
Sequential Approaches for Predicting Business
Process Outcome and Process Failure Warning

Mai Le1, Detlef Nauck2, and Bogdan Gabrys1

1 Bournemouth University, Bournemouth, UK
mai.phuong@bt.com,bgabrys@bournemouth.ac.uk

2 BT research, Ipswich, UK
detlef.nauck@bt.com

Abstract. Large service companies like telecommunication businesses
run complex customer service processes in order to provide communica-
tion services to their customers. The flawless execution of these processes
is essential since customer service is an important differentiator for these
companies. They must also be able to predict if processes will complete
successfully or run into exceptions in order to intervene at the right time,
pre-empt problems and maintain customer service. Business process data
is sequential in nature and can be very diverse. Thus, there is a need for
an efficient sequential forecasting methodology that can cope with the
diversity of the business data. In response to these requirements, in this
paper we propose an approach which is a combination of KNN (K near-
est neighbour) and sequence alignment for predicting process outcome.
The proposed approach exploits temporal categorical features of the ex-
tracted data to predict the process outcomes using sequence alignment
technique, and also addresses the diversity aspect of the data by con-
sidering subsets of similar process sequences, based on KNNs. We have
shown, via a set of experiments, that our model offers better results
when compared with original KNNs and random guess-based methods.
We also introduce a rule based technique based on GOSPADE, which de-
tects the repetitions of individual tasks and investigates the relationship
between them and the process failure. The results are demonstrated in
a comprehensive performance study on real business process data sets.

1 Introduction

Process mining is a relatively young research discipline but has been attracting
growing attention recently due to its capability for predicting process outcomes.
In every organisation, there are a large number of business processes to be dealt
with on a daily basis. A business process is a sequence of tasks/activities that
need to be completed to produce a product or to provide a service. Business
processes need to be carefully monitored and controlled (business process man-
agement) to be effective and efficient.

The idea behind process mining is to discover, monitor and improve pro-
cesses, aiming for excellent process execution. Process mining models contribute
to many phases in business process management including the diagnosis phase,

1



operational support, etc. [1], [2], [3]: during the execution phase the process is
monitored and can be slightly adjusted without redesigning the process; in the
diagnosis phase, the enacted process is analysed and the outcome of this analysis
can be used to redesign the process; Predictions and recommendations based on
models learnt from historical data can be used for online maintenance because
being aware of what might happen helps managers to set up suitable strategies
to intervene on time [4]. For example, it is of interest to investigate certain loops
that might lead to process failure; suggesting an optimal way to complete the
process starting from the current step etc.

Such models can be drawn from a rich source of mathematical models in
data mining [5]. However, due to the complexity and diversity of process data as
well as the sequential nature of process data, it seems to be poorly aligned with
any single classical data mining technique. Similar to data from business process
executions, customer behaviour data also consists of asynchronous sequences
and is considered as a kind of stochastic process. Customer behaviour data is
described by sequences of interactions between the customers and the company
while business processes are described by sequences of process events, i.e. steps
or tasks. In both cases the events and the entities (customers or jobs) that move
through the process instances are described by additional attributes. Therefore,
in this study we use both types of data, business process data and customer
behaviour data in order to test out if our proposed model is generic in terms of
dealing with sequential data.

This paper introduces a new K nearest sequence method which is able to
deal with sequential data. Our objective is to group similar sequences together
expecting that sequences which behave similarly in earlier steps go to the same
final step. In order to create a KNN model, which addresses the diversity and
the temporal character of the data, an original KNN is combined with sequence
alignment technique.

In our area of application we consider a number of sequences in which we want

to find K sequences which are most similar to a given sequence S(s
(j)
1 , . . . , s

(j)
nj ),

where j is the identity of the sequence. The similarity is determined using a
distance function and, the prediction should be the majority class among classes
of the K nearest sequences. This method is used in [6] to predict churn using
data from a telecommunication company. The authors combined KNN and the
theory of survival. In their work, Euclidean distance is used to calculate the
distance between the given sequence and all sequences in the data sample. As
our data consists of event sequences, in this study we use the edit distance in
the process of comparing two sequences.

