On Process Rewriting for Business Process
Security
(Extended Abstract)

Rafael Accorsi

University of Freiburg, Germany
accorsi@iig.uni-freiburg.de

Abstract. This paper reports on ongoing work towards a framework to
automatically rewrite business process models and, thereby, correctively
enforce adherence to regulatory compliance and security policies. Specif-
ically, the paper first motivates the need for rewriting mechanisms as a
means to enforce a particular class of properties. Second, it describes the
main building blocks of ReWrite, the framework to automatically rewrit-
ing process specifications. Third, in order to preserve the functional goals
of the processes upon rewriting, a set of congruence relations is defined
and their appropriateness is discussed. The presentation of the formal
framework and rewriting algorithms is deferred to the full paper version.

1 Introduction

Ensuring the compliance of business processes to regulations and security policies
is of utmost importance in business process management [1, 31]. Approaches to
assess compliance can be classified into [8,25]: (1) forward compliance checking
aims to design and implement processes where conforming behavior is enforced
and (2) backward compliance checking aims to detect and localize non-conforming
behavior. This paper focuses on forward compliance checking based on business
process models and policies. In this setting, previous work addresses the annota-
tion of business processes [15, 23], requirements elicitation [11, 10, 26] and formal
verification [2—4,6]. None of the previous work has considered the intersection
of rewriting techniques for programs and the corrective enforcement of business
processes compliance. This paper sets out to investigate this connection.
Specifically, this paper starts by motivating the need for rewriting mecha-
nisms as a means to enforce a class of complex safety properties which encompass
compliance requirements. In contrast to previous works, which merely present
the challenge of enforcing compliance, this paper formally substantiates the need
for rewriting using formal enforcement theories of computer security. By doing
so, one establishes the relationship between the class of properties and the cor-
responding enforcement mechanisms needed to guarantee these properties.
Based on this, the paper further presents the building blocks and examples of
the framework ReWrite to automatically rewrite business processes specifications
and, thereby, ensure compliance with pertinent policies. The overall approach is

111

depicted in Fig. 1. The key insight is to split responsibilities during the modeling
phase and focus on the core competencies of each actor: the business experts
design a process model (e.g. using BPMN or BPMN) and compliance experts
design the compliance policy (i.e. description of applicable controls) and denote
the processes to which they apply. The goal of ReWrite is to take process and
policy specifications as input and produce an executable process model which
complies to the policy.

Clearly, modifying the struc-
ture of the process may lead
to a specification that does not
achieve the business goals desig-
nated for that process. To circum-
vent this issue while still allow-
ing for rewriting, one must de-
fine similarity relations between |,
the original and the modified pro- l
cesses in terms of execution traces
their produce: only modifications
that preserve the similarity rela- Fig. 1. ReWrite approach.
tion are appropriate. These rela-
tions are, however, not characterized in the literature. This paper defines and
investigates the adequacy of four congruence relations. Initial investigations car-
ried out with ReWrite show that rewriting operators — append, delete and replace
activities in process models — can be supported by such relations, thereby allow-
ing for effective rewriting algorithms.

Taking stock, this paper provides the following contributions:

Process-Rewriting

Modelling of process modells
processes 1=
Formalization of |5
compliance rules

Business Expert

co Expert

complifince policy

Complian

Rewriting Tool:

<| ProcessRewriting [2

— Establishes the relationship between the compliance requirements, the un-
derlying formal properties and the enforcement mechanisms. In particular, it
shows a class of properties that can only be enforced using process rewriting
and that process rewriting can enforce all other kinds of properties.

— Presents the main building blocks of ReWrite. Specifically, it presents yBPMN,
a Turing complete fragment of BPMN to express business processes and a
meta-model for the expression of compliance policies. An example will illus-
trate the interplay of these requirements for rewriting.

— Defines four congruence relations to guarantee the compliance with require-
ments while preserving the business (functional) goal of the process and
discusses their adequacy for rewriting.

— Reports on ongoing implementation of the ReWrite framework “as-a-service”
and describes how its evaluation will be conducted.

The rewriting framework proposed in this paper can be used in three dimen-
sions and timepoints along the business process management lifecycle. Firstly,
before the process execution to ensure compliance “by design”. Here, if one as-
sumes that process are stable and faithfully executed by the business process
management system, then rewriting is capable of enforcing the designated class

112

Fig. 2. Original process (a) and process after rewriting (b) .

of compliance properties. Secondly, during the execution for corrective enforce-
ment. In this setting, an execution monitor with rewriting capabilities is needed
to enforce properties. While this dimension comes along with a considerable per-
formance overhead, it allows for flexible process whose compliance can be guar-
anteed at runtime. Thirdly, after the execution as a mechanism for automated
process enhancement and re-design based upon process models reconstructed
from event logs using process mining [30].

