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Abstract. The data ontologies in a form of UML Class diagrare discussed
in this paper. We call the data ontology granufaits corresponding instance
diagrams (data) can be divided into separate pzailed slices. A typical
example of granular ontologies is process ontokgihere slices are run-time
instances of these processes. Based on the notigramdilarity a graphical in-
place query language is presented in this paper.pfbposed language is easy
to use by domain experts that are not IT specialBesides that it has a very
efficient (linear) execution time for answering qgas.
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1 Introduction

While working with models, we have observed anrggéng phenomenon — data can
be often divided into separate parts naturally.sEhearts have their own semantics,
which we would like to use while querying the modélithe division of the data
ontology is well formalized, it is possible to déye a query language for the
ontology that is both very efficiently executabledavery convenient and easy-to-use
for the end user being the domain expert, not aspdcialist.

In this paper we specify a set of ontologies, fdrioclh we can define a natural
division in parts. We call these ontologies granuad define the granularity
principles very formally in Section 2. After thate describe the query language in
Section 3, which we have developed for granulaologies. Here we lay out the
principles and primitives of the language, as wslbefine its time-efficiency.

We, however, understand that not all the real woritblogies fall into the class of
granular ontologies. Therefore, in future we planektend the notion of ontology
granularity a bit in order to widen the class ofrgular ontologies by extending the
guery language at the same time. The main objetliateneeds to be taken in mind in
the process is that the query language must pegsrtime-efficiency.



2 Granular Ontologies

In this paper we inspect data ontologies in a famJML Class Diagrams. More
precisely, we use only a subset of UML Class Diaggr&ontaining classes, oriented
associations, typed attributes and generalization.

From syntactic point of view our data ontology laage is also a subset of the
OWL (see the comparison in [1]). From the semamtinit of view there is, however,
a significant difference — while OWL uses the op@rid semantics, we exploit the
closed-world semantics. Our proposed data ontolagguage is a convenient mean
for describing data of concrete domains, e.g.sthecture of hospital registry. A very
simple example of a data ontology describing sfuagrams is seen in Fig. 1 (we use
a traditional shorthand notation for associatiomgyich are oriented in both
directions).

n:ﬁgyg:z?]ram 1rogram self.program.course ->
: J ,1includesAll(self.course)
1'|program studentl //
Student
id: Integer
coursel* name: String
age: Integer
Course

name: String course *|student

creditpoints: Integer

*

Fig. 1. The Study program ontology.

We will depict the concrete data of the ontology legal instances of the
corresponding class diagram. The specificationegality can be performed either
only through multiplicities (which must always batisfied), or additionally through
OCL expressions (as in Fig. 1) or in any other ¥&sen using the natural language).

Let us assume we have a data ontology in a forliMiE Class Diagran® and a
classA belonging to the ontolog®. Let us also assume we have some instgnoé
the diagran®. ¢ consists of two kinds of elements — class instaruadledobjects
and association instances calléidks. Since we only operate with oriented
associations, also the links are oriented. Theeefue can perceiv€ also as an
oriented graph. Let us now take an arbitrary instanof the clasgl such thatee@
(in shorthand notatiom:eAn@). We can now introduce a concept cfliae respective
to the objecte within instanceg being the maximal subgraph gf(let us denote it
with §(«,§)) such thatS(,g) consists of the objeat and all those objects that are
reachable from via edges.

When we inspect some data ontoldgyit always comes together with the set of
its legal instanceflys. We will now call a clasge® a Master class iff the two
following statements are satisfied:

1) V@eUNVNxeeANGYyeANG(a#y = S(x,G)S(y,G)=9)
2) VG eU, | JS(x,6)=6

xeANG



The first statement states that all the sliceseetsge to instances of the Master
class are distinct, that is, they do not have commiojects. The second statement
states that these slices cover the whole instgnce

There is only one Master class in the Study Progomtology seen in Fig. 1.
(given the specified OCL constraint) — the clasgutiy program”. Indeed, if we take
an instance of the class “Study program”, its retpe slice covers all the courses of
that program together with its students. Since®@@l constraint prohibits for any
student to take course from a different progranm tha is attached to, it is clear that
respective slices of instances of the class “Spudygram” are distinct thus dividing
any legal instance of the class diagram into slices

Data ontologies (together with the legality constis), for which there exists a
Master class, are callegtanular ontologies. We depict the Master class with a bold
frame in granular ontologies as can be seen inFiin case there is more than one
Master class in an ontology we just choose onea}hEuin this paper we inspect only
granular ontologies.