It is also of interest to look into loops, which occurred in the data, to identify
some of them might lead to process failure. Hence, apart from the proposed
predictive models, in this paper we employ a potential technique in order to
provide warnings about process failure. It is based on a special algorithm in
association rules called GOSPADE [7] and it enables us to detect loops and the
links between them and the process failure.

2



The problem can be formulated as follows: A business process instance (Sj)
is a composition of discrete events (or tasks) in a time-ordered sequence, Sj

=
{
s
(j)
1 , s

(j)
2 , . . . , s

(j)
nj

}
, sk takes values from a finite set of event types E =

{e1, . . . , eL}. Apart from its starting time t
(j)
i and ending time T

(j)
i , each of these

events has its own attributes. For simplicity, we assume that a process does not
contain any overlapping events, that means there are no parallel structures.

The goal is to predict the outcome (success/failure) of a given process in-

stance SN+1 =
{
s
(N+1)
1 , s

(N+1)
2 , . . . , s

(N+1)
i−1

}
based on the data from closed pro-

cess instances S = {S1, S2, . . . , SN} and to determine if the consecutive repetition
of a task Sj potentially leads to a failure for the considered process instance.

The remainder of this paper is organised as follows: Section 2 presents the
proposed models for predicting the process outcome. Section 3 discusses the
GOSPADE algorithm based loop failure detection (LFD) technique. It is followed
by Section 4 with a brief review of the data used in our analysis before we present
the results of our experiments. In Section 5, we conclude the paper and discuss
future directions.

2 Sequential KNNs

To determine sequence similarity both distance measure and similarity measure
can be used. For numeric variables well-known distance measures exist and can
be easily applied. However, in sequence analysis sometimes we have to work with
sequences which are constructed from symbols, e.g. categories (churn prediction),
phonemes (speech recognition) or characters (hand-writing recognition), etc. We
need specialised functions which have the ability of measuring the similarity of
symbolic sequences.

2.1 Sequence Alignment

Sequence alignment is very common in bio-informatics and has a relatively
long history in this domain. The target entities of sequence alignment in bio-
informatics are amino acid sequences of proteins, DNA sequences, etc. Sequence
alignment is used for a number of purposes [8]. Algorithms used in sequence
alignment are mainly divided into global alignment and local alignment. Global
alignment provides a global optimisation solution, which span the entire length
of all query sequences. In contrast, local alignment aims to find the most similar
segments from two query sequences. In this work, both types of alignment are
investigated to verify which one is effective in determining the similarity between
the two sequences, the overall comparison between two given sequences or the
most similar (consecutive) segments. The similarity between process sequences
is used to predict the process outcomes.

– Global algorithm

3



In this kind of algorithms, sequences are aligned from the first event to the
last one. One such algorithm was introduced by Needleman and Wunchs [8].
There are three characteristic matrices associated this algorithm: substitu-
tion matrix, score matrix and traceback matrix. The role of the substitution
matrix is to generate the degree of matching any two events from the set of
event types, or in other words matching subsequences of length 1. This de-
gree which is irrespective of the position of the events then contributes to the
matching score in the score matrix that consider the complete sequences, i.e.
all events in the order they occur. Given two sequences, we then have to con-
sider the order of the events and compute the score of matching the ith event
in one sequence with the jth event in the other sequence, i = {1, . . . , len1},
j = {1, . . . , len2} and len1, len2 are the lengths of the two given sequences.
These scores define the score matrix. Finally, the trace back matrix encodes
the optimal way of matching both sequences from a number of possible
matches. We now introduce these three matrices.

1. Substitution matrix: in biology a substitution matrix describes the rate
at which one amino acid in a sequence transforms to another amino
acid over time. The entries of this matrix present the probabilities of
transforming one amino acid to another. There are different ways of
generating the substitution matrix. The simplest way is to not take into
account the amino acid mutation factor, instead just give a score of 1 to
the same amino acids and use a score of 0 to a pair of different amino
acids.

s(i, j) =

{
0 if eventi ̸= eventj
1 otherwise

In this case, the substitution matrix is an identity matrix, the elements
of the main diagonal are 1 and all the others are 0.