While the foundation of ReWrite can be used in any of these perspectives
and timepoints, this paper focuses on the “by design” perspective — especially
in terms of implementation. We currently apply these techniques to re-design
reconstructed processes. Carrying over these concepts to in-line process moni-
toring is subject of future work. Further, it should be remarked that the focus
of this paper is the presentation of the ReWrite framework, its building blocks
and application. Pertinent proofs for properties — e.g., the Turing completeness
uBPMN — are deferred to a longer version of the paper.

Paper structure. Section 2 establishes the relationship between classes of com-
pliance properties and the corresponding enforcement mechanisms, thereby mo-
tivating the need for rewriting. Section 3 introduces the main building blocks
of the rewriting approach, i.e. the process language and policies. Section 4 in-
troduces the congruence relations and the corresponding rewriting operations.
Section 5 reports on the implementation and evaluation of the approach.

Ezample 1. We illustrate the high-level operation of ReWrite using an example.
Consider the process model in Fig. 2(a). It stands for a medical workflow, namely
updating the patient record. Activity A denotes a staff member inputting the
patient_ID. If the ID exists, B queries the database and C updates the database
with the updated patient record; otherwise, if there is no such an ID, D issues
an error message. In both cases, E deletes local copies of query and record.
One security policy may require that, before showing the query results, the staff
member must be authenticated and authorized to do so, which is encoded with
the activity F. Given that information, rewriting would inspect the original
model to detect whether F' is at the correct place. If not, ReWrite will add F
to the process, which produces the process model depicted in Fig. 2(b). The
remainder of this paper shows how to carry out such a rewriting. .

113

2 Properties and Enforcement Mechanisms

Non-functional properties — be it security or privacy properties, or properties
arising from compliance requirements — can be classified according to two hier-
archies: (1) the Safety-Progress based on languages used to formalize the prop-
erties [12] and (2) the Safety-Liveness based on mechanisms used to enforce the
properties [7]. This section argues that the enforcement of compliance require-
ments demands process rewriting. It does so by revisiting these two theories.

2.1 Safety-Progress Hierarchy

Chang et al. [12] define four operators and, based upon them, six formal lan-
guages organized in a hierarchy. Let X* be the set of all finite words over an
alphabet X, XF the set of non-empty, finite words and X% the set of all infinite
words over the alphabet Y. Let @ be a finite language, the operators are:

A(P) encompasses all o, s. t. every prefixes of ¢ are in .

E(®) encompasses all o, s. t. some prefixes of o are in &.

R(®P) encompasses all o, s. t. infinite many prefixes of o are in .

P(P) encompasses all o, s. t. all but a finite number of prefixes of o are in P.

With these operators at hand one can define the six languages which build, for
finite languages @ and ¥, the hierarchy depicted in Fig. 3.

Safety language: IT = A(®P).

Guarantee language: IT = E(P).

Obligation language: IT = N2, (A(D;) U E(%;)).
Response language: IT = R(®P).

Persistence language: IT = P(®P).

Reactivity language: IT = N, (R(P;) U P(;)).

In Fig. 3, each language encompasses those be-
neath it. This follows directly from the definition
of the languages. For example, the language Obli-
gation is built by the conjunction of the languages [Response] [pereietence]
Safety and Guarantee. Further, all the Safety lan-
guages can be expressed in terms of the Obliga-
tion language, wheras the corresponding Guaran-
tee part is empty (i.e. E(¥;) = 0) [Sy] [Guarantee]
Obligation and Guarantee. Due to the existence
operator E(®) the Obligation and Guarantee lan- Fig. 3. Safety-response.
guages are relevant for the formalization of security and compliance require-
ments. For example, classical access control could be expressed in a way that
the required prefix — denoting the process state — is available already by during

the access decision. In this case, it can be decided that the property holds and
could be no longer violated.

SOt L

114

In another case, the required prefix is not at the decision time and must be
built during the further continuation of the process instance. Here, one cannot
decide whether the obligation will be fulfilled in a later point in time. The en-
forcement of such property with classical access control is not possible. That is
because it cannot be decided whether the obligation will be fulfilled or not. If
at a given timepoint ¢ one is to evaluate where a process instance is in the Obli-
gation language O, then four different states are possible [20]: (1) true it can
be shown that the instance is in O1; (2) possibly true at ¢ the instance is in Oy,
but there is the possibility that the whole instance will not be in Oy; (3) possibly
false at t the instance is not in Oq, but it is possible that will eventually be in
the language; finally, (4) false, it can be shown that the instance is not in O;.

The rewriting approach presented in this paper allows for the automated
enforcement of cases that evaluate to possibly false. The other cases can be
tackled with existing access control mechanisms, in that they on the one hand
prevent the transition from possibly true to false or possibly false, or if they do
not allow the execution of a false instance.