The main objective of dividing the instance graptoislices is that thus we could
form natural queries over the instance easily. &the data are naturally divided into
slices, we can formulate questions either withimsaoncrete slice, or over a set of
slices. For example, we can take one concrete sieeified by the name of the study
program and count the sum of credit points of alirees of that program (e.g., the
question “How much credit points are to be collddtethe Computer Science Master
study program?”). Another example — we can selesg¢taof slices specified by the
age of the students and see, in which study progthese students are assigned to
(e.g., the query “Please, give me the list oftal programs, in which there are at least
one student older than 30 years!”). The meansdaond@lating such kind of queries
and getting the results are described in the nesti@.

It must be mentioned that the class of granulaologtes is relatively rich. We can
see, how the division into slices becomes appanecdse of static class diagram seen
in Fig. 1. However, the situation with divisiondnslices is especially characteristic, if
the data ontology describes some processes, atahdes of the ontology are run-
time instances (transactions) of those processesd @xample of such process is the
shopping basket process widely used in the fieldladth mining. However, in this
paper we will use another example as a base -calipirocesses in a hospital. For
describing such processes a special languageMwD is introduced in authors’
paper [2].

Formally, the language BbMoD is defined as a profile on UML Class diagrams
according to Fig. 2 (OCL constraints are omittedelheAn example clinical process
describing the Emergency department managemeeerisia Fig. 3.
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Fig. 2. The UML profile defining thelEDMOD language.
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On the basis of Fig. 3 we will now shortly expldime used notations. As is
described in the profile, Activities are dividedanthree categoriesStart Activity
e.g., “Patient enters the hospital” (called alse kaster Activity) is depicted with
bolder frame in Fig. 3.Aggregate Activities(consisting of subactivities), e.g.,
“Clinical process in ward” are depicted with dasHeames (see Fig. 3). Simple
activities are all the other activities, e.g., #utivity “Doctor sets diagnosis” in Fig. 3.
As is seen in Fig. 3, some activities are depietét a multiple frame. That means
that several instances (more than one) of thedétes can appear in one slice.

Patient enters the
hospital
date&time: Date Timé¢]

surname: String
age: Integer

Doctor at emergency
department ealuates

patients medical needs
emergency_doctor: String

Patient consulted by
second doctor
consulting_doctor: String

\/ Patient treated at

emergency departmert

Patient admitted to
hospital ward

date&time: DateTime

ward_code: wCode

Patient scheduled
for transfer to
another ward

ward_code: wCodeg

procedure_code: pCode
cost: Real

sesssosdessy
1 Clinical process in 1 =2
! ward !

s

Doctor sets diagnosis Doctor assigns h
diagnosis_code: dCode procedure

date&time: DateTime

procedure_code: pCode

date&time: DateTime | hospital _
procedure_code: pCode date&time: DateTime,

Procedue is executed ) Patient leaves the
cost: Real ) total_expenses: Real,

Fig. 3. An example of MEDMOD process — the Emergency department managemermsstoc

Associations are divided into four categories:

1) Follows. This type of oriented relation can be klthed between two Activities
A and B meaning that Activity B can only start affsctivity A has ended. It is
allowed for several Activities to follow the sametiity — the XOR semantics is
implied in this case meaning that only one of thasggoing flows can be
executed. We denote this situation by introducingnew diamond-shaped
graphical element seen in Fig. 3.

2) Composition. A composition between two Activitieancbe established, if one
Activity (called the Aggregate) semantically comtsiof one or more other
Activities (called the Components).

