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Abstract

This paper proposes a novel Bayesian method
for the dictionary learning (DL) based clas-
sification using Beta-Bernoulli process. We
utilize this non-parametric Bayesian tech-
nique to learn jointly the sparse codes, the
dictionary, and the classifier together. Exist-
ing DL based classification approaches only
offer point estimation of the dictionary, the
sparse codes, and the classifier and can there-
fore be unreliable when the number of train-
ing examples is small. This paper presents
a Bayesian framework for DL based classifi-
cation that estimates a posterior distribution
for the sparse codes, the dictionary, and the
classifier from labeled training data. We also
develop a Variational Bayes (VB) algorithm
to compute the posterior distribution of the
parameters which allows the proposed model
to be applicable to large scale datasets. Ex-
periments in classification demonstrate that
the proposed framework achieves higher clas-
sification accuracy than state-of-the-art DL
based classification algorithms.

1 Introduction

Sparse signal representation (Wright et al., 2010), has
recently gained much interest in computer vision and
pattern recognition. Sparse codes can efficiently rep-
resent signals using linear combination of basis ele-
ments which are called atoms. A collection of atoms
is referred to as a dictionary. In sparse representation
framework, dictionaries are usually learned from data
rather than specified apriori (i.e wavelet).
It has been demonstrated that using learned dictionar-
ies from data usually leads to more accurate represen-
tation and hence can improve performance of signal
reconstruction and classification tasks (Wright et al.,

2010). Several algorithms have been proposed for the
task of dictionary learning (DL), among which the K-
SVD algorithm (Aharon et al., 2006), and the Method
of Optimal Directions (MOD) (Engan et al., 1999),
are the most well-known algorithms. The goal of these
methods is to find the dictionary D = [d1,d2, ...,dK ],
and the matrix of the sparse codes A = [a1, a2, ..., aN ],
which minimize the following objective function

[Â, D̂] = argminA,D‖X−DA‖2F , s.t. ‖xi‖0 ≤ T ∀i,
(1)

where X = [x1, x2, ..., xN ] is the matrix of N input
signals, K is the number of the dictionary atoms, ‖.‖F
denotes the Frobenius norm, and ‖x‖0 denotes the l0
norm which counts the number of non-zero elements
in the vector x.

2 Related Work

Classical DL methods try to find a dictionary, such
that the reconstructed signals are fairly close to the
original signals, therefore they do not work well for
classification tasks. To overcome this problem, sev-
eral methods have been proposed to learn a dictionary
based on the label information of the input signals.
Wright (Wright et al., 2009), used training data as
the atoms of the dictionary for Face Recognition (FR)
tasks. This method determines the class of each query
face image by evaluating which class leads to the min-
imal reconstruction error. Although the result of this
method on face databases are promising, it is not ap-
propriate for noisy training data. Being unable to uti-
lize the discriminative information of the training data
is another weakness of this method.
Yang (Yang et al., 2010), learned a dictionary for
each class and obtained better FR results than Wright
method. Yang (Yang et al., 2011), utilized Fisher Dis-
criminant Analysis (FDA) to learn a sub-dictionary
for each class in order to make the sparse coefficients
more discriminative. Ramirez (Ramirez et al., 2010),
added a structured incoherence penalty term to the



objective function of the class specific sub-dictionary
learning problem to make the sub-dictionaries inco-
herent. Mairal (Mairal et al., 2009), introduced a
supervised DL method by embedding a logistic loss
function to learn a single dictionary and a classifier
simultaneously. Given a limited number of labeled ex-
amples, most DL based classification methods suffer
from the following problem: since these algorithms
only provide point estimation of the dictionary, the
sparse codes, and the classifier which could be sensi-
tive to the choice of training examples, they tend to
be unreliable when the number of training examples
is small. In order to address the above problem, this
paper presents a Bayesian framework for supervised
dictionary learning, termed Bayesian Supervised
Dictionary Learning, that targets tasks where the
number of training examples is limited. Using the full
Bayesian treatment, the proposed framework for dic-
tionary learning is better suited to dealing with a small
number of training examples than the non-Bayesian
approach.
Dictionary learning based on the Bayesian non-
parametric models was originally proposed by Zhou
(Zhou et al., 2009), in which a prior distribution is put
on the sparse codes (each sparse code is modeled as an
element-wise multiplication of a binary vector and a
weight vector) which satisfies the sparsity constraint.
Although the results of this method can compete with
the state of the art results in denoising, inpainting,
and compressed sensing applications, it does not work
well for classification tasks due to its incapability of
utilizing the class information of the training data.
To address the above problem, we extend the Bayesian
non-parametric models for classification tasks by
learning the dictionary, the sparse codes, and the clas-
sifier simultaneously. The contributions of this paper
are summarized as follows:

