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Abstract. We present an extension of our previously introduced tech-
nique for unfolding conditional control flow in extended workflow graphs.
This technique allows for a more precise process-to-Petri-net-mapping
which is crucial for business process verification. Our new technique
derives data flow information about the state space of process data by
means of predicate clauses using a novel CSSA-Form-based analysis. The
derived information is then exploited in an adjusted unfolding algorithm
to resolve conditional control flow utilising the SMT solver YICES.

1 Introduction

Verification of business processes today is typically done using Petri-net-based
process models, which allows for a natural modeling and analysis of vital aspects
like parallelism and message exchange. The quality of verification thereby strongly
depends on the precision of the process-to-Petri-net mapping. In particular, there
exists an inherent tradeoff between verification effectivity and precision, as typical
properties for business process verification, e.g., soundness or controllability, are
in general undecidable for full-specified business processes.

For this reason, more often than not, methods for business process verification
omit process data so that the used Petri-net-based process models merely represent
the processes’ (unconditional) control flow. By this means, the conditional control
flow of a process, i.e., its data-dependent branchings and loops, is mapped to
nondeterminism which only over-approximates the process’s actual behaviour
(under the fairness assumption). However, as research has shown lately, such an
approach comprises the danger of an erroneous verification, by means of both,
false-positive and false-negative verification results [2,7].

In order to tackle this problem, in our previous work [2,3], we have developed
a control flow unfolding technique which allows for an increase in the precision
of the process-to-Petri-net mapping. More specifically, the developed technique
transforms certain kinds of conditional control flow into unconditional control flow
for a business process, without inferring the process’s execution semantics. As a
result, when mapping a thus preprocessed process to its Petri net model, there
is no need to over-approximate conditional control flow using nondeterminism
and therefore no possible source of error for verification. In other words, we have



envisioned a compiler, which takes as input a business process and generates as
output a Petri net. However, in contrast to a conventional compiler, its objective
is not to result in efficient runtime code but rather to produce a most-precise
though still effectively verifiable Petri-net-based process model.

Our previous technique exploited data flow information derived by copy
propagation [2], i.e., information about constant values, or value range analysis [3],
i.e., value ranges for integers, to unfold a process’s conditional control flow. In
this work, we will sketch a new CSSA-Form-based analysis for gaining a more
general representation for the state space of process data in terms of predicate
clauses and how the such derived information is then used to integrate a SMT
solver into our unfolding approach, so that its applicability is further widened.

The remainder of the paper is structured as follows: The following section
introduces the example process which is used for illustration throughout the
paper. In Section 3, we describe the CSSA-Form-based analysis to derive predicate
clauses. The use of the thus derived data flow information in our adjusted control
flow unfolding technique is explained in Section 4. Finally, after a brief discussion
of related work in Section 5, Section 6 concludes the paper.

2 Running Example: Rock-paper-scissors

For illustration, we will use the example shown in Figure 1. On its upper left-hand
side, a (business) process is shown in a textual format. The process models the
game Rock-paper-scissors, where two partners (A and B) play against each other.
The idea is, that each player decides whether to take one of the three items: rock,
paper, scissors. If A takes scissors and B paper, A takes paper and B rock, or A
takes rock and B scissors, player A wins the game and vice versa. If both players
take the same item, the game continues with another round.

In order to implement the game, the three items are encoded in the process by
using three integers, i.e., scissors becomes 0, paper becomes 1, rock becomes 2. In
consequence, the decision whether player A, who has chosen $a, won over player
B, who has chosen $b, can be done based on the expression ($a+ 1) mod 3 = $b
and vice versa. Therefore, the process contains a loop which tests if A and B
chose the same item. If so, the loop continues and another round is played. In
the loop, A and B state their choice by sending an integer to the process, which
is encoded into either 0, 1, or 2. Afterwards, the winner is determined, if existent,
using two conditional branchings and an appropriate message is sent back.