2.2 Safety-Progress Hierarchy

This hierarchy is defined upon three well-known classes of preventive enforce-
ment mechanisms, namely: (1) static verification before the execution; (2) run-
time monitoring during the execution; and (3) rewriting before or during the
execution. In particular, each of these mechanisms can recognize and therefore
circumscribe a particular class of properties. The following formally defines the
hierarchy, which is depicted in Fig 4.

Class Ily: Statically enforceable proper-

ties. A policy P is statically enforceable if Enforceable by

rewriting
there is a Turing machine Mp for P that
terminates in finite time if 7P holds in the Enforceable by
process. It can be shown that the class monitor
of enforceable security properties corre- Static
provable

sponds to the class of recursively decid-
able properties of programs, which in turn
corresponds to the arithmetic class Ily.
(See [16] for details.) Several properties can be statically verified before the
execution of a process [17]. The proof of a property stating that, e.g., a (stable)
process calls exactly 30 services is trivial: enumerate and count the service calls.

Fig. 4. Safety-liveness hierarchy.

Class IIy: Runtime properties. The basis for the formalization of properties of
programs which can be enforced during the execution (so-called “execution mon-
itoring”) is an execution machine that generates traces (sequences of events).
Given a trace, for properties that can be enforced with an execution monitor
there must be a detector that identifies their violation during the runtime. Such
a detector must exhibit the following properties [28]: (1) the property detected by
the detector is irremediably violated; (2) the detector must identify the violation
in finite time; and (3) the detector mus be recursively decidable.

115

The following criteria thus formally define the detector:

VII € W(IT) : P(I) = Vo € IT : P(o) (1)
Vr' e W =P(r') = Yo e ¥ : —P(70) (2)
Vo e W : —P(o) = Ji : ~P(o]..i]) (3)
od¢I'=3Fi:(Vre¥ olir¢l) (4)

Based upon this, it can be shown that the class of security properties enforced
by the monitor correspond to the class of co-recursively countable properties of
programs, thereby circumscribing the class IT; of the arithmetic hierarchy.

Rewriting properties. The third class of properties in this hierarchy are those
which can be enforced with the modification of the program. The definition of
rewriting requires an adequate notion of equivalence. (See Sect. 4 for details.) For
a given equivalence relation =, a rewriting mechanism R is considered “adequate”
for enforcement if it exhibits the following properties:

P(R(M)) (5)
P(M)= M ~ R(M) (6)

These properties express that: Eq. (5) the modified program must guarantee
the compliance with a policy; and Eq. (6) if a program complies with a policy
before the rewriting, then it also complies with if after a modification. Hamlen et
al. [16] show that there are properties which can solely be enforced with rewriting.
However, in contrast to the previous classes, the rewriting mechanism does not
corresponds to a class in the arithmetic hierarchy. That is, there is no known
definition for a set of formal languages whose words denote properties, which
can be enforced with rewriting. Conversely, it can be shown that the classes of
properties ITy (static verification) and IT; (runtime monitoring) can be enforced
with rewriting mechanisms.

3 Building Blocks: Processes Models and Policies

The previous section demonstrates that there is a class of properties which de-
mand process rewriting for their enforcement. This section describes the techni-
cal building blocks that serve as input to ReWrite, namely process specifications
and policies, as depicted in Fig. 1.

3.1 uBPMN Syntax

Our rewriting approach considers uBPMN as the modeling language for busi-
ness processes. uBPMN is a Turing complete subset of BPMN containing its
main constructs a formal semantics. Turing completeness is insofar relevant as it
guarantees that all the computable processes can be modeled with and reasoned
about in uBPMN. The formal semantics is essential to allow the rewriting and
prove its correctness with regard to the congruence relations.

116

The uBPMN syntax possesses both a graphical and an algebraic notation. The
graphic notation is the same as the corresponding of BPMN construct, whereas
only the subset of the elements depicted in Fig. 5 is considered. The algebraic
formalization is required to give semantics to the language, which is in this case
based upon w-calculus [27]. (The latter is omitted in this paper.)

The graphical notation of uBPMN de-

oo
picted in Fig. 5 consists of activities (sub- rrom A [R ["?S‘V [it

processes, loops and sub-process loops)
and the gateways AND, OR and XOR, ® o < © 0

which allow for the complete representa-
tion of logical constructs in the control
flow. Further, activities are linked with sequence arrows. Start and end markers
complete the subset of BPMN used in this paper. Based upon [22], we have de-
fined translations of uBPMN to BPEL — for execution — and workflow nets — for
reasoning, e.g. soundness.