• The noise variance of the sparse codes (the spar-
sity level of the sparse codes) and the dictionary is
learn based on the Beta-Bernoulli process (Paisley
et al., 2009) which allows us to learn the number
of the dictionary atoms as well as the dictionary
elements.

• A logistic regression classifier (multinomial logis-
tic regression (Bohning, 1992), classifier for multi-
class classification) is incorporated into the prob-
abilistic dictionary learning model and is learned
jointly with the dictionary and the sparse codes
which improves the discriminative power of the
model.

• The posterior distributions of the dictionary, the
sparse codes, and the classifier is efficiently com-
puted via the VB algorithm which allows the

proposed model to be applicable to large-scale
datasets.

• The Bayesian prediction rule is used to classify a
test instance and therefore the proposed model is
less prone to overfitting, specially when the size
of the training data is small. Precisely speaking,
test instances are classified by weighted average of
the parameters (the dictionary, the sparse codes of
the test instances , and the classifier), weighted by
the posterior probability of each parameter value
given the training data.

• Using the Beta-Bernoulli process model, many
components of the learned sparse codes are ex-
actly zero, which is different from the widely used
Laplace prior, in which many coefficients of the
sparse codes are small but not exactly zero.

The remainder of this paper is organized as follows:
Section 3 briefly reviews the Beta-Bernoulli process.
The proposed method is introduced in Section 4. Ex-
perimental results are presented in Section 5. We con-
clude and discuss future work in Section 6.

3 Beta-Bernoulli Process

The Beta process B ∼ BP (c,B0) is an example of a
Lévy process which was originally proposed by Hjort
for survival analysis (Hjort, 1990), and can be defined
as a distribution on positive random measures over a
measurable space (Ω,F).
B0 is the base measure defined over Ω and c(ω) is a
positive function over Ω which is assumed constant for
simplicity. The Lévy measure of B ∼ BP (c,B0) is
defined as

ν(dπ, dω) = cπ−1(1− π)c−1dπB0(dω). (2)

In order to draw samples from B ∼ BP (c,B0), King-
man (Kingman, 1993), proposed a procedure based on
the Poisson process which goes as follows.
First, a non-homogeneous Poisson process is defined on
Ω ×R+ with intensity function ν. Then, Poisson(λ)
number of points (πk, ωk) ∈ [0, 1]× Ω are drawn from
the Poisson process (λ =

∫
[0,1]

∫
Ω
ν(dω, dπ) =∞). Fi-

nally, a draw from B ∼ BP (c,B0) is constructed as

Bω =

∞∑
k=1

πkδωk
, (3)

where δωk
is a unit point measure at ωk (δωk

equals
one if ω = ωk and is zero otherwise) . It can be seen
from equation 3, that Bω is a discrete measure (with
probability one), for which Bω(A) =

∑
k:ωk∈A πk, for

any set A ⊂ F .



If we define Z = Be(B) as a Bernoulli process with Bω
defined as 3, a sample from this process can be drawn
as

Z =

∞∑
k=1

zkδωk
, (4)

where zk is generated by

zk ∼ Bernoulli(πk). (5)

If we draw N samples (Z1, ..., ZN ) from the Bernoulli
process Be(B) and arrange them in matrix form, Z =
[Z1, ..., ZN ], then the combination of the Beta process
and the Bernoulli process can be considered as a prior
over infinite binary matrices, with each column Zi in
the matrix Z corresponding to a location, δωi

. By
marginalizing out the measure B, the joint probability
distribution P (Z1, ..., ZN ) corresponds to the Indian
Buffet Process (Thibaux et al., 2007).