When verifying this process with regard to controllability [4], i.e., whether
partners A and B exist for which the process will always be able to terminate its
execution, the process is mapped to a Petri-net-based process model first. The
application of a conventional mapping, e.g., using the pattern-based approach
described in [4,5], results in the Petri net shown in Figure 1. Note that the loop
and conditional branchings are therein mapped to conflicting transitions modeling
nondeterminism. Thus, the Petri net only over-approximates the process’s control
flow such that verifying the process based on this process model results in an
erroneous finding that the process is not controllable, while it rather is.



$a = 0
$b = 0
While ($a = $b) do

$a = Receive A
$a = $a mod 3
$b = Receive B
$b = $b mod 3
If (($a + 1) mod 3 = $b) then

Reply A Wins
else

If (($b + 1) mod 3 = $a) then
Reply B Wins

else Reply Repeat Game
end

end
end
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Fig. 1. Running example: Process, Petri net model, and extended workflow graph

3 Predicate Clause Analysis

Using control flow unfolding as described in [2,3], allows for resolving certain
kinds of conditional control flow such that nondeterminism can be avoided in a
process’s Petri net model. To this end, data flow information is derived and used
to identify control flow paths where a loop or branching condition is statically
evaluable based on the gained information. These control flow paths are then
made explicit, i.e., unfolded, and, as a result, the condition can be removed.

In order to derive data flow information about process data, we use extended
workflow graphs [2]. Workflow graphs provide a well-known format to model
the control flow structure of a process. For the representation of process data,
workflow graphs are enriched by annotating nodes and edges with instructions
and condition expressions in Concurrent Static Single Assignment (CSSA-)
Form [1], which benefits analysis. The such defined extended workflow graph for



our example process is shown at the bottom of Figure 1. Note that the process’s
variables are therein (statically) defined only once such that variables become
values, which is denoted by subscripts, e.g., $a becomes $a0, . . . , $a9. In order to
merge conflicting variable definitions into a single value, Φ-functions are used,
as is done for variable $a’s and $b’s definitions, e.g., $a1 = Φ($a0, $a9). Further,
several assertions have been added exposing the induced constraints for a value
referenced in a condition expression, e.g., $a4 = assert($a3, ($a3 +1) mod 3 = $b3)
guarantees for all dominated uses of value $a3, which have been renamed to $a4,
that its value satisifies the branching condition ($a3 + 1) mod 3 = $b3.

For the example process, data flow information resulting from constant prop-
agation or value range analysis does not help control flow unfolding since the
information derivable is too limited to allow for evaluating the loop or branching
conditions. In contrast, we here employ a novel analysis based on the analysis
framework described in [1], which produces a more general notion for the state
space of process data in terms of predicates. Thereby, predicates denote instruc-
tions or condition expressions as they appear in the process’s extended workflow
graph. Sets of predicates depict conjunctions of predicates, so-called predicate
clauses, as they hold on a single control flow path. Sets of predicate clauses are
then used, by means of disjunctions, to merge information over multiple paths.

In the following, let Variables denote the set of variables and Predicates the
set of instructions and condition expressions appearing in an extended workflow
graph. Predicates is augmented with instructions in {x = y | x, y ∈ Variables}.
Function var(pred) returns the set of contained variables for pred ∈ Predicates.
Then, for each variable v, we estimate its state space in terms of sets of predicate
clauses inf (v) using the following CSSA-based data flow equations:
Incoming Message If variable v is defined by incoming message activity, e.g.,

Receive, the result is the singleton set inf (v) = {∅}
Constant Assignment If variable v is defined by constant assignment, i.e.,

v = c, the result is the singleton set inf (v) = {{v = c}}
General Assignment If variable v is defined by expression assignment v = expr

with var(expr) = {x1, . . . , xn}, the result is:

inf (v) =
⋃

k1∈inf (x1),...,kn∈inf (xn)

{k1 \ kill(v) ∪ . . . ∪ kn \ kill(v) ∪ {v = expr}}

Assertion If variable v is defined by assertion, i.e., v = assert(x, pred) with
var(pred) = {x1, . . . , xn}, the result is:

inf (v) =
⋃

k1∈inf (x1),...,kn∈inf (xn)

{k1 \ kill(v) ∪ . . .∪kn \ kill(v) ∪{pred, v = x}}

Φ-/π-Function If variable v is defined by Φ-/π-function, i.e., v = Φ(x1, . . . , xn)
or v = π(x1, . . . , xn), the result is:

inf (v) =
⋃

ki∈inf (xi)

{ki \ kill(v) ∪ {v = xi}}

where kill(v) = {pred ∈ Predicates | v ∈ var(pred)} for all v ∈ Variables.