The consideration of subset of BPMN does not restrict the applicability of the
approach. First, because more complex modeling elements are seldom employed.
According to [32], process models in industry usually consist of a few activities
with complex branches. Second, because the language can be extended using the
existing building blocks, should that be required.

Process modeled using the uBPMN are mapped a subset of the m-calculus.
Processes are thus described by a set of activities that are triggered one after
the other, provided the preconditions for their firing hold.

Fig. 5. uBPMN language.

Relevant bits of uBPMN semantics. uBPMN has an operational semantics defined
via an abstract process execution engine — mimicking the operation of existing
BPMN engines — whose function is to determine the state transitions (choice
of the next activity) and the execution environment for the process execution
(provision of runtime parameters).

For the purposes of this paper, it is enough to consider a trace-based se-
mantics for uBPMN based upon this calculus. Let IT be a process, a path x
of IT is defined as a sequence of input/output operations of IT upon the input
w € Y. The set of all possible input parameters of a process II is denoted by I'“;
IT(w) — xw denotes the path triggered by inputting w into IT, which eventually
produces the path denoted by yxZ. Finally, =17 denotes the set of all paths in a
process generated by II(I'*). The congruence relations defined in Sect. 4 build
upon reductions of generated paths in order to describe the changes (rewriting)
in the process structure before the runtime. These changes are denoted as fol-
lows: n ~» x,, when activity names are deleted in one path; N ~ ¥, if activity
names are deleted in all the possible paths of II.

3.2 Compliance Rules

Figure 6 depicts the overall structure of a compliance rule in ReWrite. Each rule
consists of a scope, a modality and a control. The scope defines the process and,
therein, the control flow to which the rule applies. The modality describes how

117

describes behaviour of

Compliance . - Ists of
Rule applies to— Workflow |,
of

Control

.| Control flow

Activity

describes of

Fig. 6. The structure of compliance rules.

and where to apply the rule in a particular scope. The control defines which set of
activities are to be triggered, as well as their order, so to ensure rule compliance.
This structure is expressive enough to capture the so-called “usage control”
policies and, hence, the majority of regulatory compliance requirements on au-
tomated processes [24]. Generally, usage control policies refer to control flow
constraints based upon the patterns in Dwyer et al. [13]. That is, they regard,
for example, the absence, presence and cardinality of events, as well as their in-
terdependencies (e.g. one event as a response of the other and mutual exclusion
of event pairs). The evaluation envisaged for ReWrite considers these patterns.
More specifically, the class diagram de-

. . . . Scope 1 XPathExpression
picted in Fig. 7 shows how the compli- [;ocesses: List - -
. . X - ! expr: String
ance rules are implemented in ReWrite. ‘OC'-XPa‘hEX:’reSS"’”
The scope consists of a list of processes
to which the rule applies and one or more . :
. . . ComplianceRule Modality
XPath expressions that describe the inte- pe———— . P———
gration of (the controls specified in) this |Modaity: Modaity 1| insertatter: int.
. ControlProcess: BPEL insertParallel: int
rule into the set of processes. The modal- replace: int
ity defines how the set of activities defined i
in the scope are treated. These activities BPEL
can be deleted, replaced or complement T |xmiCode: String
with other activities. The latter (i.e. ap- Fig. 7. Class diagram for rules.

pending) may have different modes. For
example, one can distinguish between appending before, after or during an ac-
tivity (in one execution branch of a parallel execution). Similarly, one can add
time constraints (e.g. “within three hours”) and cardinality constraints (e.g.
“exactly three times”). The controls with which the modalities are added to the
process (process rewriting) are described as fragments of the BPEL language.
We define a XML schema in order to express policies rules in a machine read-
able format. Figure 8 depicts a policy specified in this XML schema. This rule
applies to two processes (bpPatientReception and bpPatientInformation),
in particular their parts (loci-tag) blood_pressure and weight (here we re-
place the corresponding XPath expressions for simplicity). The modality-tag
insertBefore conveys that the control process must be inserted before these
loci. The control process, specified in the tag BPELFragment, can require in both

118

<?xml v encoding= >

W00 - O U L RO
[
1]
H
0]
[
<]
[l

11=<ns0:complianceRule xmlns:xsi=

12 xmlns:ns0=

13 xsi:schemaLocation=

14 >
158 <ns0:scope>

168 <ns0:Processes>

17 <ns0:Process proces />

18 <ns0:Process proces />

19 </ns0:Processes>

208 <ns0:Loci>

21 <ns0:Locus expr= ></ns0:Locus>
22 <ns0:Locus expr= ></ns0:Locus>

23 </ns0:Loci>

24 </ns0:scope>

258 <ns0:modality>

26 <ns0:instertBefore/>

27 </ns0:modality>

288 <ns0:controlProcess>

29 <ns0:BPELFragment>5ome BPEL here</ns0:BPELFragment>

30 </ns0:controlProcess>

31
32 </ns0:complianceRule>

Fig. 8. Example of compliance rule.

cases the authentication of users using, for instance, their employee information.
The concrete service invocation is omitted here.