4 Proposed Method

All previous classification based sparse coding and
dictionary learning methods have three shortcomings.
First, the noise variance or the sparsity level of the
sparse codes must be specified apriori in order to define
the stopping criteria for estimating the sparse codes.
Second, the number of the dictionary atoms must be
set in advance (or determined via the cross-validation
technique). Third, a point estimate of the dictionary
and the sparse codes are used to predict the class la-
bel of the test data points which can result in overfit-
ting. To circumvent these shortcomings, we propose
a Bayesian probabilistic model in terms of the Beta-
Bernoulli process which can infer both the dictionary
size and the noise variance of the sparse codes from
data. Furthermore, our approach integrates a logis-
tic regression classifier (multinomial logistic regression
classifier for multiclass classification) into the proposed
probabilistic model to learn the dictionary and the
classifier simultaneously while most of the algorithms
learn the dictionary and the classifier separately.

4.1 Problem Formulation

Consider we are given a training set of N labeled sig-
nals X = [x1,x2, ...,xN ] ∈ RM×N , each of them may
belong to any of the c different classes. We first con-
sider the case of c = 2 classes and later discuss the
multiclass extension. Each signal is associated with a
label (yi ∈ {−1, 1}, i = 1, ..., N). We model each signal
xi, as a sparse combination of atoms of a dictionary
D ∈ RM×K , with an additive noise εi. The Matrix
form of the model can be formulated as

X = DA+ E, (6)

where XM×N is the set of the input signals, AK×N
is the set of the K dimensional sparse codes, and
E ∼ N (0, γ−1

x IM ) is the zero-mean Gaussian noise
with precision value γx (IM is an M ×M Identity ma-
trix). Following (Zhou, 2009), we model the matrix
of the sparse codes (A) as an element-wise multiplica-
tion of a binary matrix (Z) and a weight matrix (S).
Hence, the model of equation 6 can be reformulated as

X = D(Z � S) + E, (7)

where � is the element-wise multiplication operator.
We put a prior distribution on the binary matrix Z us-
ing the extension of the Beta-Bernoulli process which
takes two scalar parameters a and b and was origi-
nally proposed by (Paisley, 2009). A sample from the
extended Beta process B ∼ BP (a, b, B0) with base
measure B0 may be represented as

Bω =

K∑
k=1

πkδωk
, (8)

where,

πk ∼ Beta(a/K, b(K − 1)/K), ωk ∼ B0. (9)

This sample will be a valid sample from the extended
Beta process, if K → ∞. Bω can be considered as
a vector of K probabilities that each probability πk
corresponds to the atom ωk. In our framework, we
consider each atom ωk as the k-th atom of the dictio-
nary (dk) and we set the base measure B0 to a multi-
variate zero-mean Gaussian distribution N (0, γ−1

d IK)
(with precision value γd) for simplicity. So, by letting
K → ∞, the number of the dictionary atoms can be
learned from the training data. To model the weights
(si)

N
i=1, we use a zero-mean Gaussian distribution with

precision value γs.
In order to make the dictionary discriminative for the
classification purpose, we incorporate a logistic regres-
sion classifier to our probabilistic model. More pre-
cisely, if αt = zt � st be the sparse code of a test in-
stance xt, the probability of yt = +1 can be computed
using the logistic sigmoid acting on a linear function
of αt so that

P (yt = +1 | zt, st,w, w0) = σ(wT (zt � st) + w0),
(10)

where σ(x) is the logistic function which is defined as

σ(x) =
1

1 + e−x
. (11)

As the probability of the two classes must sum to 1,
we have P (yt = −1 | zt, st,w, w0) = 1 − P (yt = +1 |
zt, st,w, w0). Since the logistic function has the prop-
erty that σ(−x) = 1 − σ(x), we can write the class
conditional probability more concisely as

P (yt | zt, st,w, w0) = σ
(
yt[w

T (zt � st) + w0]
)
, (12)



where w ∈ RK and w0 ∈ R are the parameters
of the classifier which are drawn from N (0, γ−1

w IK)
and N (0, γ−1

w ) respectively. We typically place non-
informative Gamma hyper-priors on γx, γd, γs and γw.
The proposed hierarchical probabilistic model for the
binary classification given the training data (X,Y ) =
(xi, yi)

