
Data In Context: Aiding News Consumers
while Taming Dataspaces

Adam Marcus
∗

, Eugene Wu, Sam Madden
MIT CSAIL

{marcua, sirrice, madden}@csail.mit.edu

...were it left to me to decide whether we should have a gov-
ernment without newspapers, or newspapers without a gov-
ernment, I should not hesitate a moment to prefer the latter.
— Thomas Jefferson

ABSTRACT
We present MuckRaker, a tool that provides news consumers
with datasets and visualizations that contextualize facts and
figures in the articles they read. MuckRaker takes advantage
of data integration techniques to identify matching datasets,
and makes use of data and schema extraction algorithms to
identify data points of interest in articles. It presents the
output of these algorithms to users requesting additional
context, and allows users to further refine these outputs.
In doing so, MuckRaker creates a synergistic relationship
between news consumers and the database research commu-
nity, providing training data to improve existing algorithms,
and a grand challenge for the next generation of dataspace
management research.

1. INTRODUCTION
One of the basic mechanisms through which end-users

consume and interact with data is by reading a news source.
Many articles are based on one or a few data points, be it
the earnings of a company, new unemployments numbers
for a country, or the number of people at a political rally.
Infographics compactly present a larger set of points, typi-
cally through aggregate statistics grouped temporally or by
category. Investigative efforts often uncover and join sev-
eral datasets to deliver a story. In business reporting, the
data is even more apparent: companies like Reuters and
Bloomberg are successful in part because they generate and
serve enormous amounts of data. In each of these examples,
the end product—an article or a graphic—is conceptually
a view over a dataset. For example, when reporting the
earnings of a specific company, the article presents a view
of a dataset of all company earnings in the same quarter, or
earnings of the company during previous quarters.

In this light, an article’s background includes tuples out-
side of the existing view; access to extra information would
allow the reader to better understand the article’s context.
However, articles may miss key contextual cues for many

∗Eugene and Adam contributed to this paper equally.

Copyright c© 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

reasons: 1) A lack of space or time, as is common in minute-
by-minute reporting 2) The article is a segment in a multi-
part series, 3) The reader doesn’t have the assumed back-
ground knowledge, 4) A newsroom is resources-limited and
can not do additional analysis in-house, 5) The writer’s
agenda is better served through the lack of context, or 6)
The context is not materialized in a convenient place (e.g.,
there is no readily accessible table of historical earnings).
In some cases, the missing data is often accessible (e.g, on
Wikipedia), and with enough effort, an enterprising reader
can usually analyze or visualize it themselves. Ideally, all
news consumers would have tools to simplify this task.

Many database research results could aid readers, par-
ticularly those related to dataspace management. Matching
records from articles with those in a relation is an entity res-
olution problem; aggregating contextual information from
multiple sources is a schema matching and data integration
problem; searching for the missing data is a deep web prob-
lem; extracting relations from web-pages and text is solved
by projects like TextRunner [9] and Webtables [3]. While
these efforts have pushed the limits of automated solutions,
recent human-assisted approaches present new opportuni-
ties. Existing automated algorithms can be semi-automated
by asking humans to vet algorithmic results and iteratively
improve the algorithms over time. We believe news is an
ideal match for this problem.

We believe that, given the promise of contextualized arti-
cles, readers would be willing to answer a small number of
simple questions. For example, we might ask a user to high-
light the data in question, identify related datasets, ensure
the data in an article properly maps to a dataset, or to select
a visualization. Fortuitously, each small task generates in-
puts for semi-automated dataspace management algorithms.
Readers can also benefit from previous users’ answers and
view previously generated context without additional effort.

We view data in context as a grand challenge in dataspace
management. If we design algorithms that are good enough
to be guided by an average reader and provide the context
they lack, then both society and the database community
benefit. In addition, journalists can use the same tools to
proactively identify relevant datasets or visualizations.

We envision a proof-of-concept user interface for an arti-
cle contextualization service called MuckRaker. It serves as
a front-end to the numerous database problems mentioned
above. We have developed it as a bookmarklet for web
browsers that allows users to select a data point on a web-
page, answer a few questions about its context and origin,
and see a visualization of a dataset that contextualizes their

1

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

47



reading experience. In this paper we outline:
1. A user interface for interacting with data items on the

web that contextualizes them,
2. A study of the difficult dataspace management prob-

lems average news consumers can help solve, and
3. A collection of the challenges posed by data embedded

in articles that span the web.