4 Congruence Relations and Rewriting Operators

This section sketches the rewriting operators necessary to ensure compliance.
While modifying processes models one must ensure that the functional char-
acteristics of processes are maintained. Therefore, before defining the rewriting
operators, this section sketches the congruence relations operators must fulfill.

4.1 Congruence Relations

Determining the semantic congruence of two arbitrary processes is a not de-
cidable problem [18]. We define atomic operators and a stepwise approach to
changing processes which turns out to be decidable and preserve the congruence
relations. This section presents four congruence relations which are defined in
terms of process paths. Taking two processes p; and ps, the relations are:

— Full semantic congruence: all the paths generated by the process p; can
also be generated by the process py. Formally: =, = Z),,. This relation is
unsuitable for rewriting, as its own definition prohibits modifications.

119

® O,
®O® &
© ©
® ®
® ®
Unilateral Semantic
Full Semantic Congruence Strong Semantic Congruence Congruence Weak Semantic Congruence

Fig. 9. Schematic illustration of the congruence relations.

— Strong semantic congruence: all the paths of the process p; can also be
generated by the process po after the reduction to common activity names.
Formally: N' = =, N Z,,.

— Unilateral semantic congruence: the set of all paths generated by the pro-
cess pg is a subset of the set of paths generated by p;. Formally: =,, C =,,.

— Weak semantic congruence: At least one path generated the process p; is
also a path of the process po. Formally: =, N =, # 0.

Fig. 9 illustrates these relations. For simplicity, the processes are drawn as a sim-
ple state transition diagram (instead of uBPMN), with the dotted lines showing
a possible move in the “congruence game”. The shaded circles denote activities
that have been added to the process flow. The pictures denote examples of a
process flow that preserve the relations.

Lack of space prevents us from providing the formal definition of all these
relations. Below we provide the formal definition for the strong semantic con-
gruence, then jumping to the rewriting operators.

Definition 1. Two processes py and py are strongly semantic congruent if the
set of generated process paths after the reduction to the common names Ng =
Ep, N Ey, # 0 is identical: (Ne ~ Z,,) = (Ne ~ Ep,). 8

It is easy to show that this relation is commutative. The strong semantic
congruent relation allows changes in the process paths, as the activities names
are reduced to a set of names common to both processes. In doing so, rewriting
operators can be defined using this definition.

4.2 Rewriting Operators

The relations introduced in Sect. 4.2 are undecidable for two arbitrary processes.
This follows from Jancar [18], who has proved that for Petri nets. His proof
can be carry over to uBPMN: for each Petri net used in [18] we can build a
corresponding uBPMN process, a fact that follows from the Turing completeness
of both languages.

Still, for rewriting to work it is necessary to guarantee that the original and
the rewritten processes are semantically congruent and that the latter indeed

120

H Append ‘ Delete | Replace

Full no no no
Strong yes yes yes
Unilateral || partial | partial | no
Weak partial | yes partial

Table 1. Overview of the congruence guarantees for rewriting operators.

executes the controls required by the compliance policies. To achieve this in a
decidable manner, we define atomic operators for appending, deleting and replac-
ing activities in the process which, whenever applied in isolation or sequentially
(one after the other), guarantee that the semantic congruence holds. Due to the
lack of space, the following focuses on the “append” operator. An overview of
the congruence guarantees for all the rewriting operators is given in Table 1.

The “append” operator. The “append” operator adds (missing or required)
activities to the process model. This operator can be applied without disturbing
the semantic congruence of processes. However, the following restrictions have
to be made for the case of the unilateral and weak semantic congruence:

— If an activity has already been appended to one of the process models, then
it is impossible to append further activities to the other model without dis-
turbing the unilateral semantic congruence relation.

— If the two processes possess solely one common path, then appending one
activity may disturb the congruence relations.

We have proved these properties for the corresponding congruence relations.
For the strong semantic congruence, the following can be shown:

Theorem 1. The append operator preserves the strong semantic congruence. -

Proof (Sketch). By appending an additional activity A to a process, then either
Zp, or Zp, are extended with further traces. The computation of Ng = Zp, N
Zp, according to Def. 1 will, however, remove this extension (by renaming the
activities), so that the processes still fulfill the strong semantic congruence. 0O

An analogous procedure can be used to demonstrate that the append op-
erator preserves the unilateral and the weak semantic congruence relations, as
shown in Table 1. Note that the “replace” operator is defined on the grounds of
the primitive operators “append” and “delete”.