N
i=1, can be expressed as

P (X | D,Z, S, γx) ∼
N∏
j=1

N (xj ;D(zj � sj), γ−1
x IM ),

(13)

P (γx | ax, bx) ∼ Gamma(γx; ax, bx), (14)

P (Z | Π) ∼
N∏
i=1

K∏
k=1

Bernoulli(zki;πk), (15)

P (Π | aπ, bπ,K) ∼
K∏
k=1

Beta(πk; aπ/K, bπ(K − 1)/K),

(16)

P (S | γs) ∼
N∏
i=1

K∏
k=1

N (ski; 0, γ−1
s ), (17)

P (γs | as, bs) ∼ Gamma(γs; as, bs), (18)

P (D | γd) ∼
M∏
i=1

K∏
k=1

N (dik; 0, γ−1
d ), (19)

P (γd | ad, bd) ∼ Gamma(γd; ad, bd), (20)

P (Y | Z, S,w, w0) ∼
N∏
j=1

σ(yj [w
T (zj � sj) + w0]),

(21)

P (w | γw) ∼ N (w; 0, γ−1
w IK), (22)

P (γw | aw, bw) ∼ Gamma(γw; aw, bw), (23)

P (w0 | γw0) ∼ N (w0; 0, γ−1
w ), (24)

where Π = [π1, π2, ..., πK ].
Φ = {aπ, bπ, ax, bx, ad, bd, as, bs, aw, bw,K} are the
hyper-parameters of the proposed model. The graphi-
cal representation of the probabilistic proposed model
is shown in Fig. 1. For multiclass extension, we use
the multinomial logistic regression classifier which is a
model of the form

P (yt = c | zt, st,Ξ) =
exp(wT

c (zt � st))∑C
c′=1 exp(w

T
c′(zt � st))

,

(25)
where C is the number of classes and Ξ = [w1, ...,wC ]
are the parameters of the classifier which are drawn
from multivariate zero-mean Gaussian distribution
with precision value γw (wc ∼ N (0, γ−1

w IK)). The

Figure 1: The graphical representation of the proposed
binary classification model (blue shadings indicate ob-
servations).

hierarchical probabilistic model for the multiclass clas-
sification is the same as the model for the binary clas-
sification, except for the equations 21-24 which are re-
placed by

P (Y | Z, S,Ξ) ∼
N∏
j=1

exp
(
wT
yj (zj � sj)

)
C∑
c=1

exp(wT
c (zj � sj))

, (26)

P (Ξ | γw) ∼
C∏
c=1

N (wc; 0, γ−1
w IK), (27)

P (γw | aw, bw) ∼ Gamma(γw; aw, bw). (28)

4.2 Posterior Inference

Due to the intractability of computing the exact pos-
terior distribution of the hidden variables, in this
section, we derive a Variational Bayesian algorithm
(Beal, 2003), to approximate the posterior distribution
over the hidden variables of the proposed probabilistic
model given the training data.
The goal of the variational inference is to approximate
the true posterior distribution over the hidden vari-
ables with a variational distribution which is closest
in KL divergence to the true posterior distribution.
A brief review of the VB algorithm for the exponen-
tional family distributions provided in the Supplemen-
tary Material1 (see appendix A).
In our variational inference framework, we use the fi-
nite Beta-Bernoulli approximation, in which the num-
ber of the dictionary atoms (K) is truncated and set

1The supplementary Material can be downloaded from
http://ce.sharif.edu/∼jourabloo/papers/SM.pdf

http://ce.sharif.edu/~jourabloo/papers/SM.pdf


to a finite but large number. If K is large enough, the
analyzed data using this number of dictionary atoms,
will reveal less than K components.
In the following two sections, we derive the variational
update equations for the binary and the multiclass
classification models.