2. TALE OF TWO COMMUNITIES
The problem of contextualizing data lies at the intersec-

tion of two communities—news consumers and the database
community—and can benefit both. As a social endeavor, we
believe it encourages the general population to interact with
data. MuckRaker not only helps curious readers better un-
derstand the news, but can help users spot biased attempts
to generalize a single outlier data value as the norm. It serves
the data management systems by helping clean, normalize,
and aggregate data that consumers care about.

The unfettered MuckRaker vision encompasses several open
problems facing the database community. We believe vari-
ants of the problem are tractable and can be solved with
careful application of existing approaches. In the rest of
this section, we illustrate how a constrained instance of this
problem can be solved for an example article that centers on
a car bombing in Iraq1. We first describe MuckRaker from a
user’s perspective, then explore a viable system implementa-
tion, and finally explore extensions to increase MuckRaker’s
utility and introduce interesting research problems.

2.1 A Tool for News Consumers
Suppose a user reads an article about a car bomb in Iraq

and wants to know the scale of similar attacks. She clicks
the MuckRaker bookmarklet (Figure 1a), which asks her to
select the region of text that she would like contextualized.
The user highlights the sentence “Twin car bombs exploded
in central Baghdad on Tuesday, killing at least 19 people.”
MuckRaker extracts key entities and values around the high-
lighted region, and presents the data to the user (Figure 1b).
MuckRaker could not identify attribute names for the first
and last column, and prompts the user to fill them in. The
attribute name in the third column is not precise enough,
so the user can click it to edit the name. When the user is
satisfied, she clicks “Find Context.”

MuckRaker receives a request containing the highlights
and extracted data. MuckRaker finds contextual informa-
tion about the article using article type classification, fact,
entity and numerical extraction, and other natural language
processing techniques. This information, weighted by its
distance to the selected text, is fed to algorithms described
in Section 2.2. The information and the tables ranked most
relevant by the algorithms are presented to the user (Figure
1c). The user can select the desired table, or update this
information and re-execute the matching algorithms.

In this example, the first table is a list of mass bombings2

and the second is of civilian casualties during the first two
weeks of the Iraq war3. If a matching row exists, MuckRaker
will attempt to populate empty fields with new data values.

1http://www.nytimes.com/2012/08/01/world/
middleeast/twin-car-bombs-hit-central-baghdad.html
2http://cursor.org/stories/iraq.html
3http://en.wikipedia.org/wiki/List_of_mass_car_
bombings

(a) MuckRaker bookmarklet.

(b) User selects data in text.

(c) Tables and article context.

(d) Visualizations.

Figure 1: The MuckRaker user interface.2

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

48



In this case, neither table contains the user-selected data
point, so MuckRaker inserts the data into both tables, and
fills as many of the matched fields as possible. The row
is highlighted for the user so that she can optionally fill
in missing fields. She is interested in mass bombings, so
selects the first table, corrects the date field, and fills in
the type column with “car bomb,” which is autocompleted.
When she clicks “Use this table,“ the updated row is sent
to MuckRaker, and she is shown condidate visualizations.

MuckRaker selects an initial visualization using the se-
lected dataset. Previous users commonly created timeseries
and maps, and Figure 1d shows these top plots: deaths by
date and deaths by location. It highlights the new data
point to identify contextual data (the red points). The user
can specify that she is interested in different columns and
construct her own chart through a chart builder, where she
can specify chart types, axes, filters, and facets. MuckRaker
stores the visualization configuration that the user picked,
and uses it to bootstrap future requests.

2.2 Database Community
We believe that data in context can be implemented at a

basic but useful level using existing technology. We hope the
database community can use the core system as a starting
point for numerous research problems. In the rest of this
section, we sketch a basic implementation, and then describe
how user interactions can both improve existing algorithms
with training data, and introduce new challenges that must
be addressed by future data contextualizing systems.

2.2.1 Core Implementation
The MuckRaker interface is implemented as a browser

bookmarklet (Javascript that operates on the current web
page). We assume that we start with a reasonable collection
of tables that are clean, deduplicated, and complete. In ad-
dition, table metadata includes the surrounding text (e.g.,
Wikipedia article text). This data can be bootstrapped from
sites like Wikipedia and groups such as the world bank, or
through techniques like those in work by Cafarella et al [3].

User-selected text is sent to a backend server, which ex-
tracts numbers and their units (e.g., $, miles), dates, and
known entities. Entity extraction algorithms such as Know-
ItAll [6] can identify the key nouns and topics. We can ask
the user to clean and highlight the extracted values.