2. Score matrix: This matrix’s elements are similarity degrees of events
from the two given sequences.

hi0 = −δ × i, (1)

h0j = −δ × j, (2)

hij = max {hi−1,j − δ, hi−1,j−1 + s(xi, yj), hi,j−1 − δ} , (3)

where i = {1, . . . , len1}, j = {1, . . . , len2}. δ is a specific deletion/insertion
penalty value chosen by users. hi0 and h0j are the initial values needed
for the recursive formula in order to compute the entries of the score
matrix hij . xi and yj are events at positions i and j from the given se-
quences. s(xi, yj) is the score from the substitution matrix corresponding
to events xi and yj .

4



3. Traceback matrix: Elements of this matrix are left, diag or up depending
on the corresponding hij from the score matrix. These entries are built
as follows.

q(i, j) =

diag if h(i , j ) = h(i − 1 , j − 1 ) + s(i , j )
up if h(i , j ) = h(i − 1 , j )− δ
left if h(i , j ) = h(i , j − 1 )− δ

(4)

This matrix is used to track back from the bottom right corner to the
top left corner to find the optimal matching path. Starting from the
bottom right element, one moves in the direction given by the element
which can be left, up or diag. This leads to another element with its
own instruction (up, left or diag). By following the chain of directions
the element at the top left corner is reached. The obtained path is the
optimal way of matching the two given sequences.

– Local algorithm
The aim of local algorithms [9], [10] is to find a pair of most similar segments,
from the given sequences. In this algorithm, a matrix of similarity degrees is
built based on the following formula:

hi0 = h0j = h00 = 0, (5)

where hi0, h0j and h00 are the initial values for the recursive formula that is
used to compute hij . Note that this is different from the global alignment.
The initial values are set to be 0 because in local alignment it is not important
where the common segment starts, the aim of the local alignment is to find
the most similar segments of two given sequences.

hij = max {hi−1,j − δ, hi−1,j−1 + s(xi, yj), hi,j−1 − δ, 0} , (6)

where s(xi, yj) is the element of the substitution matrix as presented in the
previous paragraph for global alignment.
The ith event in a sequence can be aligned to the jth event in another
sequence, or can be aligned to nothing (deletion). This leads to a number
of possible matchings of the two sequences. The optimal pair of aligned
segments is identified by first finding the highest score in the matrix. This
element is the end of the optimal aligned path. Then, the path is filled by
tracking back from that optimal highest score diagonally up toward the left
corner until 0 is reached.

2.2 KNNs Combined with Sequence Alignment

KNN is one of the classical approaches in data mining [11]. The model automat-
ically selects sequences from the continuously updated data. KNN can be used
as original non sequential approach [12] or extended into sequential approach
[6]. The core idea is to find similar sequences expecting these sequences have
a common behaviour and outcome. This expectation is understandable and is

5



common, for example in biology, similar DNA or protein sequences are hoped to
have the same shape function.

Due to the sequential nature of business processes, we want to extract K
similar sequences in terms of their temporal characteristics not numerical quan-
tities. That is why the initial idea is to adopt the sequence alignment approach
from biology and combine it with KNNs. To estimate the similarity between two
sequences, the longest common segments between them can be used as crite-
rion. The local sequence alignment can be applied directly. Alternatively, two
sequences can be aligned globally, this finds the optimal matching by aligning
from the first event to the last one of the two sequences. In this case, global
matching allows us to compare the sequences in a whole rather than focus
on their most similar consecutive segments. The resulting approach is named
KNsSA (K nearest sequence with sequence alignment).

3 GOSPADE based Loop Failure Detection

Association rules are popular in areas like marketing, decision making and man-
agement support. They are used to detect information in the form of if-then
rules or sequential patterns. For instance, retailers want to know which products
customers usually purchase together (basket analysis). There are a number of
studies in this area covering different aspects: rules of single level concepts, mul-
tiple level concepts, usefulness of rules and how to efficiently detect rules from a
large data set with consecutive repeated tasks [13], [14], [11], [15], [7], [16], [17],
[18].

