

dependent on the notion of support, i.e., W }®"O

Low risk

that a constraint is only interesting if it High risk
is triggered. This is problematic in a case
such as Fig. 1. There we have a hypothet- Fig. 1: Model with a branch.

ical XOR-split and -join. If the top path

is chosen, constraints in the bottom part are never triggered, so their support is low,
even though those are arguably more interesting. If we want to mine without enforcing
high support, we cannot use a priori reduction. Exploitation of relationships between
constraints is problematic if we want to display a simpler model, e.g., by removing
constraints redundant due to transitivity. The problem here is that, generally, support of
a removed constraint cannot be derived from support of the remaining constraints.

The MINERful miner [2] uses regular expressions and global computations to mine
constraints. First statistics are computed for the log and subsequently constraints are
mined from these. The MINERful miner can mine all constraints for the 2012 BPI
challenge log in approximately 26 seconds, but only supports a subset of all constraints.
Computation of constraints from statistics makes it difficult to add new constraints, as it
is necessary to develop and prove rules for doing so. For example, it is far from obvious
how to extend this approach to also mine choices.

Removing all assumptions. Instead, we prefer to mine first and, subsequently, filter
with full information. Not only does this avoid the problem of support and branches,
it allows us full knowledge of all constraints, so we can remove redundant constraints
more intelligently using simple patterns. Finally, this allows us to provide users with a
slider and let them interactively (and locally) balance between simplicity and support.

Efficient preprocessing. We first make sure that our base mining algorithm is efficient.
We transform the log into a simple array of arrays of identifiers instead of actual events.
Declare constraints have a (finite) LTL semantics, which can be represented as a finite
automaton. Using a precomputed mapping between event identifiers and automaton
labels, we obtain a fast and memory-efficient replay of the log. We can mine most
of Declare’s 34 constraints (excluding 2 with four or more parameters) on the BPI
challenge log in 249 seconds using 12 MB of memory (including storing the log and all

3 We use the 2012 log as the 2013 log is much simpler with 819 < m < 7554 and 3 < n < 4.

results). We mine the same set of constraints as MINERful in 32 seconds (vs 26). This is
done automatically, making it easy to add constraints by entering their LTL semantics.

Symmetry reduction. We observe that some Declare constraints are symmetric in
their parameters; this is, for example, the case for the choice 1 of 2 constraint. By
only checking these constraints for one ordering of parameters, we halve the num-
ber of checks (and time needed). In general, this reduces the checking complexity to
0 (m () k= [Lesesa |sg\!), i.e., divided by the faculty of the size of each sym-
metry group sg € SG. The number we divide by tends to get larger exactly when the
traditional approach has problems (i.e., when k is large). For example, the most com-
plex standard Declare constraint is choice 1 of 5, which yields the aforementioned
67 billion checks for the BPI challenge log. As this constraint is symmetric in all pa-
rameters, this is reduced to 556, 249, 848 checks. Our implementation can mine all 34
Declare constraints for the BPI challenge log in 287 seconds (so the reduction allows
us to check all constraints in the same amount of time we could only check the easy
ones before). We now tie with MINERful at 26 seconds (the reason for less reduction
is that MINERful does not handle any constraints where the reduction is large). For
the standard constraints, we never have more than two symmetry groups, which means
that as number of parameters go up, so does the reduction. We compute the symmetry
reduction automatically, making this compatible with any added constraint.

Parallelization. As our miner is simple, we do not need any global computations so
far. This means our miner is easy to parallelize. We can parallelize in the number of
constraints or the number of traces. With 34 constraints, we can mine each individually.
Declare constraints are not equal however, and indeed the choice 1 of 5 constraint is
responsible for more than 50% of the total time spent on the BPI challenge log, making
this strategy less compelling. As we generate the parameters for the mining determin-
istically, we can have each computation thread take care of this on its own, alleviating
this (but making mining more complex). A simpler approach, and the one we have cho-
sen to go with, is to split the log and have each computation thread handle part of the
log. As we have abolished a priori reduction, we do not need any central coordination
in this case, and our overhead is so small (< 1 second) we can just run the full min-
ing process for each part of the log. Our results can be directly added, making mining
scalable nearly infinitely (with constant overhead for preprocessing and aggregation).
This has the added benefit of allowing each thread to use less memory (it only needs
to store its own part of the log). Employing this allows us to mine all constraints of the
BPI challenge log in 174 seconds (using two cores; the reason scalability is not com-
pletely linear is due to the feature Turbo Boost on modern CPUs allowing one core on
a multi-core system to run at extra speed if other cores are inactive). We beat MINER-
ful at 19 seconds (vs 26). We have implemented this in a parallel setting (i.e., multiple
CPU cores on a single machine), but it is equally applicable in a distributed setting as
synchronization is only necessary for aggregating results at the end.