The set of possible tables is filtered by clustering the arti-
cle text with table metadata. For example, an article related
to the Iraq war will match tables extracted from Wikipedia
articles about Iraq. We can further reduce and rank tables
by canonicallizing user-specified attribute names using tech-
niques similar to those used by Das Sarma et al [5] to per-
form schema ranking. A final ranking comes from comparing
the table values with those in the user-extracted record.

2.2.2 Research Problems
The user interaction provides a number of strong signals

that make for interesting research problems. We describe
some problems in the context of interactions in the extrac-
tion, selection, and visualization phases of the user workflow.
Data Extraction and Integration. The user-selected
text explicitly defines record boundaries. The collection of
all user highlights can be used to train classifiers to detect
strings that contain records, and focus the analysis that data
record extractors like TextRunner [9] need to perform.

The user can facilitate record extraction, but values may
be named, formatted, or scaled inconsistently with existing
tables. With a tighter human-in-the-loop training cycle, we
have more hope for improving such extraction anomalies.

Another classification challenge lies in identifying the type
of context that the user interested in. She may want to see
an IBM earnings report in the context of historical earnings
instead of similar technology companies (select the appropri-
ate attributes). Alternatively, a European reader may prefer
to see European companies rather than American companies
(select the best records). Subdividing context automatically
according to user preferences is a key challenge.
Structured Search. Das Sarma et al. recently studied
related table search [5], where a user specifies a table and
the search engine identifies others that either extend the ta-
ble horizontally or vertically. MuckRaker requires a similar
search, but uses partial examples extracted from article text.

In addition, identifying the table is not enough. To be use-
ful, tables must be transformed (e.g., currency conversion),
projected, filtered (e.g., identify small number of representa-
tive rows), and aggregated (e.g., aggregate county statistics
to report state granularity statistics). Learning these steps
is another research challenge.
Visualization. Automated Visualization selection is diffi-
cult because it is both a dimensionality reduction problem
and a design problem. Historical earnings are best plotted
as a time series, while the comparative earnings of similar
companies is better represented with a bar chart. A human
in the loop would better assist and train these decisions.

MuckRaker can gather large volumes of training data of
user-perferred columns based on the final visualizations that
the user selects. One project that has facilitated user-driven
visualization construction is the ManyEyes project [8], and
we can use its findings as a basis for our design.
Data Management. The projects that have most closely
integrated these individual research problems into a larger
data integration and search system are TextRunner [9] and
WebTables [3]. To the extent that these projects have been
evaluated by how much deep web data can be added to web
search indices, we think that the grand challenge raised by
contextualizing data serves as a higher bar. While indexing
websites by the data they store is useful, being able to re-
trieve datasets that are relevant to a user’s current context
would be even more powerful. The WebTables authors re-
alize this as well: Fusion Tables [7] surfaces the data found
in web tables and other datasets directly in search results,
suggesting that search-based structured data retrieval is a
meaningful measure of the effectiveness of these techniques.

3. GENERALIZING MUCKRAKER
In the interface described above, all user actions succeeded:

the user found the correct dataset, the new record was rea-
sonably extracted, there were no duplicate records in the
table, and roughly one relevant record was extracted from
the article. We now consider more challenging cases, and
how the user interface can be augmented to handle them.
No matching datasets. Consider a situation where the
user highlights some text and clicks “Search,” no useful
datasets are returned. In these situations, the user can uti-
lize the search bar in Figure 1c to enter her own keywords,
and potentially find the dataset. Failing that, she can click
on “I can’t find a dataset,” and be prompted to either: 1)