3.1 Association Rule Mining

The aim of association rule mining is to find frequent patterns in a data set. Given
ei and ej which are transactions or events, ei ⇒ ej means if a sequence Sk in S
contains ei then ej is contained in that sequence with a certain probability. In
addition, the number of sequences in which ei ⇒ ej appears is required to be
larger than a given minimum support.

Definition 1. The support of an event or association rule is the ratio of the
number of sequences in the data sample which contain the considered event/rule
with the number of all sequences.

Definition 2. The confidence of an association rule is the ratio of its support
with the support of.

There are a number of algorithms in association rules. Some of them were de-
veloped to capture the taxonomy structure of the problem, some of them are
suitable to deal with repetition in the data:

– A-priori algorithm and some of its extensions [14] (basic).
– Generalizations of sequential patterns algorithm [18] (a-priori extension).
– ML (multiple levels) algorithm and some variations [15] (taxonomy).
– SPADE and GO-SPADE algorithms [7] (repetition).

6



3.2 GOSPADE Algorithm Variant for Loop Failure Detection

Intuitively, repetitions might slow down the completion of a process. Hence, we
would like to look into the data and search for rules related to task repetition
(loops) and the outcome of the process (success/failure). The GO-SPADE algo-
rithm was designed to deal with consecutive data and it is suitable for detecting
loops. We now introduce some concepts in association rule mining in order to
help us to illustrate the principle of the GOSPADE algorithm which is briefly
discussed afterwards:

Definition 3. A rule of length k (composed of k elements) is called k-frequent
sequence (pattern).

Definition 4. Prefix p of a a k-frequent rule z is the subsequence of z which
consists of the first (k − 1) elements.

Definition 5. Suffix s of a rule z is its last element.

Definition 6. The location information of a pattern is listed and stored in a
table, called idList. This information consists of the Id of the sequence in which
the pattern occurred, the position of the pattern in the sequence and the rule itself
(each pattern has its own idList). These sequence Ids and positions are denoted
sid and eid respectively (please see Tables 1). While scanning through the data,
each time the considered pattern occurs, a new row is added to the list for storing
the information about the Id of the corresponding data sequence as well as the
position of the pattern in the sequence. If the pattern is of length 1 then eid is
the position of the task in the given sequence, otherwise eid is the position of
the last task in k-frequent sequences when k > 1. To present the repetition of
a pattern, instead of storing repeatedly it in different rows in the list, only one
row is added to store the pattern by listing all of the eids. Since the information
of the sequence Id and the pattern itself are the same for these repetitions. The
eids of the replaced pattern are then written in interval form [i, i + j], where i,
i+1, . . ., i+j are the eids of the consecutive repeats of the pattern. If the pattern
occurs only once at position i, we write [i, i].

The GO-SPADE algorithm consists of two stages:

– Generate candidates step: in the original algorithm, SPADE distinguishes
two types of patterns, event patterns and sequence patterns. These types of
patterns are determined based on the relationship between a prefix and its
corresponding suffix. If the last item of the prefix p occurs at the same time
as the suffix s, the pattern is called event pattern and is denoted ps. If the
suffix s occurs strictly after the last item of the prefix p then the pattern is
called sequence pattern and it is denoted p → s. In our case, the available
data consists of sequences of events. As mentioned in the introduction par-
allel structures are not considered and we are looking at sequence patterns.
However, we work with loops only so the only IdList we have to investigate

7



is IdList of length 1. It then does not matter if we are dealing with event
patterns or sequence patterns.
Let us consider event patterns for the sake of explaining the algorithm in a
simple way. For more detail, refer to [7]. In the first step, candidate frequent
patterns are generated. To generate frequent patterns of length k + 1, all
frequent patterns of length k which have the same prefix k − 1 are consid-
ered. Once we have all k frequent patterns with the same k − 1 prefix, the
corresponding IdLists are used. Consider two k-sequences z1 = (p1, s1), z2 =
(p2, s2), p1 = p2 and the corresponding IdLists IdList(z1) and IdList(z2). If
prefixes p1 and p2 are the same, z1 and z2 are merged to generate a new
frequent sequence z. For instance, the generated sequence is z = p1s1s2.
To compute the IdList for the generated sequence IdList(z), a join operation
is used. If sid1 is the same as sid2 then compare the eid of suffixes s1, s2
if eid1 is smaller than eid2 then chose eid2 as the eid of the new frequent
sequence in case the support of generated sequence is bigger than minimum
support.