Super-scalar mining. Using the automaton representation from [6], it is possible to
check more than one constraint at a time. This comes at a cost of memory as the com-
bined automaton is larger than the individual automata, sometimes even exponentially

so, though in practise the size is always less than 1,000 states. We call this super-scalar
mining, using the term from CPUs where it refers to the ability to execute multiple
instructions simultaneously. We do not wish to break our symmetry reduction from be-
fore. Thus, we build a directed acyclic graph with constraints for nodes and arcs from
one constraint to another if the first implies the second holds. We then group by taking
each leaf and iteratively grouping it with all predecessors and successors not extend-
ing the set of parameters and not having incompatible symmetry groups (e.g., splitting
them up so [[4], [B]] is not compatible with [[A, B]]—it would split up the symmetry
group—but the other way around does hold—the symmetry group is already split). The
rationale is that adding new parameters increases complexity as does splitting symmetry
groups. Adding a constraint with larger symmetry groups does not increase complexity,
while the constraint with larger symmetry groups could be checked more efficient on its
own, adding to the super-scalar group comes at no extra cost. We check all such maxi-
mal groups. We compute this automatically and tailor it to any constraints selected and
any new constraints added. Using super-scalar mining with parallelism, we can mine the
entire BPI log in only 57 seconds and even without parallelism, we can mine the entire
log in just 92 seconds. We beat MINERful on their constraints at just over 4 seconds, an
improvement of a factor 6 over 26 seconds. On a server with 8 slower processing cores,
MINER(ful still runs in 26 seconds, whereas UnconstrainedMiner runs in 30 seconds on
the entire set of constraints. Using hyper-threading, the UnconstrainedMiner and MIN-
ERful tie in running time with the UnconstrainedMiner mining more and more complex
constraints. The gain obtained by super-scalar mining is independent of the log.

8.0.6 UnconstrainedMiner
Log | /Users /michael/Downloads /financial_log.xes | | Browse.. | (<>"A"]| (<> "B || (<
Output | /Users/michael {Downloads /mined_data.txI| | Browse.. |
Existence Negative Ordered > \
Constraint Mine Support
choice 1 of 2 [()
Choice1or3 Ty g
choice 1 of 4 ™)]
choice 1 of 5 [+ O
choice 2 of 3] O “otherwise A
exc:uswe c:cvi(e . %)] <0: <0 <1 A
exclusive choice 1 of 3 O .
0 — sl: sl -1 -
800 exclusive choice 2 of 3] J
, Not co-existel
Found parameters [[AL, (B[as| | | All | | Ignore Support | | None | 7
Constructed colored automat| s Not co-existel
Found parameters [[A], [B]] as f .
Mined 20 constraints in 1248Minimal matches (%} 0.0 !
Preparing to mine constraint T . requ!red
Constructed colored automat|Minimal support (%) 0.0 required
Found parameters [[A, B, C,
Mined 20 constraints in 1255 A q
Preparing to mine constralng ™ Super-scalar mining |2 computing threads | Start |
Constructed colored automat

Found parameters [[A, B, C, D,

rting results
Found 482827 possible constraints

Fig.2: Screen shots of our miner running.

Usage. In Fig. 2 (top) we see a screen-shot from the configuration of the mining
process. All options are saved between runs, making mining from scratch a breeze;
the number of threads is computed automatically as the number of cores in the local
computer. We can manually inspect the LTL semantics and constraint automaton at the
right. In Fig.2 (bottom left) we see the tool in the process of mining. The top progress
shows overall progress, and the next progress bars show overall and individual con-
straint progress for each computation thread. The text area is continuously updated with
information about what each thread is doing. At Fig. 2 (bottom right), we see the end
result along with total processing time. The end result is a list of all mined constraints,
which can be imported in Excel for further processing, as shown in Fig. 3.

Maturity, availability, screencast. Our miner is very new but so far very robust, and
uses the same underlying library as the Declare tool (for representing automata) and
ProM (for reading logs). The tool is written in Java and runs on all platforms supported
by Java. We are currently employing the tool to construct hybrid models containing
both declarative constraints and imperative modeling in a block-structured manner.