3

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

49



Point at a webpage containing the dataset, or 2) Specify col-
umn headings (the schema) and row that can be extracted
from this document in a spreadsheet interface. In scenario
1, an automated extractor can present the user with the
newly extracted dataset, and in scenario 2, MuckRaker can
search again for a matching dataset with the given schema
and data point. Should this final search fail, the user will
be invited to add more entries to the spreadsheet.
Incorrect extraction. In situations where a dataset is
correctly identified but records are extracted incorrectly, the
user can edit the row in the familiar spreadsheet interface of
Figure 1c. It is possible that a user will incorrectly add field
values, but MuckRaker aggregates multiple user corrections
before trusting any one user’s input.
Duplicate data. Duplicate rows within a table can arise
if multiple users submit different articles about the same
event. We can handle these by calculating a similarity mea-
sure between rows. For any newly added row that is above
some threshold similarity to an existing row, we can ask a
user to verify that the user indeed means to add a new data
point. Data duplicated across tables requires more care. We
wish to know when a table should be merged with another
table, which might happen when enough rows between two
tables are similar. In this situation, we can ask a user during
dataset search (Figure 1c) whether the table they selected is
the same as another one. If the user indicates that it is, they
are then presented with the columns of both tables aligned
by a schema mapping algorithm, and invited to re-arrange
the mapping as they see fit. The system can merge two
tables if enough users mark them as merge candidates.
Article-embedded datasets. So far, our user has high-
lighted a sentence that roughly translates to a single record
in a table. It is often the case that an article discusses more
than one data point. For example, an article that describes
a trend essentially embeds multiple points from a timeseries
into a dataset. Alternatively, an article summarizing a study
that compares multiple groups of people would embed data
about each group. Summarizing all of the extracted points
in a table might be cumbersome for the user. It might be
simpler to summarize the extacted data in a visualization,
allowing the user to drag the points of a timeseries to match
a trend, or move the bars in a bar graph to represent the
relative differences between groups.
Uncertain facts. It is often the case that the news cov-
ers facts that contradict one-other (e.g., “Prior link between
cancer and fruit juice challenged in latest research”). Other
facts might simply expire over time. For example, records
that refer to “The President, aged 51” refer to a different
president or an incorrect age depending on the date of the
article. A user overseeing the data extraction that knew
good schema design practices (e.g., storing The President’s
date of birth rather than an age) could have avoided some
of these issues, but MuckRaker does not leave schema de-
sign to expert database designers. To handle these types of
expiration and uncertainty, attaching a source and date to
extracted data may help, as would periodically asking users
whether certain records are still valid in a table.

4. CONCLUSION
The core contribution of MuckRaker is to utilize a mixed-

initiative interface to improve dataspace management oper-
ations as a byproduct of contextualizing the news. It would
be interesting to see where else the insertion of a lightweight

user interface can act as a boon to database research while
benefitting another community.

There have been other calls to arms in the database com-
munity to assist the journalism process. Most prominently,
Cohen et al. outlined many ways in which computational
journalism can be aided by database research in areas such
as fact checking and hypothesis finding [4]. The PANDA
project [1] aims to provide centralized dataset storage and
search functionality within newsrooms. DataPress makes it
easier to embed structured data and visualizations into blog
posts [2]. MuckRaker approaches the journalism-data inter-
face from a different perspective: it seeks to aid news con-
sumers in situations where the Journalism process has left
them with an incomplete picture of the world. It can also
help journalists and editors preempt this problem by helping
them find contextualizing datasets and visualizations.

A key question in designing the MuckRaker experience is
whether the interface we are designing is lightweight enough,
or whether we are asking for too much from any one user.
In exchange for context behind an article, we believe users
are willing to answer a few small questions, mostly through
point-and-click interfaces. If it turns out that we are asking
too much from each user, however, we can design interfaces
that load-balance the data integration, extraction, and vi-
sualization tasks across users, especially in scenarios where
multiple users are reading the same article.

In presenting MuckRaker, we hope to bridge the gap be-
tween end-users and deep data exploration. We hope that
the database community is excited to improve on its algo-
rithms with help from the average news consumer.

5. REFERENCES
[1] The PANDA project, August 2012.

http://pandaproject.net/.

[2] E. Benson, A. Marcus, F. Howahl, and D. Karger.
Talking about data: Sharing richly structured
information through blogs and wikis. In ISWC. 2010.

[3] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. WebTables: exploring the power of tables on
the web. Proc. VLDB Endow., 2008.

[4] S. Cohen, C. Li, J. Yang, and C. Yu. Computational
journalism: A call to arms to database researchers. In
CIDR, 2011.

[5] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee,
F. Wu, R. Xin, and C. Yu. Finding related tables. In
SIGMOD, 2012.

[6] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates.
Unsupervised named-entity extraction from the web:
an experimental study. Artif. Intell., 165(1):91–134,
June 2005.

[7] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen,
J. Madhavan, R. Shapley, W. Shen, and
J. Goldberg-Kidon. Google fusion tables: web-centered
data management and collaboration. In SIGMOD,
2010.

[8] F. B. Viégas, M. Wattenberg, F. van Ham, J. Kriss, and
M. M. McKeon. ManyEyes: a site for visualization at
internet scale. IEEE Trans. Vis. Comput. Graph., 2007.

[9] A. Yates, M. Cafarella, M. Banko, O. Etzioni,
M. Broadhead, and S. Soderland. TextRunner: open
information extraction on the web. In ACL, 2007.

4

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

50