Adequacy of semantic congruence. Establishing a relationship between the
rewriting operators, congruence relations and the original business goals of a
process is not trivial. Here, one can distinguish between the adequacy of dif-
ferent relations. Considering the strong semantic congruence and the “delete”
operators, for example. It is possible to remove nearly all activities of a process
and still fulfill the strong semantic congruence. Our experience shows that the

121

unilateral semantic congruence is the most promising relation within the ReWrite
framework. It still suffers from the problem of the “delete” operator, but not to
the same degree as the strong semantic congruence.

To tackle this problem, we add the following restrictions to the framework:
(1) only activities that violate a compliance policy are deleted and, hence, should
anyway not be executed; (2) if the semantic congruence is only violated at the
same time that a compliance policy is violated, then the processes are still con-
gruent. It can be shown that these restrictions are necessary and sufficient to
tackle the problems arising from the “delete” operator.

5 Realization and Evaluation

The prototypical implementation of the ReWrite framework is based upon open-
source technologies for the automation of processes with the standards of uBPMN,
BPEL and automated translations from uBPMN into BPEL and the XML tools.
This section reports on the realization of ReWrite and its envisaged evaluation.

The ReWrite framework has been designed as a component of the Security
Workflow Analysis Toolkit (short, SWAT) [5]. SWAT is an Eclipse-based, extensi-
ble toolkit for the automated, well-founded security analysis of business processes
models to analyze process models in a multitude of ways. SWAT provides for the
following features: process editing, with import and export functions; process
simulation to generate log files and configure policy violations using OpenESB
as execution platform; policy editing to specify security and compliance policies;
and workflow analysis to check whether process models comply with properties.
See [5] for details.

Figure 10 depicts the architecture
of ReWrite in SWAT. The design strat- =
egy while integrating ReWrite into seploy SeeL
SWAT is the “security-as-a-service”

: potiey hancle|Events W
approach. Correspondingly, the ar- Eaitor |_define °

chitecture consists of two modules,

Design Tools BPEL Execution Engine

namely: (1) Modeling for process de- e,
sign and policy specification; and [ErEtener] [fer

(2) Ezecution for the rewriting of non-
compliant process models and the au-

GnChange(pMiodel, curstate)

tomated execution of processes. Re- e
garding (1), SWAT offers support for :
process modeling in uBPMN, BPEL Fig. 10. ReWrite in SWAT.

and Petri nets, whereas for process ex-

ecution the specifications are translated into BPEL. Compliance policies are spec-
ified using the XML editor “Oxygen”, which is embedded in SWAT. Ongoing work
is designing a policy editor and consistency checker for compliance rules. Regard-
ing (2), SWAT employs OpenESB as an execution platform, whereas Glassfish
acts an application server. It should be noted, though, that the actual realization

122

of ReWrite does not require these technologies. Ongoing work is testing with a
realization based upon jBPM.

The core of rewriting is actual modification of processes. The algorithms im-
plementing these operators must guarantee, one the one hand, that the congru-
ence relations are preserved (see Sect. 4.2) and, on the other, that the produced
process models are correct with regard to the compliance policy. The latter de-
pends on the compliance policy (i.e. controls defined therein) that are applied
to the process. This is, however, out of the scope of this paper, as well as deter-
mining inconsistencies among policies.

The strategies for actually rewriting the processes is based on XSLT patterns,
which are responsible for the transformation of XML documents (process models)
with stylesheets. (Recall that the policy defines the scope of the rule, i.e., where
to rewrite the process.) The following shows this using the append operator.

Ezample 2. To guarantee the integrity of data, one can trigger controls after each
data input. Considering a health care setting, for example, one could demand
that, after inputting the results of an exam, the patient ID should be entered
again to avoid mistakes. The realization of this requirement demands inserting a
control after one activity. The corresponding algorithm thus replaces one activity
with a pair activity and control. The XSLT template to enforce this control is as
follows (we omit the actual call to the service realizing the control):

<xsl:template match=’’bpel:assign[@actionType=’'ControlAfterEach’]’ >
<bpel:sequence name=’'’'Rule_Verify '>
<bpel:assign name='’EnterResult’’ policy:actionType='’Result’ ’>

<xls:apply —template />
</bpel:assign>
<bpel:assign name=’’'VerifyPatientID ’ ’>
Replace by actual control from compliance rule
</bpel:assign>
</bpel:sequence>
</xsl:template>
This template employs the namespace policy, with which action types can be
assigned to activities. This facilitates the rewriting in processes where multiple

occurrences of the same activity happen and are in the scope of a rule. b

ReWrite envisaged evaluation. We plan to carried out an extensive evaluation of
ReWrite, where qualitative and quantitative issues were of interest: firstly, which
policies can be rewritten; secondly, what are the performance figures obtained
in doing so. This section reports on the former.