Our miner is available from tinyurl.com/declareminer along with source
code. That page also contains a screen cast of simple use of the tool.

References

[

. DOLI: 10.4121/uuid:3926db30-1712-4394-aebc-75976070e91f

2. Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery of declara-
tive workflows. In: CIDM 2013. IEEE (2013)

. Maggi, EM., Bose, R.PJ.C., van der Aalst, W.M.P.: Efficient discovery of understandable
declarative process models from event logs. In: CAiSE 2012. LNCS, vol. 7328, pp. 270-285.
Springer (2012)

. Maggi, FM., Bose, R.P.J.C., van der Aalst, W.M.P.: A knowledge-based integrated approach
for discovering and repairing declare maps. In: CAiSE 2013. LNCS, Springer (2013)

5. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Controls to Users.
Ph.D. thesis, Beta Research School for Operations Management and Logistics, Eindhoven
(2008)

6. Westergaard, M.: Better Algorithms for Analyzing and Enacting Declarative Workflow Lan-
guages Using LTL. In: Proc. of BPM. LNCS, vol. 6896, pp. 83-98. Springer (2011)

7. Westergaard, M., Maggi, FM.: Declare: A Tool Suite for Declarative Workflow Modeling

and Enactment. In: Business Process Management Demonstration Track (BPMDemos 2011).

CEUR Workshop Proceedings, vol. 820. CEUR-WS.org (2011)

w

~

_| A C D E F G H 1 J K L M
matches support left initial entered unad returned to i is initial at er parameterl parameter2 parameter3 parameter4 parameter5

2 |response 13087 13087 13087 13087 0 13087 A_SUBMITTE A_PARTLYSUBMITTED
2 |alternate suc 13087 13087 13087 13087 0 13087 A_SUBMITTEA_PARTLYSUBMITTED
4 |chain succes: 13087 13087 13087 o 13087 13087 A_SUBMITTE A_PARTLYSUBMITTED
5 |alternate pre 13087 13087 13087 13087 1] 0 A_SUBMITTE A_PARTLYSUBMITTED
6 |alternate pre 13087 7635 13087 7635 5452 0 A_SUBMITTE A_DECLINED

7 |alternate pre 13087 7635 13087 7635 5452 0 A_PARTLYSU A_DECLINED

8

alternate pre 13087 7367 13087 7367 5720 0 A_SUBMITTEA_PREACCEPTED

Fig. 3: The mining results imported into Excel.

wOIS-paan — Discovering Performer-Activity
Affiliation Networking Knowledge from
XPDL-based Workflow Models

Hyun Ahn', Minjae Park?, and Kwanghoon Pio Kim'

1 Collaboration Technology Research Laboratory
Department of Computer Science
KYONGGI UNIVERSITY
e-Mail: {hahn, kwang}@kgu.ac.kr
http://ctrl.kyonggi.ac.kr

2 BISTel, Inc.
e-Mail: mjpark@bistel-inc.com
http://wwuw.bistel.co.kr

Abstract. In this demo-paper, we implement a workflow-supported or-
ganizational intelligence system, which is named as wOIS-paan. The ma-
jor functionality of the current version of the system is to explore “work-
flow performer-activity affiliation networking knowledge” from an XPDL-
based workflow model, and to visualize the knowledge in a graphical form
of the force-directed-layout of the Prefuse toolkit. The implemented sys-
tem operates under a series of algorithms discovering, analyzing, mea-
suring, and visualizing workflow performer-activity affiliation networking
knowledge from an XPDL-based workflow package®, which represents in-
volvement and participation relationships, after all, between a group of
performers and a group of activities. The eventual goal of the system is to
measure and visualize the human resource allotments and contributions
in enacting a workflow procedure (or a group of workflow procedures) at
a glance. Also, in terms of the scalability of the system, it can be exten-
sible to show the organization-wide workflow procedures. Conclusively,
the wOIS-paan system ought to be a very valuable tool for the BPM and
workflow design and operational performance analyzers and consultants.