3) Interruption. If there is an outgoing Interruptitow from the Aggregate Activity
A to some Activity B, it means that the Activity i&8 suspended, when the flow is
executed (i.e., when the Activity B needs to betsty meaning that it can no
more create new Component instances (already dre@tenponent instances
continues to execute normally).



4) Extension. Extension is an oriented relation betwégo Activities A and B
meaning that Activity B can be called at some ticheing the execution of
Activity A. The call is triggered, when some prddefi condition occurs. The
condition is described as an Extension point namdeadtached to the Extension.
The reason behind developing a new language wadsthbatraditional process

modeling languages have found a limited use inhth&pital settings (see, e.g., [3],

[4]). One of the reasons behind this delay has Itleenack of clear definition of the

sequence of activities that are carried out in@dihprocesses.

Since a MDMobD diagram is formally a Class diagram accordingh® profile
seen in Fig. 2, we can talk about instances of dhéss diagram, and we can
investigate the notion of granularity ofBdMoD diagrams. The Master class comes
out very naturally in this case, because the pmodésgram always has the starting
action, which can serve as the Master class. Thelgsion is that the ontology given
by the MEDMOD language is granular.

Since the instance graph is again divided intesli@ssuming we have formulated
the instance legality criteria), we can query ther by specifying one concrete slice
or several similar slices (e.g., “What is total expes for the patient Wolf?"), or over
a set of slices (e.g., “What is the average agdl gfatients treated by the doctor Stan
Lee?").

The query language described in the next sectioexidained based on the
MEDMOD example.

3 Query language

If an ontology isgranular — its underlying instance graph can be divided int
slices,then we can define simple and efficient means efyjang the instance graph.
In this Section we describe an ontology based gecapm-place query language that
is easy to use even by non-IT specialists anddhaltrof a query can be retrieved in
the linear timeD(n) wheren is the number of objects in the instance graph.

Since instance graph has been divided into slicesrdingly to some granular
ontology, questions can be asked accordingly tb dh#ology. Building a query has
two main activities filtering andretrieving answers. Filtering, actually, is setting
simple constraints on objects. Constraints cangbeis any attribute of any class in
the ontology. Once a constraint has been set,niétarice graph is reduced to those
slices which contains at least one object that meetscthestraint. Let's call ithe
filtered instance graphWe allow to retrieve answers for two types of sfiens, the
first has an answer as a single number, &tpw much did the Dr. Jekyll's patients
cost?” the second has an answer as a list of objects, “BMpich patients with
Pneumonia had no X-ray?”

Very important aspect of the query language is itlkatoncrete syntax is based on
the data ontologies language used to specify tiielagy. An example of a query
based on the EbMoOD language is given in the Fig. 4. The real-worl@raples, of
course, are not as tiny as the given example -Jysitients. An average hospital in
Latvia (500 beds hospital) treats about 30 00Ceptgiper year [5]. In order to better
understand the query language we give an insigthteiprocess of building queries.



o datetime|age | surname |
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Fig. 4. An example of query based oredMobD — the emergency department management.

Let’s assume that we have obtained the instangghgranforming to the given
ontology (MeDMoOD diagram). We leave behind the problem of gettinta deom
hospital’s information system. The person in insérée.g., physician or manager)
starts with a query diagram that is based on thengMeDM oD diagram — the query
diagram has the same layout and elements as HmMD diagram. It describes the
familiar for the physician process of the emergedepartment management in the
hospital. By default the query diagram contains dsoxndicating the number of
objects of each class in the instance graph. (8sed4Fboxes labele@oun). These
are answers to simple questions likdow many patients have been treated at
emergency department®r “How many procedures have been executed&hould
be noted that every answer (result) is depicted bex in the query diagram. Thus
ontology, constraints, results - everything cansben graphicallyn-place - in the
same diagram. The same principle is used by spneatiapplications — the user can
make changes in any cell of the spreadsheet anehabshe immediate effects on
calculated values. In contrast most of query laggeae.g., SPARQL or SQL, have
separate representations for data model, querydated Now one can start filtering
data by pointing to a class in the diagram andcselg an attribute. Simple
constraints on attribute’s values can be set — emisgns likeequals, greater than
less than,etc., can be made to the constants of approptigte. Following the



simplicity of spreadsheet applications, no morentlao constraints (comparison
operations) are allowed on each attribute. Bottstramts may be mandatory (logical
AND), or at least one of the constraints must bé (logical OR).

