Improving Process Monitoring and Progress
Prediction with Data State Transition Events

Nico Herzberg and Andreas Meyer

Hasso Plattner Institute at the University of Potsdam
{nico.herzberg, andreas.meyer}@hpi.uni-potsdam.de

Abstract. Monitoring business processes during their execution is one
important aspect of business process management. Process monitoring
requires observed events, which are recorded in information systems, to
reason about, amongst others, process progress. Especially in manual
executing process environments, the observed events are most likely
sparse. Therefore, we introduce an approach increasing the number of
observed events by capturing data state transition events, which occur
after successfully writing a data object during process execution.

1 Introduction

In the field of business process management, monitoring is used to observe process
behavior and probably to react upon events as well as to predict upcoming process
steps during process execution. Processes automated by information systems, i.e.,
process engines, can be monitored very well because the system usually provides
logging capabilities and therefore, the progress is easily recognizable. In contrast,
in environments with processes to be mainly executed manually, such as in health
care, many occurring events are not captured. Thus, event information about such
processes is incomplete and exact proposition about progress, e.g., by applying
the concept of event monitoring points [1], is not possible. An event monitoring
point is correlated to certain events captured by an I'T system connected to a
specific event data source, e.g., a database or a bar code scanner, and informs
when certain states transitions as, for instance, enable, begin, or terminate, occur
in a process activity. Probabilistic means, as for instance explained in [4], can
provide an indication about process progress but are an approximation only.
Nevertheless, progress recognition of the complete process and an holistic view
on the process are goals in manual executing process environments also. Intro-
ducing additional documentation and logging activities during process execution
can be a solution, however, this is not intended, because it creates additional
effort to the process participants, e.g., the doctors and nurses. Therefore, we will
introduce an approach utilizing events from data object creation or modification
to increase the number of observable events used for process monitoring and
prediction of process progress. We call them data state transition events. After
the write of a data object in a specific data state, we can assume this data
object to be existent. Besides arguing about process progress, the registration of

events helps in deciding about future process execution and the chance of proper
completion of a process or the reachability of a specific activity. Additionally, the
approach can be utilized to identify incorrect behavior similarly to what is done
in the field of data conformance, e.g., [3].

2 Approach

The presented approach enables insights into process execution based on informa-
tion about a data object. Data objects and their life cycles are the basis for this
approach. A data object life cycle (OLC) is represented by a Petri net, where a
place describes a data state and a transition represents a data state change from
the preceding to the succeeding one. An OLC specifies all allowed data state
changes of the corresponding data object. As an example, we refer to an Invoice
with data states created, sent and paid, whereat these states can be reached in
that order only, see Fig. 1 — Data Object Life Cycle Level. Based on this OLC,
those transitions are selected that can be monitored with events. We refer to an
event as a happening in a particular point in time at a certain place in a certain
context that is represented in the IT system landscape, see Fig. 1 — I'T Level.
The observable data state transitions of the OLC have to be linked to the events
that provide the information about the triggering of the transitions. This link is
provided by a binding, see Fig. 1 — Event Level, of the particular transition of
the OLC to an implementation that extracts the necessary information about
the events from a data source including the correlation to a specific data object
instance during runtime. For the binding, we use the same technique as presented
in our earlier work [1]. In our example, we assume that sending the invoice and
receiving the payment can be observed by retrieving the relevant data from a
database.

Model View (Design Time) Instance View (Run Time)

D D D D ™~ I
Invoice Invoice Invoice Invoice Invoice Invoice
Create Invoice >f[created]|. [sent] ->{_[paid] Create Invoice(1) .->{[created]]- > [sent] |- > _[paid)
/ / Create / Mail / Check / O
7 7 Invoice [~/ Invoice [/ payment |/
/ b t/ e | _yeb ¢/
i - /’ ;

Process Level

Check
Payment | 7

Create
Invoice

Invoice

Data Object set Set Set

Life Cycle Level created ated sent. paid l

IT Level <€ IT System IT System
g Landscape Landscape

Fig. 1. Scenario describing the approach at design time and run time

During the design of several process models, the data objects can be assigned
to particular activities, whereas the activities either read a data object in a
certain data state, create a data object in a certain data state, or transfer a
data object from one data state to another. We assume that the usage of the
data object in a process correlates correctly to the OLC, i.e., the process only
uses the specified data states and their transitions as shown in Fig. 1 — Process

Level. Nevertheless, not every possible data object state in the OLC needs to be
reflected in the process model.

Based on the assignment of the data objects to the activities, it is possible to
provide information about the process execution during runtime. We assume that
an activity is enabled if the activity could be executed because of the control
flow specification and if the input data object is available in the required data
state. Furthermore, we assume that an activity is terminated as soon as the
output data object is present in a certain data state. Information about process
execution can be provided for activities, which consume or provide data objects
in certain data states whose state transition is observable.

Referring to our example, the termination of activity Create Invoice and the
enablement of Mail Invoice cannot be monitored with information about the data
object Invoice only, whereas the completion of the second activity as well as the
enablement of the third activity of the process model can be tracked on IT Level.
This is visualized by the edges to the Bindings database in Fig. 1 (left part). At
design time, the data state transitions to sent and paid are marked as observable
(bold outline). This maps to the aforementioned monitoring capabilities at run
time. At run time, the progressing in the process can be recognized by data state
transition events occurring in the event store. In Fig. 1 (right part), an event for
sending Invoice(1) (data object with corresponding instance id) is observed in the
event store (solid edge), but there is no event available for the payment although
it is expected to happen some time (dashed line). For monitoring process details
not observable by the means of data manipulation, the introduced approach can
be combined with other approaches, e.g., [1].

For simplicity reasons, we described the approach assuming at most one
input data object and at most one output data object per activity. However, the
approach is also valid for many input and output data objects.

3 Related Work

In [1], a framework is presented that describes the definition of so-called event
monitoring points in business process models based on their activities’ states.
This work builds the basis of the approach discussed in this paper. As process
mining techniques [5], especially conformance checking, are relying on event logs
that are complete with respect to the underlying process model, the presented
approach could help to enrich existing event logs especially in manual executing
process environments and extend them to complete event logs. [3] checks for
conformance between process models and data objects at design time while [2]
ensures compliance to regulations by restricting the design of artifact-centric, i.e.,
data-centric, processes. In contrast to these works, our approach targets on run
time compliance to data objects.

4 Conclusion

The presented approach uses information about data objects and their data states
resp. data state transitions from process models to enable process monitoring.

The observable data about the transition of a data object from one data state
to another provides further insights about the process execution. Thus, a more
detailed process monitoring can be assured.

References

1. N. Herzberg, M. Kunze, and A. Rogge-Solti. Towards Process Evaluation in Non-
automated Process Execution Environments. In Services and their Composition
(ZEUS), 2012.

2. N. Lohmann. Compliance by design for artifact-centric business processes. In
Business Process Management, pages 99-115. Springer, 2011.

3. A. Meyer, A. Polyvyanyy, and M. Weske. Weak Conformance of Process Models
with respect to Data Objects. In Services and their Composition (ZEUS), 2012.

4. A. Rogge-Solti and M. Weske. Enabling Probabilistic Process Monitoring in Non-
automated Environments. In BMMDS/EMMSAD, pages 226-240, 2012.

5. W. M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement
of Business Processes. Springer, 2011.

	Improving Process Monitoring and Progress Prediction with Data State Transition Events