4.2.1 Variational Inference For the Binary
Classification

In the proposed binary classification model, the hidden
variables are

W =

{
Π = [π1, π2, ..., πK ], Z = [z1, z2, ...,zN ],

S = [s1, s2, ..., sN ], D = [d1,d2, ...,dK ],w, w0,

γs, γw, γx, γd

}
.

We use a fully factorized variational distribution which
is as follows

q(Π, Z, S,D,w, w0, γs, γw, γx, γd) =

K∏
k=1

M∏
i=1

qπk
(πk)qdik(dik)

N∏
j=1

K∏
k=1

qzkj
(zkj)qskj

(skj)×

qw(w)qw0
(w0)qγs(γs)qγw(γw)qγx(γx)qγd(γd).

It’s worth noting that instead of using the parame-
terized variational distribution, we use the factorized
form of the variational inference which is called Mean
Field method (Beal, 2003). More precisely, we derive
the form of the distribution q(x) by optimizing the KL
divergence over all possible distributions.
Based on the graphical model of Fig. 1, the joint prob-
ability distribution of the observations (training data)
and the hidden variables can be expressed as

P (X,Y,W | Φ) =

N∏
j=1

(
P (xj | zj , sj , D, γx)P (yj | zj , sj ,w, w0)

)
×

K∏
k=1

(
P (πk | aπ, bπ)

N∏
j=1

P (zkj | πk)P (skj | γs)×

M∏
i=1

P (dik | γd)
)
P (w | γw)P (w0 | γw)P (γs | as, bs)×

P (γx | ax, bx)P (γw | aw, bw)P (γd | ad, bd). (29)

In the binary classification model, all of the distribu-
tions are in the conjugate exponential family except
for the logistic function. Due to the non-conjugacy
between the logistic function and Guassian distribu-
tion, deriving the VB update equations in closed-form
is intractable. To overcome this problem, we use the

local lower bound to the sigmoid function proposed by
(Jaakkola et al., 2000), which states that for any x ∈ R
and ξ ∈ [0,+∞]

1

1 + exp(−x)
≥ σ(ξ)exp

(
(x− ξ)/2− λ(ξ)(x2 − ξ2)

)
,

(30)
where,

λ(ξ) =
−1

2ξ

( 1

1 + exp(−ξ)
− 1

2

)
. (31)

ξ is the free variational parameter which is optimized
to get the tightest possible bound. Hence, we replace
each sigmoid factor in the joint probability distribu-
tion (equation 29) with the above lower bound (equa-
tion 30), then we use the EM algorithm to optimize the
factorized variational distribution and the free param-
eters (ξ = {ξ1, ξ2, ..., ξN}) which computes the varia-
tional posterior distribution in the E-step and maxi-
mizes the free parameters in the M-step. All update
equations are available in the Supplementary Material
(see appendix B).

4.2.2 Variational Inference For the
Multiclass Classification

In the proposed multiclass classification model, be-
cause of non-conjugacy between the multinomial lo-
gistic regression function (equation 25) and the Gaus-
sian distribution, deriving the VB update equations
in closed-form is intractable. To tackle this non-
conjugacy problem, we utilize the following simple in-
equality which was originally proposed by (Bouchard,
2007), which states that for every {βc}Cc=1 ∈ R and
α ∈ R,

log
( C∑
c=1

eβc
)
≤ α+

C∑
c=1

log
(
1 + eβc−α

)
. (32)

If we replace x with α − βc in the equation 30, and
take the logarithm of the both sides of that equation,
we have

log(1 + eβc−α) ≤ λ(ξ)
(
(βc − α)2 − ξ2

)
−

log σ(ξ) +
(
(βc − α) + ξ

)
/2. (33)

Then, by replacing each term in the summation of
the right hand side of the equation 32 with the up-
per bound of the equation 33, we have

log
( C∑
c=1

eβc
)
≤ α+

C∑
c=1

log
(
1 + eβc−α

)
≤

C∑
c=1

(
λ(ξc)

(
(βc − α)2 − ξ2

c

)
− log σ(ξc)

)
+

α+
1

2

C∑
c=1

(βc − α+ ξc). (34)



We utilize the above inequality for approximating the
denominator of the right hand side of the equation 26.
So, for the proposed multiclass classification model,
the free parameters are

{
{αi}Ni=1, {ξij}

N ,C
i=1,j=1

}
.