Keywords: workflow-supported social networking knowledge, workflow affiliation
networking knowledge, organizational knowledge discovery, workflow intelligence

1 Maturity

In general, a workflow management system consists of two components, the mod-
eling component and the enacting component. The modeling component allows

3 A group of workflow models is defined as a workflow package in the WfMC’s stan-
dardization terminology.

a modeler to define, analyze and maintain workflow models by using all of the
workflow entities that are necessary to describe work procedures, and the en-
acting component supports users to play essential roles of invoking, executing
and monitoring instances of the workflow model defined by the modeling compo-
nent. Especially, from the organizational intelligence point of view, the modeling
component deals with the planned (or workflow build-time aspect) knowledge
of organizational resources allocations for workflow-supported operations, while
on the other the enacting component concerns about the ezecuted (or work-
flow run-time aspect) knowledge of organizational resources allotments for the
workflow-supported operations. With being connected to these view-points, there
might be two issues, such as discovery issue[3] and rediscovery issues[4], in terms
of the organizational knowledge discovery activities. In other words, the work-
flow knowledge discovery issue has something to do with exploring the planned
knowledge from workflow models defined by the modeling component, and the
workflow knowledge rediscovery issue is to explore the executed knowledge from
the execution logs of the workflow models. Conclusively, the demo-system, wOIS-
paan, is able to discover, analyze, and visualize the planned knowledge of workflow
performer-activity affiliations and allotments on a workflow model or a group of
workflow models.

Availability of the System. The system’s development environments are
listed as followings. Particularly, we suppose that the XPDL workflow package’s
release version is XPDL 1.0. So, it is necessary to be refurbished to support
the recently released version of XPDL 2.0 or more, which reflects the BPMN*
graphical constructs.

Operating System: Windows 7 Ultimate 64bit

— Programming Language: Java Development Toolkit v.6.0
XPDL Version: XPDL 1.0

— Development Tool: Eclipse Indigo Release 2

Libraries: Awt/Swing, Prefuse, Xpdl

However, the system’s execution environments are any types of operating
systems, and the executable system is available on the website of the authors’
research group, the collaboration technology research lab, at the department of
computer science, Kyonggi University, https://ctrl.kyonggi.ac.kr/wois.html, and
anyone can download the executable system and its demo workflow models in
XPDL after registering as a member of the wOIS-paan’s user group.

Use Cases and Features. The workflow performer-activity affiliation network-
ing knowledge can be not only discovered from a workflow model defined by the
modeling component, but also rediscovered from its execution event logs stored
by the enacting component. In this demo-paper, we focus on the discovering issue

4 BPMN stands for Business Process Modeling Notations, and it is released by OMG’s
BMI (Business Modeling & Integration) Domain Task Force.

of the workflow performer-activity affiliation networking knowledge from a work-
flow model. That is, the system’s use cases are related with the discovering, an-
alyzing, and visualizing features of the planned knowledge of performer-activity
affiliations and allotments. The major use cases and their crucial features are
listed as the followings:

— Discovery Use Case : Import XPDL-based workflow models or packages, Dis-
cover the wOIS-paan knowledge, and Generate the bipartite matrix from the
discovered knowledge

— Analysis Use Case : Calculate the degree centrality of each performer and
each activity, and Measure the group-degree centrality of the corresponding
workflow models (or packages)

— Visualization Use Case : Visualize the graph nodes and edges between per-
former and activity in a graphical form of the force-directed-layout of the
Prefuse toolkit

Knowledge Visualization Functionality

visual Graphs {Vlsual Nodes { P-A Affiliation } Knowledge Analysi
Generator Network Visualizer 2 ysis :
Reposttory Functionality Charts ||

4 Repository

— L
XL ased _)‘ wOIS-paan .| statistical Data }__{ Chart]
'orkflow Mode! : H |
Reposttory Window-panel Controller | Analyzer Generator |,

y

‘[xepL B1part1te Matrix Bipartite Matrices
: Parser Analyzer Repository

Bipartite Matrix Generation Functionality

Fig. 1. Architectural Components of the wOIS-paan Knowledge Discovery System

The essential functional components being comprised of the system are bi-
partite matrix generation functionality[2], knowledge visualization functionality,
and knowledge analysis functionality, and these components also can be sys-
tematically implemented by using the Java programming language. Fig. 1 illus-
trates a system architecture of the implemented wOIS-paan knowledge discovery
system, which is made up of four groups of architectural components—wOIS-
paan Window-control, knowledge visualization, bipartite matrix generation, and
knowledge analysis components. Particularly, the XPDL parser of the analysis
components group takes charge of generating a performer-activity bipartite ma-
trix from an XPDL-based workflow package®, and the social graph visualizer of

5 The system is able to handle a group of XPDL-based workflow models as well as
individuals of the workflow models.

the visualization components group depicts the wOIS-paan knowledge as a bi-
partite graph transformed from the bipartite matrix. In terms of the wOIS-paan
knowledge analysis aspect, the system is theoretically backed up by the extended
versions of the workload-centrality analysis equations[l], such as actor-degree
centrality analysis equations and group-degree centrality analysis equations, so
as to mathematically analyze a workflow performer-activity affiliation network
model discovered from an XPDL-based workflow package.