To evaluate the expressiveness of ReWrite we plan to employ workflow pat-
terns [29] and compliance policy patterns [13]. Specifically, we take a represen-
tative subset workflow patterns as the minimal process specification. These pat-
terns can be seen as appropriate building blocks for process specifications and,
hence, if rewriting succeeds for these patterns, it also succeeds for more complex
specifications composed using workflow patterns. The compliance rules build
upon the patterns of Dwyer et al. [13]. These patterns characterize a repre-
sentative set of primitive structural requirements of programs, such as the ab-
sence, precedence and bounded existence of activities. However, the patterns can
equally well be applied to business processes [3,25]. More importantly though,

123

the properties characterized by the patterns lie in the class of properties whose
enforcement requires rewriting (see Sect. 2).

To actually assess the expressiveness of ReWrite, we need to determine which
policy pattern can be added to which workflow pattern and, further, which could
be alternatively enforced with an execution monitor (EM) and which demand
rewriting (RW). Our goal is to demonstrate that each workflow pattern can be
rewritten to comply with the corresponding policy pattern. Ongoing experiments
deliver very promising preliminary results that substantiate this conjecture.

6 Related Work

Approaches to assessing business process compliance can be classified as [8, 25]:
(1) forward compliance checking aims to design and implement processes where
conforming behavior is enforced and (2) backward compliance checking aims to
detect and localize non-conforming behavior. ReWrite is a forward compliance
checking approach based on business process models and compliance policies. Re-
lated work addresses the annotation of business processes [15, 23], requirements
elicitation [11, 10, 26] and formal verification [2-4, 6].

Program rewriting is a mechanism for enforcing security properties [16,19].
It was initially formalized by Hamlen et al. [16] and he provided an implementa-
tion of a certified program-rewriting mechanism. These rewriting mechanisms are
used to enforce low level properties such as type safety and do not consider busi-
ness processes or high level concepts of modern programming languages. Similar
approaches based on type systems to enforce certain security properties such
as memory safety exist, among others, for Java bytecode [21], the .NET frame-
work [14]. To our knowledge no approaches exist that investigate the transfer of
automated rewriting techniques to business processes on a formal level.

The approaches discussed in the previous paragraph do not take into account
the achievement of the programs’ goals. The definition of some congruence rela-
tion is given, e.g. [19], but it is never explicitly specified in a way that it becomes
possible to actually evaluate this relation for real world application.

De Backer and Snoeck discuss a concept called semantic compatibility which
results in definitions of similar types of congruences [9]. As opposed to our ap-
proach, they are based on the languages defined by Petri Nets and they do not
cover congruence of the processes themselves. They investigate how two pro-
cesses that are deployed by different participants who need to achieve common
business goals are able to cooperate. This notion of “compatibility” they devise
is not applicable to the scenarios investigated in our research, because we discuss
the business goals of a single process and not the interplay between two distinct
processes in distinct administrative domains.

7 Summary and Further Work

This paper introduces a framework for rewriting business processes, thereby en-
force security, compliance and privacy policies. Specifically, it motivates rewriting

124

by showing that existing enforcement mechanisms cannot cope with a relevant
class of properties. The paper then defines the syntax and semantics for a graph-
ical process modeling language and that of compliance rules. In order to ensure
that the rewritten process still allows for the execution paths of the original
process and, thereby, achieves the original business goals, different congruence
relations are defined. Process rewriting must then not only correct the process,
but also preserve some of these relations (depending on the kind of operation).

Lessons learned. Rewriting is an established field in the theory of programs
and logics. This paper carries over some of these concepts into business process
compliance management. Although rewriting is in general undecidable for chains
of modifications, this paper shows that it is possible to define primitive operators
that allow for decidable procedures. The ReWrite framework thus opens up the
possibility of automated correction of processes to ensure process compliance
“by design” (for modeled or reconstructed processes) or during runtime.

Further work. Besides the ongoing and future work already indicated in the
text, future work comprises four directions: firstly, on the formal side it is still
necessary to investigate the congruence relations. Spefically, we need to flesh out
the details of the most sutiable relation to cover all the operators. Secondly, we
see a relationship between the techniques we employ and process repositories.
That in the sense that the same technologies for querying could be employed to
support rewriting. Clarifying this interplay is subject of further work. Thirdly,
the kinds of policy supported by ReWrite can be generalized to also consider
security properties and other usage control policies. Future work will tackle the
expressive power of policies and corresponding analysis techniques (e.g. incon-
sistency detection). Fourthly, testing ReWrite for monitoring process instances.

References

1. R. Accorsi. Sicherheit im prozessmanagement. digma Zeitschrift fir Datenrecht
und Informationssicherheit, 2013.

2. R. Accorsi and A. Lehmann. Automatic information flow analysis of business
process models. In BPM, volume 7481 of LNCS, pages 172-187. Springer, 2012.

