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Abstract

Willow encroachment into the naturally
mixed landscape of vegetation types in the
Upper St. Johns River Basin in Florida,
USA, impacts upon biodiversity, aesthetic
and recreational values. To control the ex-
tent of willows and their rate of expansion
into other extant wetlands, spatial context
is critical to decision making. Modelling
the spread of willows requires spatially ex-
plicit data on occupancy, an understanding
of seed production, dispersal and how the key
life-history stages respond to environmental
factors and management actions. Nichol-
son et al. (2012) outlined the architecture
of a management tool to integrate GIS spa-
tial data, an external seed dispersal model
and a state-transition dynamic Bayesian net-
work (ST-DBN) for modelling the influence
of environmental and management factors on
temporal changes in willow stages. That
paper concentrated on the knowledge en-
gineering and expert elicitation process for
the construction and scenario-based evalua-
tion of the prototype ST-DBN. This paper
extends that work by using object-oriented
techniques to generalise the knowledge or-
ganisational structure of the willow ST-DBN
and to construct an object-oriented spatial
Bayesian network (OOSBN) for modelling
the neighbourhood spatial interactions that
underlie seed dispersal processes. We present
an updated architecture for the management
tool together with algorithms for implement-
ing the dispersal OOSBN and for combining
all components into an integrated tool.

1 INTRODUCTION

The highly-valued Upper St. Johns River in Florida,
USA has been the focus of considerable restoration in-
vestment (Quintana-Ascencio et al., 2013). However,
woody shrubs, primarily Carolina willow (Salix car-
oliniana Michx.), have invaded areas that were histor-
ically herbaceous marsh (Kinser et al., 1997). This
change to the historical composition of mixed vegeta-
tion types is considered undesirable, as extensive wil-
low thickets detract from biodiversity, aesthetic and
recreational values. Overabundance of willows reduces
local vegetation heterogeneity and habitat diversity.
People also prefer open wetlands that offer a view-
shed, navigable access and scope for recreation activi-
ties such as wildlife viewing, fishing and hunting.

Managers seek to control the overall extent of willows,
their rate of expansion into other extant wetland types
and encroachment into recently restored floodplain
habitats. Spatial context is critical to decision-making
as areas differ in terms of biodiversity, aesthetic and
recreational value, “invasibility” and applicable inter-
ventions. For instance, vegetation communities that
are intact or distant from willow populations (seed
sources) are less susceptible to invasion. With respect
to interventions, mechanical clearing is restricted to
areas where the substrate can support heavy machin-
ery; prescribed fire depends on water levels and the
quantity of “burnable” understorey vegetation.

Modelling willow spread requires spatially explicit
data on willow occupancy, an understanding of seed
production, dispersal, germination and survival, and
how the key life-history stages respond to environmen-
tal factors and management actions. Data and knowl-
edge on these pieces of the puzzle are available from
ecological and physiological theory, surveys, field and
laboratory experiments and domain experts.

State-transition (ST) models are a convenient means
of organising information and synthesising knowledge
to represent system states and transitions that are of



management interest. We build on recent studies that
combine ST models with BNs to incorporate uncer-
tainty in hypothesised states and transitions, and en-
able sensitivity, diagnostic and scenario analysis for de-
cision support in ecosystem management (e.g. Bashari
et al., 2009; Rumpff et al., 2011). Our approach uses
the template described by Nicholson and Flores (2011)
to explicitly model temporal changes in willow stages.

Nicholson et al. (2012) outlined the architecture of
a management tool that would integrate GIS spatial
data, a seed dispersal model and a state-transition
dynamic Bayesian network (ST-DBN) for modelling
the influence of environmental and management fac-
tors on temporal changes in willow stages. That pa-
per described the knowledge engineering and expert
elicitation process for the construction and scenario-
based evaluation of the prototype ST-DBN. This paper
extends that work, using object-oriented techniques
to generalise the knowledge organisational structure
of the willow ST-DBN and to construct an object-
oriented spatial Bayesian network (OOSBN) for mod-
elling the neighbourhood spatial interactions that un-
derlie seed dispersal processes. We present an updated
architecture for the management tool that incorpo-
rates GIS data and the new ST-OODBN and OOSBN
structures, together with algorithms for implementing
the dispersal OOSBN and for combining all compo-
nents into an integrated tool.