Applying the analysis to the example process then results for variable $a1:

{ { $a0 = 0 , $a1 = $a0 },

{ $a3 = $a2 mod 3 , $b3 = $b2 mod 3 , ($a3 + 1) mod 3 = $b3 , $a4 = $a3,

$a9 = $a4 , $a1 = $a9 },

{ $a3 = $a2 mod 3 , $b3 = $b2 mod 3 , ($a3 + 1) mod 3 6= $b3 , $a5 = $a3,

$b5 = $b3, ($b5 + 1) mod 3 = $a5, $a6 = $a5, $a8 = $a6, $a9 = $a8, $a1 = $a9 },

{ $a3 = $a2 mod 3 , $b3 = $b2 mod 3 , ($a3 + 1) mod 3 6= $b3 , $a5 = $a3,

$b5 = $b3, ($b5 + 1) mod 3 6= $a5, $a7 = $a5, $a8 = $a7, $a9 = $a8, $a1 = $a9 } }

and for variable $b1:

{ { $b0 = 0 , $b1 = $b0 },

{ $a3 = $a2 mod 3 , $b3 = $b2 mod 3 , ($a3 + 1) mod 3 = $b3 , $b4 = $b3,

$b9 = $b4 , $b1 = $b9 },

{ $a3 = $a2 mod 3 , $b3 = $b2 mod 3 , ($a3 + 1) mod 3 6= $b3 , $a5 = $a3,

$b5 = $b3, ($b5 + 1) mod 3 = $a5, $b6 = $b5, $b8 = $b6, $b9 = $b8, $b1 = $b9 },

{ $a3 = $a2 mod 3 , $b3 = $b2 mod 3 , ($a3 + 1) mod 3 6= $b3 , $a5 = $a3,

$b5 = $b3, ($b5 + 1) mod 3 6= $a5, $b7 = $b5, $b8 = $b7, $b9 = $b8, $b1 = $b9 } }

Note that the Φ-functions and assertions are included by means of simple assign-
ments, each copying the respective operand’s value to the function value.

4 Control Flow Unfolding

Having done the analysis, the derived data flow information, i.e., predicate clauses,
can be tested for enabling the evaluation of conditional control flow. Thus, given
a branching or loop condition, a SMT solver, in our case YICES3, is used to
check, on the one hand, whether a conjunction of certain predicate clauses for
variables referenced in the condition is satisfiable (otherwise it would represent
an infeasible path and can be neglected) and, on the other hand, whether the
conjunction implies the condition to be either true or false. In the latter, the
condition can be statically evaluated for this specific set of predicate clauses and
is thus a candidate for control flow unfolding.

In the example process, the loop with condition $a1 = $b1 is such a candidate
for unfolding, i.e., the control flow path which is denoted by the predicate clause
{$a3 = $a2 mod 3, $b3 = $b2 mod 3, ($a3 + 1) mod 3 6= $b3, $a5 = $a3, $b5 = $b3,

($b5 + 1) mod 3 6= $a5, $a7 = $a5, $a8 = $a7, $a9 = $a8, $a1 = $a9} for variable $a1
and the clause {$a3 = $a2 mod 3, $b3 = $b2 mod 3, ($a3 + 1) mod 3 6= $b3, $a5 = $a3,

$b5 = $b3, ($b5 + 1) mod 3 6= $a5, $b7 = $b5, $b8 = $b7, $b9 = $b8, $b1 = $b9} for
variable $b1 is a feasible path since the conjunction of both clauses is satisfiable.
Further, the conjunction of the clauses also implies the loop condition $a1 = $b1
always to be satisfied, as can be checked using YICES:

|= ($a3 = $a2 mod 3 ∧ $b3 = $b2 mod 3 ∧ ($a3 + 1) mod 3 6= $b3 ∧ $a5 = $a3

∧ $b5 = $b3 ∧ ($b5 + 1) mod 3 6= $a5 ∧ $a7 = $a5 ∧ $b7 = $b5 ∧ $a8 = $a7

∧ $b8 = $b7 ∧ $a9 = $a8 ∧ $b9 = $b8 ∧ $a1 = $a9 ∧ $b1 = $b9) → $a1 = $b1

3 http://yices.csl.sri.com
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Fig. 2. Extended workflow graph with unfolded loop