2 Significance to the BPM field with a Case Study

As an operational example, we try to discover wOIS-paan knowledge from the
XPDL-based pseudo-workflow packages arranged in Table 1. We suppose that
there are two pseudo-workflow packages, each of which has two workflow mod-
els and three workflow models, respectively, and all fifty activities have been
conducted by all of the sixteen performers. Consequently, the system is able to
successfully discover a wOIS-paan knowledge from the pseudo-workflow pack-
ages, and visualize the discovered knowledge as shown in the captured-screen of
Fig. 2. In the visualized wOIS-paan knowledge as colored bipartite graph, boxes
and circles imply performers and activities, respectively, and the bold-colored
box and its linked circles represent the performer, Alan, and his affiliated 11
activities, such as 1,09, 10, X16, (21, (26, (X33, (36, (X39, (43, V5(Q.

Table 1. Specifications of the XPDL-based Pseudo-workflow Packages

Workflow Package Workflow Model Workflow Activity Workflow Performer
HR-Dept-Workflow- Hiring-Workflow-Model a1 ~ a1 (16 Activities) Jeff, Ed, Christiaan,
Packagel Emily, Adam, Cynthia,
Performance- a1z ~ ass (9 Activities) Joylette, Amanda,
Management- Nathaniel, Bryan,
‘Workflow-Model Tamara, Ashley, Ryan,
Alan, Chris, Holly
HR-Dept-Workflow- Employee-Training- age ~ aszg (11 Activities)
Package2 Workflow-Model
Department- ag7 ~ auq (8 Activities) The same performers in
Management- the Packagel
Workflow-Model
Salary-Negotiation- ags ~ aso (6 Activities)

Workflow-Model

3 Conclusion

In this demo-paper, we suggested a possible way of projecting a special affilia-
tion knowledge of the workflow-supported affiliation relations (involvement and
participation behaviors) between workflow-based people and workflow-based ac-
tivities by converging the social network techniques and the workflow discov-
ering techniques. As a consequence of this suggestion, we have newly defined

Q ris

TaEm'ara
Q
312 8
Qe
Qe
Qe Q,
i
hia
ab 'jeff 546 LTE‘
o Nathaniel d
ELY q (% a1
3 7(;44 Chnistiaan, 927 517
al3
@
a5
al9

Fig. 2. Visualization of the Discovered wOIS-paan Knowledge by the System

an organizational intelligence of workflow performer-activity affiliation network-
ing knowledge, and implemented a knowledge discovery system to explore the
performer-activity affiliation networking knowledge from an XPDL-based work-
flow package. Conclusively, we have successfully verified the implemented system
through applying to two pseudo-workflow packages and visualizing the discov-
ered wOIS-paan knowledge from them.

Acknowledgement. This research was supported by the Basic Science Research
Program (Grant No. 2012006971) through the National Research Foundation of
Korea.

References

1. David Knoke, Song Yang, SOCIAL NETWORK ANALYSIS - 2" Edition, Series:
Quantitative Applications in the Social Sciences, SAGE Publications, 2008

2. Haksung Kim, et al.,“A Workflow Affiliation Network Discovery Algorithm,” ICIC
Express Letters, Vol. 6, No. 3, pp. 765-770, 2011

3. Kwanghoon Kim, “A Workflow-based Social Network Discovery and Analysis Sys-
tem,” Proceedings of the International Symposium on Data-driven Process Discovery
and Analysis, Campione d’Italia, ITALY, June 29 July 1, 2011

4. Wil M. P. van der Aalst, Hajo A. Reijers, Minseok Song, “Discovering Social Net-
works from Event Logs,” COMPUTER SUPPORTED COOPERATIVE WORK,
Vol. 14, No. 6, pp. 549-593, 2005

	paper_2
	paper_3
	paper_4
	Enacting Complex Data Dependencies from Activity-Centric Business Process Models
	Introduction
	Modeling Complex Data Dependencies in BPMN
	Tool Architecture and Implementation
	Conclusion

	paper_5
	An Extensible Platform for Process Model Search and Evaluation-.5em

	paper_7
	Worklr: Supporting and Capturing Business Processes from Knowledge Workers

	paper_8
	paper_10
	paper_11