2 BACKGROUND

Dynamic Bayesian Networks (DBNs) are a variant
of ordinary BNs (Dean and Kanazawa, 1989; Nichol-
son, 1992) that allow explicit modelling of changes over
time. A typical DBN has nodes for N variables of inter-
est, with copies of each node for each time slice. Links
in a DBN can be divided into those between nodes in
the same time slice, and those in the next time slice.
While DBNs have been used in some enviromental ap-
plications (e.g. Shihab, 2008), their uptake has been
limited.

State-and-transition models (STMs) have been
used to model changes over time in ecological sys-
tems that have clear transitions between distinct states
(e.g., in rangelands and woodlands, see Bestelmeyer
et al., 2003; Rumpff et al., 2011). Nicholson and Flo-
res (2011) proposed a template for state-transition dy-
namic Bayesian networks (ST-DBNs) which formalised
and extended Bashari et al.’s model, combining BNs
with the qualitative STMs.

The influence of environmental and management fac-
tors on the main willow stages of management interest
and their transitions is shown in our updated version
of the Nicholson et al. (2012) ST-DBN (see Figure 1).

For each cell (spatial unit), data on attributes such as
soil, vegetation type and information about landscape
position and context is supplied from GIS data. This
data provides inputs to parameterise the ST-DBN and
dispersal model. A cell size of 100m x 100m (1 ha) was
chosen to represent a modelling unit. This reflects the
resolution of available spatial data for environmental
attributes, makes the computational demand associ-
ated with seed dispersal modelling feasible, and is a
reasonable scale with respect to candidate manage-
ment actions. A time step of one year was consid-
ered appropriate given the willow’s growth and seed
production cycle (Nicholson et al., 2012).

Seed production depends on the size and number of
reproductive (adult) stems within each cell. However,
Seed Availability, the amount of seed available for ger-
mination within a cell, depends on willow seed pro-
duction and dispersal from surrounding cells. As these
processes are not accounted for in the ST-DBN (Fig-
ure 1), a key focus of this paper is the development
and integration of an object-oriented spatial Bayesian
network (OOSBN) to model the neighbourhood spa-
tial interactions that underlie this process.

The purpose of the integrated tool is to synthesise cur-
rent understanding and quantify important sources of
uncertainty to support decisions on where, when and
how to control willows most effectively. The ST-DBN
models willow state transitions and characteristics in
response to environmental and management factors
within a single spatial unit and time step. For co-
herent, effective and well-coordinated landscape-scale
management however, we want to be able to predict
willow response across space (at every cell) in the tar-
get area and across time frames of management in-
terest (e.g. 10-20 years). Such predictions can then
be mapped and also aggregated across the target area
to produce evaluation metrics for managers. Such a
tool would enable managers to “test”, visually com-
pare and quantitatively evaluate different candidate
management strategies.

This real-world management problem is naturally de-
scribed in terms of hierarchies of components that in-
clude similar, repetitive structures. Object-oriented
(OO) modelling has obvious advantages in this con-
text. We apply OO techniques to generalise the knowl-
edge organisational structure of the willow ST-DBN
and design and construct the seed production and dis-
persal spatial network.

3 AN ST-OODBN FOR WILLOWS

Various authors have advocated the use of OO mod-
elling techniques to: a) help manage BN complexity
via abstraction and encapsulation, b) facilitate the
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Figure 1: State-and-transition dynamic Bayesian network (ST-DBN) for modelling the response of key willow
stages to environmental factors and management actions within a single spatial unit. The willow stages of
management interest are: unoccupied, yearling, sapling, adult and burnt adult. Colours indicate: (i) aspects of
willow state in tan; (ii) seed availability, germination and seedling survival processes in orange; (iii) environmental
factors in green; (iv) management options in red; and (v) willow state-transitions in purple.

construction of classes of objects that are internally
cohesive and potentially more reuseable, and c) for-
malise interfaces prior to integration (Koller and Pfef-
fer, 1997; Neil et al., 2000; Kjærulff and Madsen, 2008;
Korb and Nicholson, 2010; Molina et al., 2010). How-
ever, examples in ecological and environmental man-
agement are scant (Molina et al., 2010; Carmona et al.,
2011; Johnson and Mengersen, 2012).