When a constraint on an attribute has been seinst@nce graph is filtered and all
answers (result boxes) in the diagram are reevaduand all boxes refreshed. Thus
the dynamic response to each step in constructidheocomplete query allows the
physician to see immediate reaction to every actibshortens the learning curve
greatly and reduces the number of errors — theybearecognized much earlier. This
effect is calleddirect manipulatiorinteraction mechanism [6].

As it was mentioned earlier, all answers were defias boxes in the diagram. At
any moment these boxes can be removed and new bamd® added. Possible single
number answers ar&lumber of objects of given type in the filteredanse graph
Sum of values of given attribute in the filteredtamce graph, Average of values of
given attribute in the filtered instance graprhe only allowed answer that is not a
single number ishe list of objects (with attribute values) of givigpe in the filtered
instance graph(See Fig. 4 for all types of answers).

Let’s define the constraint, the query and the @mswore formally. Assume that
we have a granular ontolog® which consists of classes which in turn contains
attributes. Since the ontolog® is granular, there exists some Master clés9.
Before one can query the instance grgplt must be divided into slices respective to
objects of clasgl. Thus the queries must be executed over set ofomeriapping
slicess.

S={|s=8(x,Q) L x4}

Slices consist of objects with associated key-vdikts, where keys are attribute
names and values are attribute values. The ontalleggrmines possible attributes
and their range of values (type) for objects ofgiclass.

Leta be an attribute of some claB&? and let’e D be the type of the attribute
Thenconstraint on attribute a is the following Boolean expression:

1) One of the simple comparisonsz= const « = const « < const whereconsk/;
2) Conjunction and) or disjunction ¢r) of two simple comparisons, €.g4<10 and
a>5".

Such constraint can be checked on an object of @ai; a time that consists of
time that is needed to locate the value of the mjiagribute in the object’s list of
attribute values and time that is needed to doahctwmparison and logical
operations. Thus, the total time needed to chedorstraint on a single object
depends only on the size of the given ontology anglementation (coding) of
objects. Therefore for each ontology and its immatation there exists such constant
€, that a single constraint can be checked on desotgiect in time less thad

As it was mentioned before, the physician is alldwe set just one constraint at
once. After the constraint is set it is evaluatetmediately. Let's define more
precisely, what does it mean to evaluate a comsiain attributex of class® on the
instance graph (set of slic8sand obtain the filtered instance graph — the subfS.

The main idea is to go through all slices and ctatkbjects in particular slice. If
there is an object of the given type and the caidi¢ evaluates térue on that object,
then the slice is added to the filtered instan@plyr It is easy to see, that in the worst



case all objects in instance graph have to be @ukttkevaluate the constraint, but no

more, because slices are non-overlapping. Howetecking a single object does not

require more time than the constant C, thius total time needed to evaluate a

single constraint on the instance graph @ is O(n), where n is the number of

objectsin @.

The completejuery Q is the ordered set of constraints. The execwufadhe query
starts with evaluation of the first constraint Imetset and continues with gradual
evaluation of next constraints on the result of finevious. As it was mentioned
above, the typical number of patients treated im@rage hospital in Latvia is 30000
per year. It would be the number of slices in thstance graph for the &MoD
example. Our experience and initial experiment$ witery language show that last
constraints in typical queries are evaluated onhsmaller filtered instance graph
comparing to the initial instance graph. It maywailus to predict that the execution
of complex queries would be efficient for instangeaphs even larger than
abovementioned 30000 slices.