– Counting support step: in GO-SPADE, it is easy to count the support of the
generated sequences. It does not need to go through the data base to count
the support of a candidate sequence. All the required information is already
stored in its IdList.

Example: given four process instances (sequences) P1: AAACB - success, P2:
BAB - failure, P3: BCD - success, and P4: ABBCDD - failure. Assume that
we want to detect loops and just need to generate the IdLists of single events.
The 1-IdList(A) generated from the given sequences is illustrated in Tables 1:
Based on the IdLists for A, B, C and D, we select all the loops to generate a

sid eid Task Loop

P1 [1, 3] A L
P2 [2, 2] A No
P4 [1, 1] A No

Table 1. The corresponding IdList of pattern of length 1 IdList(A).

new list as illustrated in Table 2. Based on the resulting list, we compute the
percentages of failure and success. This GOSPADE based technique is the loop
failure detection technique.

4 Evaluation

4.1 Data Preparation

We carried out a number of experiments based on records from three real pro-
cesses (DS1 − 3) from a multi-national telecommunications company. In these
datasets, the population of process instances turned out to be very diverse and

8



sid eid Outcome Task Loop Support Confidence

P1 [1, 3] S A L 25% 1.0
P4 [2, 3] F B L 25% 1.0
P4 [5, 6] F D L 25% 1.0

Table 2. Loops and corresponding process outcomes found by LFD technique from a
studied data set.

not straightforward to work with. DS1 represents a small scale set with only
10000 entries, 633 process instances, and hundreds of unique tasks. DS2 is also
a real process with 11839 entries, 576 process instances with different lengths,
and also has hundreds of unique tasks. The lengths of process instances in DS2
vary considerably. Last of all, DS3 is a customer behaviour data set used for
churn prediction. This data set consists of 8080 customer records, each record
is a sequence of events related to a customer. There are four types of events
in churn data, churn, complaint, repair and provision. These customer event
sequences are also of different lengths. Among these 8080 sequences, only 161
sequences contain a churn event. This shows the skewness of the data. Therefore,
we artificially created new datasets with different ratios between non-churn and
churn sequences in order to reduce the skewness of the data and to investigate
if it had strong influence on the prediction model.

As we aim to predict the process outcome and to provide warning about
process failure, it is necessary to label the outcome as either success or failure and
this needs to be done before the proposed method can be applied. It is non-trivial
to define process success or failure. In the case of DS2, the difference between
the actual delivered date and the delivered date promised to the customer is
used as the criterion to determine the success and failure. Particularly, if the
actual delivered date is before the agreed date, that process instance is classified
as success, otherwise, it is classified as failure. In contrast to DS2, DS1 and
DS3 (churn and no churn labels) have available labels and therefore, they can
be used directly as input for the proposed model.

4.2 Results for Predictive Models

To evaluate KnsSAs, we benchmarked our models with two other approaches:

– RM - Random Model : in order to find the outcome of the process, we ran-
domly generate a number between 0 and 1, if the generated number is greater
than 0.5 the outcome is success (1) and vice versa if the generated number
is smaller than 0.5 the outcome is failure (0).

– Original KNN : we chose K nearest sequences in terms of having common
unique tasks. For example, given two sequences ABD and AAC, there are
one A, one B and one D in the first sequence, there are two A’s and one
C in the second one. Each unique task can be considered as one category,
distance for each category is computed then the sum is taken to obtain
the total distance between any two given sequences. For instance, the two

9



sequences given above consist of four categories A, B, C and D. The distance
of category A is dA = 1, and those of categories B,C,D are dB = 1, dC = 1
and dD = 1 respectively. The resulting total distance of these two sequences
is d = dA + dB + dC + dD = 4.