We derive an EM algorithm that computes the vari-
ational posterior distribution in the E-step and maxi-
mizes the free parameters in the M-step. Details of the
update equations are available in the Supplementary
Material (see appendix C).

4.3 Class Label Prediction

After computing the posterior distribution, in or-
der to determine the target class-label yt of a given
test instance xt, we first compute the predictive dis-
tribution of the target class label given the test
instance by integrating out the hidden variables
({D, γx, zt, st,w, w0} for binary classification model,
and {D, γx, zt, st, [wc]

C
c=1} for multiclass classification

model), then we pick the label with the maximum
probability value. For binary classification, this pro-
cedure can be formulated as

ŷt = argmaxyt∈{−1,1}P (yt | xt, T ), (35)

where T = (xj , yj)
N
j=1 is the training data. P (yt |

xt, T ) can be computed as

P (yt | xt, T ) =∑
zt

∫∫∫
P (yt, st, zt,w, w0 | xt, T )dst dw dw0

=
∑
zt

∫∫∫
P (yt | st, zt,w, w0, xt, T )×

P (st, zt,w, w0 | xt, T )dst dw dw0

=
∑
zt

∫∫∫
σ(yt[w

T (st � zt) + w0])P (st, zt | xt, T )×

P (w | T )P (w0 | T )dst dw dw0

≈
∑
zt

∫∫∫
σ(yt[w

T (st � zt) + w0])P (st, zt | xt, T )×

q∗(w)q∗(w0)dst dw dw0, (36)

where we replaced P (w | T ) and P (w0 | T ) with the
approximate posterior distributions q∗(w) and q∗(w0)
respectively.
Since the above expression cannot be computed in
closed form, we resort to Monte Carlo sampling to ap-
proximate that expression. In other words, we approx-
imate the distribution P (st, zt | xt, X, Y )q∗(w)q∗(w0)
with l samples, then we compute P (yt | xt, T ) as

P (yt | xt, T ) ≈ 1

l

∑
l

σ(yt[(w
l)T (slt�zlt) +wl0]), (37)

where rl is the l-th sample of the hidden variable r.
Since the approximate posterior distributions q∗(w)

Figure 2: The graphical model of the Gibbs sampling
method.

and q∗(w0) are Gaussian (see the appendix B of the
Supplementary Material), sampling from these distri-
butions is straightforward. P (st, zt | xt, T ) can be
computed as

P (st, zt | xt, T ) =
P (xt | st, zt, T )P (st, zt | T )

P (xt | T )
,

(38)

which cannot be directly sampled from. Therefore,
to sample from P (st, zt | xt, T ), we sample from
P (st, zt, D,Π, γs, γx | xt, T ) based on the Gibbs sam-
pling method (Robert et al., 2004), then simply ig-
nore the values for D,Π, γs, γx in each sample. The
graphical model in Fig. 2 shows all the relevant pa-
rameters and conditional dependence relationships, by
which the Gibbs sampling equations are derived. The
detailes of the Gibbs sampling equations are avalable
in the Supplementary Material (see appendix D). It
should be noted that the parameters of the variables
in Fig. 2 are the updated parameters of the variational
posterior distribution which were computed using VB
algorithm (see appendix B of the Supplementary Ma-
terial). For multiclass extension, the posterior distri-
bution over the class label of a test instance xt can be
approximated as

P (yt = c | xt, T ) ≈ 1

l

∑
l

exp
(
(wl

c)
T (zlt � slt)

)∑C
c′=1 exp((w

l
c′)

T (zlt � slt))
,

(39)
where {wl

c}Cc=1 are the l-th samples of the approximate
posterior distributions {q∗(wc)}Cc=1, and (zlt, s

l
t) is the

l-th sample of the posterior distribution P (st, zt |
xt, T ).
Sampling from {q∗(wc)}Cc=1 is straightforward. Sam-
pling from the distribution P (st, zt | xt, T ) for multi-
class classification model is the same as sampling from
that distribution for the binary classification model
(see appendix D).