Now we can define more precisely, wiaaiswers (result boxes) can be retrieved.
Once the filtered instance gragi has been obtained, here are possible answers:
1) Number of instances of given cla8sn the filtered instance grai#s
2) Sum of values of given attribugetr (in class®) in the filtered instance grag#s
3) Average of values of given attribuagtr (in class8) in filtered instance grap#S
4) List of objects of given clasB in the filtered instance gra#$

Just like in case of constraints, also retrievimgaaswer does require a single
inspection of an object in the instance graph. Tthestotal time to retrieve an answer
on the instance graph is O(n), wheren is the number of objects . It should be
noted that the query language may be extended wtitlhhss of efficiency by other
means that also can be evaluated in the linear, nge, retrievingverage number of
instances of given type per slidétering slices by number of instancekgiven type
however we do not describe them all because ofdtions of space.

To sum up, the main advantages of the propose tpeguage are:

e The view on data through “glasses” of familiar datgly (e.g., everybody in the
hospital should know, how does it work!);

e The simple and easy-to-perceive means of settlteyifig conditions require no
more expertise than using spreadsheet applicafiteaviS Exce);

e The dynamic response to each step in constructidcheocomplete query — the
doctor sees immediate reaction to every actiorshtirtens the learning curve
greatly and encourages even non-experienced wstgsthis out;

e The efficiency of query execution. It is requirdt tlinear time regarding to the
size of the instance graph to filter and retriensveers.

4 Related Work

Graphical query languages have been interestitigetwesearchers as long as textual
guery languages exist. They have been developad atempt to fulfill the promises
of query languages to give an easy-to-use mearsdftiroc data analysis, because in



practice the powerful query languages (like SQLYyehaot became the mainstream
tools for non-IT users. Number of graphical (vigualiery languages for relational

databases emerged in the late 80-s of the preceniry [7, 8, 9]. However at that

time the implementation of graphical languages veas expensive and time-

consuming, not even thinking of usability issuest ttame along the involving non-IT

users. They tend to cover every feature of SQLamthe result of that we can name
just few examples of graphical query building todile, query designer in Microsoft

Access [10] that provides means to build SQL quegraphically.

At the same time the spreadsheet applications haea widely used by non-IT
users. They allow dealing with data in tabular fqma relations). One of the reasons
of the spreadsheet’s success story is the usageesaoncepts like cell, row, column,
etc., coming from real paper-based documents. Amotieason is the dynamic
response on every action that takes place in treadpheet — user sees all changes in
the document immediately, just like in the quemnydaage we propose in this paper.

Nowadays the graphical language workbenches [1JLalldv building graphical
languages quickly. Thus the merely forgotten qoestibout building visual query
languages is back on the timetable. Ontologies h@eeme popular in recent years.
Therefore, the attention has been shifted fromtioelal databases and ER models to
ontologies. Thus the query languages for ontolobge emerged and particularly
the graphical query languages for ontologies [18]. JAnd once again, these
languages focus on graphical representation ofjtiey, try to cover all features of
SPARQL and separate the representations of ontptpgry and data.

5 Conclusionsand Future Work

One of the main results of this paper is the notibigranular data ontologies. This
notion is defined very formally in the paper. Basedthe notion of granularity an in-
place graphical query language is then introduttaed.partly tested on real end-users
— doctors of a hospital. As the first experiences lIshown, the query language
possesses two essential features:

1) it is easily perceptible, and it is thereforeyeto use by domain experts that are not

IT specialists;

2) it has very efficient (linear regarding to theesof an instance graph) execution
time for retrieving answers to queries.

Many noticeable data ontologies turn out to be giam which means an efficient
qguery language can be developed for them. At theestime there are also lots of
other ontologies, which are not granular, and ymathibits us to use our query
language for them. One of the main directions of fmure research is to specify
another meaningful class of data ontologies, whiehgranular in a wider sense. We
will therefore extend the notion of ontology graamitly allowing one to use the
efficient query language for this class of ontobsgi The efficiency of the query
language will be preserved, i.e. the time evaluatibthe query execution will remain
linear. Other future research directions includg,dre not limited to the following:

1) To keep on improving the query language and to itesh a wider range of
potential end-users;



2) To continue optimizing the language implementatioorder to improve the time
needed for retrieving answers to queries formead deaéa containing about 30000
hospital transactions (our goal is to get the ansmkess than a second here);

3) To further investigate practical use-cases of qapr@ach in other areas outside
the context of a hospital.
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