For the proposed models, we investigate the effect of K as it is important to
get a reasonable number of similar sequences. As the labels are 0, 1, we decide
to select odd values for K so we can always extract the outcome/label of the
given sequence based on the K obtained sequences. The data sets DS1 and DS2
have a large number of unique tasks and the difference between the lengths of
the sequences is substantial. Intuitively, the value of K should be small taking
into account the diversity of the data. The results of the local KnsSA applying
on data sets DS1 and DS2 are presented in Figure 1:

Fig. 1. Percentage of correct predictions of local KnsSA using data sets DS1, DS2.

We then tested our global KnsSA using the same datasets. The results are
illustrated in Figure 2

Fig. 2. Percentage of correct predictions of global KnsSA using data sets DS1, DS2.

Figures 1 and 2 show that both global KnsSA and local KnsSA are more
accurate when they are applied to DS2. For DS2, global KnsSA with a higher
value of K provides a better performance. When K = 29 the performance of the
global KNsSA is 75%. On the other hand, applying global KnsSA toDS1 did not

10



achieve similar high performance. The highest correct percentage obtained is only
64% with K = 7. Moreover, when K is increased, global KnsSA’s performance
on DS1 decreases. This can be explained as DS1 is more diverse than DS2.

Global and local KnsSAs do not show any difference when they are applied to
DS1. However, they show some difference in the case of DS2. This indicates that
there are no important segments which have influence on the process outcome
in DS1.

The performances of the original KNN, random guess and the proposed mod-
els, local and global KnsSAs, applied to the three data sets are presented in
Figure 3:

Fig. 3. Percentage of correct predictions of different models on data sets DS1, DS2 and
DS3.

The results show that the proposed models outperform both benchmark mod-
els, original KNN and random guess. Especially, in the churn data, the proposed
models capture churn event with a high degree of success whilst the other mod-
els do not. This also implies that the temporal characteristics of the data is
important for predicting the process outcome.

We now present the results of the experiments by applying the two models,
global and local KnsSAs to the churn data, DS3. The results are presented
differently from the results for DS1 and DS2. This change is mainly made for
the sake of dealing with the skewness of the churn data, the proportion between
class 0 and class 1 in DS3 is 98:2 whilst that proportion for DS1 and DS2
is about 40:60. There are four tables which illustrate different aspects of the
experiments’ objectives. Table 3, shows the difference obtained by varying K,
using local KnsSA and the original churn data. Table 4 demonstrates the results
obtained by using local KNsSA when artificial data were created by changing the
ratio between churn and no churn sequences in order to decrease the skewness
of the data. Table 5 shows the performance of global KnsSA when applied to
the former artificial data sets.

It can be seen from Table 3 that K = 3 is the best case for the churn data
as our dataset is not big. Also, when the original data were modified in order to
reduce its skewness, the performance of the model in terms of the churn detection
objective improved even though the overall performance worsened. Intuitively,

11



Results/K 3 5 7

Total test data 809 809 809
Actual tests successful 793 793 793
Actual tests failure 16 16 16
Predicted tests successful 803 805 805
Predicted tests failure 6 4 4
Predicted tests success correct 793 793 793
Predicted tests failure correct 6 4 4
Correct ratio 0.99 0.99 0.99

Table 3. Local KnsSA applied on original DS3 with different K, K = 3, 5 and 7

Results/ratio 0.05 0.10 0.15

Total training data 511 875 1189
Total test data 59 100 135
Actual tests successful 45 83 120
Actual tests failure 14 17 15
Predicted tests successful 45 84 124
Predicted tests failure 14 16 11
Predicted tests success correct 44 80 118
Predicted tests failure correct 13 13 9
Correct ratio 0.97 0.93 0.94

Table 4. Local KnsSA applied on original DS3 with different churn and non churn
ratios K = 3

when the population of churn sequences strongly dominates, it is very likely that
our model could not catch the full churn set. It is shown in Table 3 that there
are only 6 predicting cases with churn and all of them are correct. In the actual
test data, there are 16 cases with churn. Although our model did not catch all of
them, it achieves 100% correctness regarding the churn cases that it predicted.
With the amended data, the overall performance of the model is reduced as well
as the prediction rate for churn. Nonetheless, it is still of interest because out
of 14 churn cases in the testing data, our model predicts 14 churn cases and 13
of them are correct. This amended data set consists of 161 (roughly 2% of the
original data set) churn cases and 10% of the non churn cases of the original
data set.