We follow the definition of OOBNs used in Kjærulff
and Madsen (2008), and implemented in the Hugin BN
software package. A standard BN is made up of ordi-
nary nodes, representing random variables. An OOBN
class is made up of both nodes, and objects, which are
instances of other classes. Thus an object may encap-
sulate multiple sub-networks, giving a composite and
hierarchical structure. Objects are connected to other
nodes via some of its own ordinary nodes, called its
interface nodes. The rest of the nodes are not visible
to the outside world, thus hiding information detail,
another key OO concept. A class can be thought of
as a self-contained ‘template’ for an OOBN object, de-
scribed by its name, its interface and its hidden part.

Finally, interface nodes are divided into input nodes
and output nodes. Input nodes are the root nodes
within an OOBN class, and when an object (instance)
of that class becomes part of another class, each in-
put node may be mapped to a single node (with the
same state space) in the encapsulating class. The out-
put nodes are the only nodes that may become parents
of nodes in the encapsulating class. When displaying
an OOBN, we show Hugin1 screen shots, where input
nodes are indicated with a dotted and shaded outline,
and output nodes with a bold and shaded outline.

We converted the ST-DBN (Figure 1) into a ST-
OODBN as follows. Using the five conceptual cate-
gories of nodes from the original network as a guide,
the network was split into two abstract class types.
The first represents abstract influencing factors and
consists of three sub-classes that define Environmen-
tal Conditions, Management Options and the germi-
nation and seedling survival Processes Factors. The
second type represents state transitions of willows

1Note that Hugin OOBNs do not support inheritance,
so there are no super-classes or sub-classes.



(see Figure 2) and defines five sub-classes, Transi-
tionFromUnoccupied, TransitionFromYearling, Tran-
sitionFromSapling, TransitionFromAdult and Transi-
tionFromBurntAdult. Figure 3 illustrates the defini-
tion of the TransitionFromYearling class.

E1 Ei M1 Mj

Tn

TransitionFromXx,y,t

Xm

S1 Sk P1 Pl

Figure 2: An abstract OOBN class for state transi-
tions. Each implementation of a state transition out-
put node Tn is defined by a combination of environ-
mental conditions E1...i, management options M1...j ,
previous state variables S1...k, process factors P1...l and
any number of Xm hidden nodes. The only required
input is the node that defines the previous state, all
others are optional and are based on the implement-
ing class. Dotted arrows indicate possible connections
between input, hidden and output nodes.

TransitionFromYearlingx,y,t

Figure 3: The TransitionFromY earling implementa-
tion of the abstract TransitionFromX type showing
Management Options in red, State Variables in yellow
and Environmental Conditions in green. The output
Transition node Transition from Yearling to: is shown
in blue with a bold and shaded outline.

These classes are instantiated as objects within a ST-
OODBN class and when integrated with the seed dis-
persal OOSBN (described below) defines the complete
ST model over a single time step (Figure 4). Recast-
ing the network as a ST-OODBN makes the knowl-
edge organisational structure explicit, whilst allowing
network complexity to be hidden and integration ef-
forts to focus on the interfaces between components of
the network. Note that in the ST-OODBN (Figure 4)

Seed Availability is an input node. Seed Production
and its spatial dispersal is modelled by a separate OO
network, which we present next.

4 AN OOSBN FOR SEED
PRODUCTION AND DISPERSAL

S.caroliana flowers in early spring and produces very
large numbers of small seeds (∼165,000 per average
adult)that disperse by wind and water. Seed produc-
tion is modelled by the Willow Seed Production OOBN
(Figure 5), which is embedded in a broader seed dis-
persal model described below.

The number of seeds produced by an adult is given
by the product of the number of Inflorescences, the
number of Fruits per inflorescence and the number of
Seeds per fruit. Fruits per inflorescence and Seeds per
fruit are defined by distributions estimated from em-
pirical data. The number of Inflorescences increases as
a function of adult size (represented by Rooted Basal
Stem Diameter) and this relationship has also been
estimated from empirical data.