5 Experimental Results

In this section, we verify the performance of the pro-
posed method on various applications such as digit
recognition, face recognition, and spoken letter recog-
nition. For applications which include more than two
classes, we use one versus all binary classification (one
classifier for each class) based on the proposed binary
classification model (PMb) as well as the proposed
multiclass classification model (PMm).
All of the experimental results are averaged over sev-
eral runs of randomly generated splits of the data.
Moreover, in all experiments, all Gamma priors are
set as Gamma (10−6, 10−6) to make the prior distri-
butions uninformative. The parameters aπ, bπ of the
Beta distribution are set with aπ = K and bπ = K/2
(many other settings of aπ and bπ yield similar results).
For the Gibbs sampling inference, we discard the ini-
tial 500 samples (burn-in period), and collect the next
1000 samples to present the posterior distribution over
the sparse code of a test instance.

5.1 Digit Recognition

We apply the proposed method on two handwritten
digit recognition datasets MNIST (LeCun et al., 1998),
and USPS (Hull, 1994). The MNIST dataset consists
of 70000 28 × 28 images, and the USPS dataset com-
poses of 9298 16 × 16 images. We reduced the di-
mensionality of both datasets by retaining only the
first 100 principal components to speed up training.
Details of the experiments for the digit databases are
summarized in Table 1.
We compare the proposed models (PMb, PMm) with
state of the art methods such as the Sparse Repre-
sentation for Signal Classification (denoted by SRSC)
(Huang et al., 2006), the supervised DL method with
generative training and discriminative training (de-
noted by SDL-G and SDL-D) (Mairal, 2009), and the
Fisher Discriminant Dictionary learning (denoted by
FDDL) (Yang et al., 2011). Furthermore, the results of
two classical classification methods, K-nearest neigh-
bor (K=3) and linear SVM are also reported. The
average recognition accuracies (over 10 runs) together
with the standard deviation is shown in Table 2, from
which we can see that the proposed methods outper-
form the other methods approximately by 3.5%.
The improvement in performance compared to other

methods is due to the fact that the number of the
training data points are small. Precisely speaking, the
methods SRSC, SDL-G, SDL-D and FDDL are op-
timization based learners (MAP learners from prob-
abilistic point of view) which can overfit small-size
training data. In contrast, the proposed method does
weighted averaging over the dictionary, the sparse
codes, and the classifier, weighted by their posterior

Table 1: Properties of the digit datasets and experi-
mental parameters

MNIST USPS
examples (train) 250 250
examples (test) 1000 1000
classes 10 10
input dimensions 784 256
features after PCA 100 100
runs 10 10
K (number of dictionary atoms) 250 250

distributions and hence is relatively immune to over-
fitting. From Table 2, We also observe that the one
versus all binary classifier (PMb) has slightly better
performance than the multiclass classifier (PMm), but
has more computational complexity than the multi-
class classifier. Moreover, because of small number of
the training data, generative SDL (SDL-G) has better
performance than discriminative SDL (SDL-D).
In order to demonstrate the ability of the proposed
method to learn the number of the dictionary atoms
as well as the dictionary elements, we plot the sorted
values of 〈Π〉 For the MNIST dataset, inferred by the
algorithm (Fig. 3). As can be seen, the algorithm
inferred a sparse set of factors, fewer than the 250 ini-
tially provided.
To further analyze the performance of the proposed
method on various number of training data points, we
illustrate the change in the classification accuracy on
the MNIST digit dataset over successive iterations, for
which we add more labeled samples at each iteration.
Fig. 5 plots the recognition rates of different methods
versus different number of training data points, from
which we can see that improvement in the accuracy
of the optimization based methods (FDDL, SDL-G,
SDL-D) is larger than the proposed multi class clas-
sification method. This is due to the fact that when
the number of the training data grows, the likelihood
of overfitting the training data is reduced.
We also plot the sorted values of 〈Π〉 For the MNIST
dataset for 1000 training data points, inferred by the
algorithm (Fig. 4). As can be seen, when the num-
ber of the training data points increases, we need more
dictionary atoms to capture the complexity of the data
points.