3. R. Accorsi, L. Lowis, and Y. Sato. Automated certification for compliant cloud-
based business processes. BISE, 3(3):145-154, 2011.

4. R. Accorsi and C. Wonnemann. Strong non-leak guarantees for workflow models.
In ACM SAC, pages 308-314. ACM, 2011.

5. R. Accorsi, C. Wonnemann, and S. Dochow. SWAT: A security workflow toolkit
for reliably secure process-aware information systems. In ARES, pages 692-697.
IEEE, 2011.

6. R. Agrawal, C. Johnson, J. Kiernan, and F. Leymann. Taming compliance with

sarbanes-oxley internal controls using database technology. In ICDE, pages 92—-101.

IEEE, 2006.

B. Alpern and F. Schneider. Defining liveness. IPL, 21(4):181-185, October 1985.

8. A. Antén, E. Bertino, N. Li, and T. Yu. A roadmap for comprehensive online
privacy policy management. CACM, 50(7):109-116, July 2007.

9. M. D. Backer and M. Snoeck. Business process verification: a petri net approach.
Open access publications from Katholieke Universiteit Leuven, 2007.

=~

125

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

T. Breaux and A. Antén. Analyzing regulatory rules for privacy and security
requirements. I[EEE TSE, 34(1):5-20, 2008.

T. Breaux, A. Antén, and E. Spafford. A distributed requirements management
framework for legal compliance and accountability. Computers & Security, 28(1-
2):8-17, 2009.

E. Y. Chang, Z. Manna, and A. Pnueli. Characterization of temporal property
classes. In ICALP, volume 623 of LNCS, pages 474-486. Springer, 1992.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In IEEE CSE, pages 411-420. ACM, 1999.

ECMA. Ecma-335: Common language infrastructure. european association for
standardizing information and communication systems. Tech. Rep., ECMA, 2002.
A. Ghose and G. Koliadis. Auditing business process compliance. In ICSOC,
volume 4749 of LNCS, pages 169-180. Springer, 2007.

K. Hamlen, G. Morrisett, and F. Schneider. Computability classes for enforcement
mechanisms. ACM TOPLAS, 28(1):175-205, January 2006.

M. Hilty, D. Basin, and A. Pretschner. On obligations. In ESORICS, volume 3679
of LNCS, pages 98-117. Springer, 2005.

P. Jancar. Undecidability of bisimilarity for petri nets and some related problems.
Theor. Comput. Sci., 148(2):281-301, 1995.

R. Khoury and N. Tawbi. Corrective enforcement: A new paradigm of security
policy enforcement by monitors. ACM TISSEC, 15(2):10, 2012.

M. Leucker and C. Schallhart. A brief account of runtime verification. J. Logic
and Algebraic Programming, 78(5):293-303, May/June 2008.

T. Lindholm and F. Yelling. The Java Virtual Machine. Addison-Wesley, 1999.
N. Lohmann, E. Verbeek, and R. Dijkman. Petri net transformations for business
processes - A survey. In TPNOMC, volume 5460 of LNCS, pages 46—63. Springer,
20009.

K. Namiri and N. Stojanovic. Using control patterns in business processes compli-
ance. In WISE, volume 4832 of LNCS, pages 178-190. Springer, 2007.

A. Pretschner, F. Massacci, and M. Hilty. Usage control in service-oriented archi-
tectures. In TRUSTBUS, volume 4657 of LNCS, pages 83-93. Springer, 2007.

E. Ramezani, D. Fahland, and W. M. P. van der Aalst. Where did i misbehave?
diagnostic information in compliance checking. In BPM, volume 7481 of LNCS,
pages 262—278. Springer, 2012.

S. Sadiq, G. Governatori, and K. Namiri. Modeling control objectives for business
process compliance. In BPM, volume 4714 of LNCS, pages 149-164. Springer,
2007.

D. Sangiorgi and D. Walker. The pi-Calculus: A Theory of Mobile Processes.
Cambridge Press, 2001.

F. Schneider. Enforceable security policies. ACM TISSEC, 3(1):30-50, 2000.

W. van der Aalst. Workflow patterns. In Encyclopedia of Database Systems, pages
3557-3558. Springer, 2009.

W. van der Aalst. Process Mining — Discovery, Conformance and Enhancement of
Business Processes. Springer, 2011.

M. Weske. Business Process Management: Concepts, Languages and Architectures.
Springer, 2011.

C. Wolter, M. Menzel, A. Schaad, P. Miseldine, and C. Meinel. Model-driven busi-
ness process security requirement specification. J. Systems Architecture, 55(4):211—
223, 2009.

126