Cover is the percentage of a 1 hectare cell that is oc-
cupied by willows and Average Canopy Area is mod-
elled as a function of Rooted Basal Stem Diameter.
Together these two variables provide an estimate of
the number of reproductive stems. Overall seed pro-
duction within a cell, Seeds per Hectare, is then sim-
ply the product of the seed production per stem, by
the number of reproductive stems. This Willow Seed
Production OOBN models seed production processes
explicitly rather than implicitly as in the ST-DBN pro-
totype (Figure 1); an example of iterative and incre-
mental knowledge engineering.

Willow seeds do not exhibit dormancy and have only a
short period of viability – those that fail to germinate
in the year they are produced are lost. The amount of
seed available for germination within a cell depends on
seed production and dispersal from surrounding cells.
Thus, neighbourhood seed production and dispersal
in combination with environmental and management
factors determines patterns of willow spread and colo-
nization.

Our approach to modelling seed dispersal is phe-
nomenological rather than mechanistic. Wind-
mediated seed dispersal is calculated using the Clark
et al. (1999) dispersal kernel:

SDx′,y′

x,y = SPx′,y′ × 1

2πα2
e−(

d
α ) (1)

where SDx′,y′

x,y is the number of seeds arriving at cell
(x, y) from those produced at a cell (x′, y′); it is the
product of seed produced SPx′,y′ and an exponential
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Figure 4: The resultant ST-OODBN class showing the four input nodes (Seed Availability, Rooted Basal Stem
Diameter (T), Stage (T) and Cover (T)) along with the Environmental Conditions, Management Options, Process
Factors and five TransitionFromX objects that define the outputs (Stage (T+1), Rooted Basal Stem Diameter
(T+1) and Cover (T+1)) after one time step. Input nodes are illustrated with a dotted and shaded outline,
instances of OOBN classes as round cornered boxes and output nodes with a bold and shaded outline.

kernel where d is the distance between cells (x, y) and
(x′, y′), and α is a distance parameter. To simulate
stochasticity in dispersal events, α is a random vari-
able that can be sampled from distributions designed
to reflect the expected nature of dispersal (e.g. short
versus long distance dispersal) (Fox et al., 2009). This
seed dispersal model is captured within the WindDis-
persalKernelx′,y′,t OOBN (Figure 5), where the input
Distance node is set for the particular (x, y) and α is
set as a discretised normal distribution with a mean of
1 and a variance of 0.25.

For our purposes, we want to compute the seed avail-
ability SAx,y for a target cell (x, y), which is the sum
of the seeds dispersed to it from every cell in the study
area:

SAx,y =
∑

x′,y′∈Area

SDx′,y′

x,y (2)

A naive BN model of this additive function would
mean a Seed Availability node with all the Seeds Dis-
persed nodes (one for every cell) as its parents! For a
study area with width w cells, height h cells, a Seed
Availability node discretized to n states, and the Seeds
Dispersed node discretized to m states, the CPT for
Seed Availability would include n×mw×h probabilities
–clearly infeasible.

From an ecological perspective, however, not all cells
within a study area are expected to contribute towards
final Seed Availability at any given cell. Indeed, be-
cause the number of seeds dispersed from a seed pro-
ducing cell declines exponentially with increasing dis-
tance from that cell, we can make a simplifying as-
sumption that after a certain distance, the number of
seeds dispersed is effectively negligible. As a starting
point we assume a circular region of influence for the
target cell, defined by a dispersal mask with radius
r. So for instance, a radius of eight cells (800 meters)
implies π82, or ∼201 cells providing parents to the fi-
nal Seed Availability node. This is still far too many,
particularly as we are using a standard BN software
package with discrete nodes and exact inference.