5.2 Face Recognition

We then perform the face recognition task on the
widely used extended Yale B (Lee et al., 2005), and
AR (Martinez et al., 1998), face databases. The ex-
tended Yale B database consists of 2, 414 frontal-face



Figure 3: Inferred 〈Π〉 for the MNIST dataset (250
training samples).

Figure 4: Inferred 〈Π〉 for the MNIST dataset (1000
training samples).

images from 38 individuals (about 64 images per in-
dividual), and the AR database consists of over 4,000
frontal images from 126 individuals which was gener-
ated in two sessions, each of them consists of 14 images
per individual. The extended Yale B and AR images
are normalized to 54×48 and 60×40 respectively. We
use the Eigenface (Turk et al., 1991), with dimension
300 for both extended Yale B and AR datasets. For
the extended Yale B database, each training set com-
prised of 20 images per individual, and the remaining
images were used to test. For AR dataset, seven im-
ages from the first session are used for training, the
remaining seven images from the second session are
used for testing. Details of the experiments for the
face databases are summarized in Table 3.
To illustrate the superiority of the proposed models,
we compare our methods with the best result of dis-
criminative KSVD (denoted DKSVD) (Zhang et al.,
2010), dictionary learning with structure incoherence
(denoted DLSI) (Ramirez et al., 2010), FDDL, K-NN,
and SVM. The results of these experiments on the face
databases are listed in Table 4. Again, due to the lack
of enough number of the training data, our methods
have better performance than the other methods.

5.3 Spoken Letter Recognition

Finally, we apply our method on the Isolet database
(Blake et al., 1998), from UCI Machine Learning
Repository which consists of 6238 examples and 26
classes corresponding to letters of the alphabet. We
reduced the input dimensionality (originally at 617)
by projecting the data onto its leading 100 principal
components. We use 250 samples for training and 1000
samples for testing. The truncation level K for this ex-

Table 2: Classification accuracy of different methods
on Digit datasets.

MNIST USPS
SVM 79.3± 2.0 80.7± 1.5

3-NN 80.4± 1.4 81.4± 2.1

SDL-D 80.2± 2.1 83.5± 1.9

SRSC 78.9± 1.2 80.2± 1.2

SDL-G 81.3± 1.4 84.0± 1.3

FDDL 81.1± 1.8 83.8± 1.7

PMm 84.9 ± 1.3 86.6 ± 1.0

PMb 85.8 ± 1.1 87.4 ± 0.9

Figure 5: The recognition rate of different methods
versus the number of training data for MNIST dataset.

periment is set to 400. We also use only a subset of 10
classes of the Isolet dataset. The average recognition
accuracies (over 10 runs) is shown in Table 5, from
which we can see that the proposed methods outper-
form the other methods approximately by 3%.

6 Conclusion

We developed new models for the dictionary learning
based pattern classification tasks based on the Beta-
Bernoulli process, and a new algorithm based on the
variational inference which allows our method scales to
large data sets. We also used Bayesian prediction rule
to determine the label of the unknown samples which

Table 3: Properties of data sets and experimental pa-
rameters.

E-Yale B AR
examples (train) 760 700
examples (test) 1654 700
classes 38 100
input dimensions 2592 2400
features after PCA 300 300
runs 10 10
K 500 600



Table 4: Classification accuracy of different methods
on Face datasets.

E-Yale B AR
SVM 88.8± 1.2 87.1± 1.3

3-NN 65.9± 1.8 73.5± 2.1

DLSI 85.0± 1.6 73.7± 1.4

DKSVD 75.3± 1.4 85.4± 1.2

FDDL 91.9± 1.0 92.0± 1.3

PMm 94.7± 1.3 94.2± 1.2

PMb 95.1± 1.1 94.9± 1.0

Table 5: Classification accuracy of different methods
on Isolet dataset.

Method SVM DLSI FDDL PMb PMm

Accuracy 90.9 88.6 90.5 93.3 92.9

makes our method be suitable for small size training
data. The experimental results on digit recognition,
face recognition and spoken letter classification clearly
demonstrated the superiority of the proposed model to
many state-of-the-art dictionary learning based classi-
fication methods. For the future work, we will apply
our method on the semi-supervised classification tasks.
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