The results in Tables 4 and 5 show that the local KnsSA outperforms the
global KnsSAs when applied to the churn data set. It might be caused by the
fact that in customer behaviour sequences, only a set of special segments has
strong influence on churn action.

4.3 Results for Warning Technique LFD

The results of the experiments on analysing the relationship between loops and
process outcome using LFD applied to DS1, DS2 and DS3 are illustrated in
the Tables 6, 7 and 8 correspondingly.

12



Results/ratio 0.05 0.10 0.15

Total training data 504 839 1208
Total test data 58 95 137
Actual tests successful 43 79 121
Actual tests failure 15 16 16
Predicted tests successful 48 90 134
Predicted tests failure 10 5 3
Predicted tests success correct 38 78 118
Predicted tests failure correct 5 4 0
Correct ratio 0.74 0.86 0.86

Table 5. Global KnsSA applied on original DS3 with different churn and non churn
ratios with K = 3

Success-Loop 72.88%, Failure-Loop 27.12%

sid eid Outcome Task Loop Support Confidence

9 [1, 2] F A L 0.31 1.00
13 [2, 3] S A L 0.17 1.00
17 [2, 3] S A L 0.31 1.00
23 [2, 3] S A L 0.31 1.00

Table 6. Loops and corresponding process outcomes found by the LFD in DS1.

Success-Loop 17.17%, Failure-Loop 82.83%

sid eid Outcome Task Loop Support Confidence

416 [41, 42] F C L 0.19 1.00
416 [1, 2] F B L 0.21 1.00
421 [15, 16] F B L 0.21 1.00
471 [16, 17] S B L 0.21 1.00

Table 7. Loops and corresponding process outcomes found by the LFD in DS2.

Success-Loop 87.66%, Failure-Loop 12.34%

sid eid Outcome Task Loop Support Confidence

1042 [1, 3] F 4 L 0.89 1.00
1043 [1, 2] S 4 L 0.89 1.00
1044 [1, 3] S 4 L 0.89 1.00
1047 [1, 2] S 4 L 0.89 1.00

Table 8. Loops and corresponding process outcomes found by the LFD in DS3.

13



As the goal is to verify if there is a link between a specified pattern and
the outcome, specifically there is a link between a specified loop and failure,
minimum support and minimum confidence are varied in order to filter out loops
which are not frequent and not interesting. When minimum support is raised,
only loops with high frequency are considered. In general, there is no loop in the
data sets DS1 and DS2 which has high support and confidence.

The experiments don’t show the link between loops and failure as expected
whilst applying LFD to DS1. It is understandable as the loop task is ’contacting
customer’. Obviously, people who executed this process tried to provide good
service by repeating the task. In the case of DS2, the results of the experiments,
in contrast, show the link between loops and failure. DS3 is a special case, there
is no link between loops and failure or success because in general there are loops
in each customer behaviour sequence, loops in task 2 and task 4 have 84% and
89% support respectively.

5 Conclusions

KNNs as a classical data mining approach have been widely used for modelling
and predicting customer behaviour. This paper addresses some shortcomings of
these predictive models, which occur when they are used for sequential data.
Particularly, we propose some extensions to KNNs. These extensions were in-
troduced in order to capture the temporal characteristic of the data and to
profit from KNNs ability to deal with diverse data. Our extensions are tested on
real business process data from a multi telecommunications company and the
experiments provide some interesting results. First, the influence of global and
local algorithms change depending on the data employed. For example, in the
DS1 dataset, there is not much difference between using global KnsSA and local
KnsSA. However, forDS2, global KnsSA is more accurate and in the case ofDS3
local KnsSA outperforms global KnsSA. Even though the highest performance
when predicting process outcome of the proposed models is just 75%, it out-
performs the original KNNs, which proves that it is important to use sequential
data in our problem.