However, since Seed Availability is a simple additive
function, we use the simple modelling trick of adding
the Seed Availability from each cell to the cumula-
tive seed availability so far (via node Cumulative Seed
Availability). This is equivalent to repeatedly divorc-
ing parents to reduce the size of the state space. We
can think of this is as sequentially scanning over the
spatial dimension in a similar way to rolling out a DBN
over time. We call this a spatial Bayesian network
(SBN), and the object-oriented variety an OOSBN.
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Figure 5: The OOSBN architecture showing how Cover, Rooted Basal Stem Diameter, Cumulative Seed Avail-
ability and Distance at locations (x′, y′) to (x′+n, y′+n) are combined to provide total seed availability for each
cell at location (x, y) at time t. Dashed arcs indicate that nodes are connected via the seed availability PTLayer.
Multiple TotalSeedAvailability objects are illustrated within the SeedDispersal OOSBN reflecting that the total
seeds available at a given (x, y) is dependant on seeds being produced in multiple locations. These synthetic
TotalSeedAvailabilty objects are shown as collapsed objects, hiding their private nodes, and showing just the
four input nodes that define the seeds dispersed from each producing cell to the target cell.

Our approach to integrating the seed dispersal makes
use of such an OOSBN, that is run πr2 times (i.e. once
for every cell (x′, y′) within dispersal range) for each
cell (x, y) in the study area to disperse and then sum
the seed availability at each cell. The dispersal mask
is flexible and can be designed to take on different
shapes to reflect potentially important influences on
wind dispersal such wind direction, wind strength and
terrain characteristics. However, in the results given
Section 6, we use a radius of eight cells.

Overall, our approach here is to mitigate the problem
of large CPT sizes by turning the problem in to one
of computation time. This has the added benefit of
potentially being able to be computed easily in parallel
and thus regaining some computation efficiency.

5 Integrating the ST-OODBN with
the OOSBN

Figure 6 is an abstract representation of the system
architecture, specifically, the interactions between the
GIS layers and the OO networks as the tool is used for
prediction at yearly intervals over the required man-
agement time frame.

For each cell in the GIS, there is conceptually one
state-transition network (ST-OODBN ) and one seed
production and dispersal spatial network, (OOSBN ).
In practice, we do not store all these as separate net-
works, but rather re-use a single network structure,
whose input nodes are re-parameterised for each cell,
for each time step.

For the first time step, the system takes GIS data,
which represents the initial conditions of the study
area. These are stored in an internal data structure,
PTLayer, that combines the spatial structure of the
GIS, with distributions for the (discrete) nodes in the
networks. PTLayers are used to store and pass the
spatially referenced prior distributions of input nodes
and posterior distributions of output nodes for both
the OOSBN and ST-OODBN (Figure 6). Each PT-
Layer contains a number of fields, one for each of the
node states of the linked input and output nodes. Each
field stores the probability mass of the corresponding
node state.

The PTLayer distributions are used to set the pri-
ors for the input nodes at each time step t. Then in-
ference (belief updating) is performed within the OO
network, producing new posterior probability distri-
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Figure 6: An abstract representation of the management tool architecture.

butions from the output nodes for each OO network,
which are then transferred back to the corresponding
PTLayer. This is equivalent to the standard “roll-out”
followed by “roll-up” steps done in prediction with two
time slice DBNs (Boyen and Koller, 1998) to avoid the
computational complexity of rolling out a DBN over a
large number of time steps. But here, in addition, the
PTLayers are being used as an intermediate storage
across the spatial grid, with the inputs for the next
time t + 1 coming not only from both the network
for the same cell, but from outputs from networks for
other cells. This is done via the seed dispersal OOSBN,
which uses the Seed Availability PTLayer to accumu-
late the seed availability arising from seed production
in other cells within the dispersal mask. In effect, the
PTLayer replaces both the temporal arcs if the net-
work was rolled-out over many time steps, and the
spatial arcs between the networks for different cells,
which are essentially the cross-network arcs from seed
production in one place to seed availability in another.
Note that this method is limited to prediction only
–we cannot use the model for diagnosis, or to identify
the starting states and management actions to achieve
a preferred end-state.

More formally, using the notation from Figure 6, at
time t and at each cell location (x, y), PTLayers1...l
are used to initialise the priors of nodes I1...m and
I1...M of ST-OODBN x,y,t and OOSBN t respectively.
After propagation within OOSBN t, beliefs from the
output node SA are stored in PTLayerSeedAvailabilty

and then used to update the priors of input node SA
of ST-OODBN x,y,t. Then belief updating is done for
the ST-OODBN x,y,t for each cell(x, y) and the beliefs
from output nodes O1...n propagated back to PTLay-

ers1..l at time t+1. Although the mapping between the
set of PTLayers1...l and input nodes I1...m is one-to-
one, there may be cases where there are no GIS layers
available for an input, in which case a prior distribu-
tion is used. Finally, with respect to OOSBN propaga-
tion, the range of locations x′, y′ . . . x′ + n, y′ + n (i.e.
neighbourhood cells) that are included is defined by
the dispersal mask described in the previous section.