Since the derived predicate clauses make it possible to evaluate the loop
condition to either true or false for all control flow paths in the example process,
the loop can be effectively transformed such that the loop condition is removed.
To this end, the control flow paths which are associated to the individual predicate
clauses are made explicit by dissolving merge nodes joining these paths through
subgraph duplication. In particular, the loop is replaced by copies of it, so-called
loop instances, based on the derived predicate clauses which therefore act as a
kind of invariant for the values of variables $a1 and $b1. For instance, predicate
clauses {$a0 = 0, $a1 = $a0} and {$b0 = 0, $b1 = $b0} constitute the invariant
$a0 = 0∧$a1 = $a0 ∧$b0 = 0∧$b1 = $b0 which holds for the first loop iteration and
allows for evaluating the loop condition to true therein. Thus, the loop condition
can be evaluated in each loop instance and afterwards replaced by unconditional
control flow to the loop exit or to the same or another instance.

For conducting the above described control flow unfolding technique, an
adjusted version of the algorithm described in [3] is used, which works with
predicate clauses as data flow information and evaluates loop and branching
conditions by the help of SMT solver YICES. Applying this algorithm to the loop
in the example process results in the extended workflow graph shown in Figure 2.
As can be seen, the loop is therein unfolded into two loop instances such that



start

B

A

B WinsA Wins Game
Repeat

B

A

B WinsA Wins Game
Repeat

final

Fig. 3. Refined Petri net model

the loop condition has been eventually resolved. Mapping the thus successfully
unfolded process to a Petri-net-based process model yields the Petri net shown in
Figure 3. Verifying the process in respect of controllability based on this refined
process model then comes to the correct result that the process is controllable.

5 Related Work

The relevance of process data when verifying business processes based on Petri nets
is an ongoing research topic. Nevertheless, most approaches to a process-to-Petri-
net-mapping either omit data entirely our restrict themselves to data of bounded
and limited domain [4,5,7]. Using high-level Petri nets allows for augmenting the
process model with (unbounded) data, for which verification methods have been
proposed in respect of acyclic processes. However, the application of high-level
nets in general leads to undecidability in case of cyclic control flow, and even if
data is bounded, state space explosion may hinder a feasible verification. This
also applies if high-level nets are unfolded into low-level Petri nets, since an
infinite data domain implies an infinite low-level net. In contrast, our unfolding
technique always terminates with a finite process model.

A method to integrate SMT solving into Petri-net-based business process
verification has already been described in [6]. However, this approach is also
restricted to acyclic processes since its termination can else not be guaranteed.

6 Conclusion

In this paper, we presented an extension of our previous technique [3], which allows
us to unfold certain kinds of a business process’s conditional into unconditional
control flow such that a precise mapping of the process to its Petri net model is
not impeded by the introduction of nondeterminism. In our previous work, we



have based the control flow unfolding on data flow information derived by copy
propagation or value range analysis. However, the information thus derivable can
be too limited for resolving certain loop or branching conditions, as is shown
by the running example in this paper. In order to enlargen the number of cases
our technique is effectively applicable, we now employ a CSSA-based analysis for
deriving predicates determining the state space of process data, which are then
used in combination with a SMT solver to conduct the unfolding. In this way,
we are able to exploit the various background theories available in SMT solvers
(supporting real/integer arithmetic, arrays, lists, etc.).

In a current prototype, we have implemented the unfolding technique for
a subset of the WS-BPEL language based on value range information. Using
the prototype in combination with existing Petri-net-based verification tools,
e.g., Fiona [4], then allows for achieving more precise verification results. We
plan to integrate the predicate clause analysis and adjusted unfolding algorithm
described here into this prototype. Building on that, the thorough evaluation of
the control flow unfolding approach remains the main issue for future work.
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