Of all experiments, churn prediction shows the most interesting result. As
churn is a rare event (2% of the data consist of churn), in the testing data set,
there are only around 15 churn cases. Our models correctly capture most of these
cases and percentage correct of churn prediction is very high. In the case of local
KnsSA with K = 3, applied to DS3, out of 14 churn cases, the model predicts
that there are 14 churn cases and 13 of them are correct.

It is interesting to see how the link between loops and process failure changes
from case to case (different processes). In DS1, a specific loop implies that it is
likely the process instance will end up with success. In DS2, there are certain
loops which lead to process failure with high probability.

The experimental results encourage us to adopt the strategy of first grouping
data into similar groups and then dealing with them using suitable approaches
in our future work.

14



References

1. van der Aaslt, W.: Business process management: A personal view. Business
Process Management Journal 10(2) (2004) 135–139

2. van der Aaslt et al, W.: Process mining manifesto. In Daniel, F., Barkaoui, K.,
Dustdar, S., eds.: Business Process Management Workshops 2011. Volume 99 of
Lecture Note in Business Information Processing. Springer, Berlin (2011)

3. Weijters, A., van der Aalst, W.: Process mining discovering workflow models from
event-based data. In: ECAI Workshop on Knowledge Discovery and Spatial Data.
(2001) 283–290

4. van der Aaslt, W., Schonenberg, M., Song, M.: Time prediction based on process
mining. Information Systems 2 (2011) 450–475

5. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2001)
6. Ruta, D., Nauck, D., Azvine, B.: K nearest sequence method and its application

to churn prediction. In Corchado, E., Yin, H., Botti, V., Fyfe, C., eds.: Intelligent
Data Engineering and Automated Learning IDEAL 2006. Volume 4224 of Lecture
Notes in Computer Science. Springer, Berlin (2006) 207–215

7. Leleu, M., Ligotti, C., Boulicaut, J., Euvrard, G.: Go-spade: Mining sequential
patterns over datasets with consecutive repetitions. In: Conference on Machine
Learning and Data Mining in Pattern Recognition. (2003) 293–306

8. Needleman, S., Wunsch, C.: A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins. Journal of Molecular Biology
48 (1970) 443–453

9. Smith, T., Waterman, M.: Identification of common molecular subsequences. Jour-
nal of Molecular Biology 147 (1981) 195–197

10. Waterman, M.: Estimating statistical significance of sequence alignments. Philo-
sophical Transactions of the Royal Society of London, Series B: Biological Sciences
344 (1994) 383–390

11. Berry, M., Linoff, G.: Data Mining Techniques: for Marketing, Sales, and Customer
Relationship Management. Wiley, Newyork (2004)

12. Eastwood, M., Gabrys, B.: A non-sequential representation of sequential data for
churn prediction. In: Proceedings of the KES2009 Conference, Santiago, Chile
(2009)

13. Agrawal, R., Srikant, R.: Fasts algorithms for mining association rules in large
databases. In: VLDB ’94 Proceedings of the 20th International Conference on
Very Large Data Bases. (1994) 487–499

14. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE ’95 Proceedings of
the Eleventh International Conference on Data Engineering. (1995) 3–14

15. Han, J., Fu, Y.: Discovery of multiple-level association rules from large databases.
In: VLDB ’95 Proceedings of the 21th International Conference on Very Large
Data Bases. (1995) 420–431

16. Finding Interesting Rules from Large Sets of Discovered Association Rules. In:
CIKM ’94 Proceedings of the Third International Conference on Information and
Knowledge Management. (1994)

17. Mohammed, J.Z.: Spade: An efficient algorithm for mining frequent sequences.
Machine learning 42 (2001) 31–60

18. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. In: 5th International Conference on Extending Database
Technology: Advances in Database Technology. (1996) 3–17

15