Algorithm 1 An algorithm for propagating a
GIS coupled ST-OODBN with spatial OOSBN sub-
networks
1: function propagate(ST– OODBN,OOSBN, ptlayers, t)
2: I ← I(ST-OODBN)
3: O ← O(ST-OODBN)
4: SA← getLayer(ptlayers, SeedAvailability)
5: for t := 0 to t do
6: PROPAGATE(OOSBN,ptlayers,dispMask)
7: // computes all Seed Availabilities
8: for all (x, y) ∈ Area do
9: p(SeedAvailability)← SAx,y

10: for all Ii ∈ I do
11: Lj ← getLayer(ptlayers, Ii)
12: p(Ii)← Lj(x, y)
13: end for
14: update beliefs in ST-OODBN
15: for all Oi ∈ O do
16: Lj ← getLayer(ptlayers,Oi)
17: Lj(x, y)← Bel(Oi)
18: end for
19: end for
20: end for
21: end function

The process is detailed in Algorithm 1, as a function
PROPAGATE which takes the ST-OODBN (shown
in Fig. 4), and OOSBN (shown in Fig. 5) networks,
a list of ptlayers (previously initialised from the GIS
layers) whose cells correspond to the area under con-
sideration, and the number of time steps T over which
to propagate the network. In the algorithm, we use



I(OOBN) (respectively O(OOBN)) to denote a func-
tion that returns the input (resp. output) nodes of
the interface of the OOBN, and getLayer(ptlayers,V)
to denote a function that returns the PTLayer corre-
sponding to a node V .

Algorithm 2 An algorithm for dispersing seeds by
wind using an OOSBN class
1: function propagate(OOSBN, ptlayers, dispMask)
2: SA← getLayer(ptlayers, SeedAvailability)
3: for all (x, y) ∈ Area do
4: P (SAx,y = none)← 1
5: end for
6: for all (x, y) ∈ Area do
7: for all Ii ∈ Ix,y(OOSBN) do
8: Lj ← getLayer(ptlayers, Ii)
9: p(Ii)← Lj(x, y)
10: end for
11: for all (x′, y′) ∈ dispMask do
12: p(CumSeedAvail)← SAx,y
13: d←

√
(x− x′)2 + (y − y′)2

14: p(Distance = d)← 1
15: update beliefs in OOSBN
16: SAx,y ← Bel(SeedAvailability)
17: end for
18: end for
19: end function

First, seed dispersal is done with the OOSBN using
Algorithm 2. Then for each cell (x, y) in the area, for
each input node Ii, the distribution for that cell from
its corresponding ptlayer is set as the prior of the in-
put node. Belief updating of the ST-OODBN is done,
propagating the new priors through to updated pos-
terior distributions for the output nodes. Finally the
beliefs for each output node (Bel(Oi)) are copied back
to the distribution at the (x, y) cell for the correspond-
ing ptlayer (i.e. into SAx,y).

Algorithm 2 details the propagation process using the
SeedDispersal OOSBN class illustrated in Figure 5.
The algorithm starts by taking the OOSBN, a list of
PTLayers whose cells correspond to the area under
consideration, and a dispersal mask (dispMask). Be-
fore starting the dispersal process, the provided Seed
Availability PTLayer is initialised with no seeds avail-
able at all (x, y) co-ordinates. It then loops through
each cell (x, y) in the area, setting the distribution for
each input node Ii (i.e., Cover, Rooted Basal Stem Di-
ameter and Cumulative Seed Availability) from its cor-
responding PT layer cell. The algorithm then enters a
second loop for every cell that is a possible seed source
based on the dispersal mask. The Distance node is set
using the Euclidean distance between the current cell
and the target co-ordinates. Finally, belief updating
is done within the OOSBN (Figure 5) and the beliefs
(i.e. the posterior probability distribution) from the
Seed Availability node at each point are transferred
into the Cumulative Seed Availability for the subse-
quent cell at each iteration. After all the cells (x′, y′)
within the dispersal mask have been visited, the Seed
Availability PTLayer, SAx,y contains the overall seed

availability in that cell, which is used for modelling
germination in the ST-OODBN in Algorithm 1.

6 PRELIMINARY RESULTS

To implement the software architecture described we
chose to use Hugin Researcher 7.7(2013) to develop the
ST-OODBN and dispersal model OOSBN, the Hugin
Researcher Java API 7.7 (2013) to provide program-
matic access to the developed networks, the Image-
IO-ext (2013) java library to provide access to GIS
raster layer formats, and the Java programming lan-
guage to implement the algorithms tying the compo-
nents together. Hugin was chosen as the OOBN devel-
opment platform as it currently has one of the most
complete OOBN implementations. Java was chosen
as the implementing language as it is platform inde-
pendent and provides for a well established and un-
derstood OO development environment. We imple-
mented the tool as a standalone program allowing pre-
processing of GIS data to be performed in whatever
program the end user was most familiar with. In our
case we used a combination of ArcGIS (2013), Quan-
tum GIS (2013)and SAGA GIS(2013).

To demonstrate our working implementation, we ran
the model for the Blue Cypress Marsh Conservation
Area (138 x 205 cells) within the Upper St. Johns
River basin. We used a simplified (and unrealistic)
management rule set that says if a cell is next to a
canal, mechanical clearing is carried out, otherwise for
landlocked cells, burning is prescribed (with a proba-
bility of 0.1). Maps of willow cover and seed produc-
tion were generated at yearly intervals for a 25 year
prediction window. This took about 8 hours of com-
putation on a 64bit machine with a 2.8GHz processor.
Figure 7 shows seed availability across the study area
using output from the SeedAvailability nodes in the
OOSBN at 5 yearly intervals. To produce the maps,
the seed availability interval with the highest posterior
probability distribution is used to produce a grayscale
value where zero seeds is black, and 1012 is white. In
the run shown, seed availability decreases over time as
the level of willow cover is reduced by the management
regime.

7 DISCUSSION AND FUTURE
WORK

For coherent, coordinated and effective landscape-
scale decision support, managers need the capability
to predict willow state changes across space and time.
We have tackled the challenges of this real-world prob-
lem by synthesising ideas and techniques from object-
oriented knowledge engineering, dynamic BNs, GIS-



Figure 7: Seed availability predicted by the Willows ST-OODBN at t = 0, 5, 10, 15, 20, 25 years, across the Blue
Cypress Marsh Conservation Area (138 x 208 cells). Adult willow occupancy at t = 0 is shown in the bottom
right panel; black indicates absence, grey presence.

coupled BNs and dispersal modelling. To our knowl-
edge, this is the first environmental management ap-
plication in which OOBNs are used to model spatially-
explicit process interactions.

Further work in the development of this management
tool includes developing a water dispersal model and
updating the parametrisation of the ST-OODBN and
OOSBN using judgements from a larger pool of do-
main experts, together with specific empirical data
where available. In addition, we will work with man-
agers and domain experts to identify: i) realistic man-
agement scenarios, ii) useful summary descriptors for
the various model outputs and iii) desirable features
for a tool interface.

Throughout the research and integration process we
encountered challenges with the development, man-
agement and use of OOBNs. While there have been
advances in OOBN software, they still lack a lot of the
useful features available in other development tools.
For instance, modern software engineering IDEs pro-
vide easy to use re-factoring, documentation and inte-
gration with version control tools. The tools we used
to design and implement the underlying OOBNs for

our tool still lack powerful refactoring, making the
management of object interface changes a time con-
suming and error prone task. Integrated source control
is non-existent and documentation tools rudimentary.
Improvements in these areas would make working with
OOBNs far more accessible to the type of user that
wishes to make use of OOBNs for natural resource
management.

With respect to spatialising the ST-OOBN with the
use of OOSBNs, there is currently no graphical tool
up to the task of facilitating the integration of the re-
quired components. This means that anyone wanting
to replicate our work would need to make use of the
available APIs and this constitutes a barrier to usage
by people with no or little programming background.
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